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Introduction

Essential tremor (ET) is one of the most 
prevalent neurological disorder in adults (1, 2), 
characterised by kinetic and postural oscillation 
involving a body part or more (3). Its prevalence 

estimates ranging from 0.4% to 5% (4). Despite 
this high prevalence, the pathogenesis and 
etiology of ET are not completely known (5). 
The harmaline as an indole alkaloid, is a plant-
derived metabolite used to induce tremor in 
animals (6). Harmaline administration induces 
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Abstract

Background: There is a meaningful necessity for a targeted therapy of essential tremor 
(ET), as medications have not been developed specifically for ET. For nearly a century, many drugs 
have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. 
Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET 
in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 
1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline 
in male rats was investigated.

Methods: The animals were allotted into control dimethyl sulfoxide (DMSO), saline + 
harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24  h 
before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were 
studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study 
by transmission electron microscopy (TEM) techniques.

Results: Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis 
and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 
exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons.

Conclusion: These results suggest that FTY720 has potential efficacy for prevention of ET 
neurodegeneration and astrocytosis induced by harmaline in male rats.  
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immunomodulatory sphingosine 1-phosphate 
(S1P) analog, on the harmaline-induced 
destruction of cerebellar and olivary neurons in 
male rats. 

Methods

Animals

Forty male Wistar rats weighing 40 g–60 
g were under a 12 h light-dark cycle with ad 
libitum access to food and water. The animals 
were allotted into control dimethyl sulfoxide 
(DMSO), saline + harmaline [30 mg/kg, 
intraperitoneally, (i.p.)], harmaline + FTY720 
(1 mg/kg, i.p., 1 h and 24 h before harmaline 
injection) groups (n = 10). All efforts were 
performed to minimise animal suffering. 

Preparation and Administration of Drugs

Harmaline hydrochloride dihydrate 
(Sigma, Germany, 30 mg/kg) and FTY720 
(Sigma, Germany, 1 mg/kg; i.p.) were dissolved 
in normal saline and DMSO (1% v/v) on 
the day of the experiment, respectively. The 
FTY720 administered 1 h (FTY720/1h) and 
24  h (FTY720/24h) before harmaline injection. 
Vehicles as pre-administration, injected to the 
harmaline group 1 h before harmaline injection, 
to keep the same number of injections in all 
groups. Maximum volume for intraperitoneally 
injection of drugs was 1 mL.

Histological Analysis

The rats were euthanised under deep 
anesthesia and cerebellar cortex and the ION 
tissues were fixed in 10% buffered formalin for 
24 h and then were processed to prepare 5 µm 
thick paraffin sections for hematoxylin-eosin 
staining and immunohistochemistry (IHC) study. 

Hematoxylin-Eosin Staining Method

The tissues were hydrated and stained with 
Harris hematoxylin and eosin Y. Completely 
dehydrated sections were cleared with xylene and 
mounted with entellan (27).

IHC Study

For IHC, neurons were controlled in 
the cerebellar cortex and the ION by primary 
antibodies: GFAP and caspase-3. The sections 
were dipped with Tris-buffer saline (TBS), 
dehydrated in ethanol, hydrated in distilled 
water. To the blocking non-specific binding 
sites, using a solution of 0.3% Triton and 5% 

a high frequency tremor and produces abnormal 
motor behaviour in rats (7). 

Harmaline, as apsychoactive alkaloid, has 
excitatory effects on the central nervous system 
(CNS) with increased firing rate in the inferior 
olivary nucleus neurons (ION) (8). The ION may 
play the primary role in the producing tremor in 
ET (9). It was assumed that harmaline with an 
increase of neuronal firing in the inferior olive, 
leading to release glutamate from climbing fibers 
that synapses with Purkinje cells. The repetitive 
of an excitatory neurotransmitter release, 
produces excitotoxic damage and degeneration in 
Purkinje cells (8). 

Recent controlled post-mortem evidence 
documented that ET is related to the histological 
changes of the neural cells in the cerebellum 
(4, 10). These changes were detected in 
Purkinje cells including swellings of axons (11), 
heterotopic displacement (12) and cell death 
(13). Considering the absence of understanding 
the basic mechanism of tremors, it will be 
challenging to develop pharmacological agents 
with anti-tremor activity (8). 

Fingolimod (FTY720) is an innovative 
oral drug approved in 2010 for therapy of 
MS patients (14). The sphingosine kinase 
phosphorylates FTY720 into an activated form, 
FTY720-P (15) and regulates several cellular 
responses (16). Emerging evidence indicates 
extending the success of FTY720 in the CNS 
beyond immunomodulation to include other 
multiple sclerosis (MS) pathophysiology aspects, 
such as an influence on the blood-brain barrier 
(BBB) and glial repair mechanisms that could 
eventually play role in the restoration of nerve 
function (17).

Tremor induced by harmaline is one of 
the animal models of transient action tremor 
(18, 19). In this model, inferior olive activation 
transfers to the cerebellar Purkinje cells through 
climbing fibers. Studies which evaluated the 
pharmacological profile (20, 21) influenced brain 
areas (22, 23) and the phenomenological features 
of harmaline-induced tremor (21, 24) indicated 
the usefulness of this model in assessing the 
clinical efficacy of putative therapies in ET. 

FTY720 has shown anti-inflammatory 
and neuroprotective roles in different animal 
models of the CNS disorders, in addition to its 
immunomodulatory functions in MS (25). In the 
behavioural study, Dahmardeh et al., showed 
that FTY720 ameliorated motor impairments of 
ET induced by harmaline in rats (26). This study 
aimed to investigate the effect of FTY720, the 
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the cerebellum (P < 0.045) (Figure 1, right panel) 
and ION (P < 0.001) (Figure 1, left panel), and 
the number of these cells was significantly lower 
in FTY720 group than harmaline group in the 
cerebellum (P < 0.006) and ION (P < 0.001). 

Harmaline administration resulted in 
increasing the number of caspase-3+ Purkinje 
cells (P < 0.001) (Figure 2) in cerebellum and 
pretreatment with FTY720 significantly reduced 
the number of caspase-3+ cells (P < 0.031).  
In addition, the number of caspase-3+ neurons 
in ION was increased in harmaline group  
(P < 0.001) (Figure 3) and FTY720 pre-treatment 
attenuated the number of these cells (P < 0.008).  

In DMSO treated rats, Purkinje cells of 
the cerebellum and ION neurons had normal 
morphology including intact cell membrane, 
clear nucleus, intact nuclear membrane, 
dispersed chromatin and prominent nucleolus. 
Harmaline induced eminent ultrastructural 
changes in Purkinje cells of the cerebellum 
and ION neurons. Cell and nuclear shrinkage, 
chromatin margination, apoptotic bodies 
and dark cytoplasm formation were the 
most ultrastructural findings in neurons of 
the harmaline treated group. In FTY720/1h 
group, the ultrastructure of most neurons was 
preserved. In this group, apoptotic bodies were 
not observed. On the other hand, chromatin 
aggregation, dark cytoplasm and shrinkage of 
the nuclei were found in FTY720/24h group 
(Figure 4). 

Discussion

In most patients suffering from ET, the 
illness is not recognised and never cured. ET is 
a prelavent movement complaint. The severity 
of the tremor and handicap differ extensively. 
Moreover, because of side-effects or poor 
efficacy, many patients don’t follow the treatment 
(29). This study presented the innovative 
findings regarding the tremor harmaline model, 
and the impacts of FTY720 on this disorder. 

According to our data, harmaline increased 
caspase-3 positive cells in cerebellum and ION 
and the neuroprotective effects of FTY720 
was in agreement with other studies (30–32).  
Furthermore, electron microscopy study 
indicated that classical morphological features 
of apoptosis in neurons of cerebellum and 
ION including chromatin condensation and 
apoptotic bodies. FTY720 administration led 
to neuronal morphology preservation in the 
treated group. In addition, administration of 

goat serum dissolved in TBS for 3 h. Then 
samples were immersed in methanol 3% 
hydrogen peroxide solution for 1 h at room 
and endogenous peroxidase was inactivated. 
The sections were incubated using the primary 
antibodies, including anti-GFAP (1:500; Sigma, 
St. Louis, MO) and anti-caspase-3 (1:300; 
Santa Cruz, CA, USA) antibodies (1:300) at 
4 ºC overnight. The samples were washed in 
TBS three times. Subsequently, these samples 
incubated with the secondary antibodies 
(mouse/rabbit) conjugated with peroxidase 
for 1 h at ambient temperature. Sections were 
washed in water, immersed in copper sulphate 
(3,3'-diaminobenzidine) DAB enhancer 
(4  min), and counterstaining of the nuclei was 
performed with haematoxylin, dehydrated, 
cleared and mounted. Images were captured 
with a microscopic digital camera (50i) (Nikon-
Japan). Cells that showed GFAP and caspase-3 
immunoreactivity were manually counted in four 
microscopic fields (0.1070 mm2; 89.82 × 120.70 
μm) of the IHC stained sections from cerebellum 
and ION. Results were presented as the average 
number of cells/0.10 mm2 (28). 

Electron Microscope Study

For transmission electron microscopy 
(TEM) assessment, specimens (cerebellar 
cortex and the ION tissues) were fixed in 
2.5% phosphate-buffered glutaraldehyde  
(pH 7.4) and then were post-fixed in 1% osmium 
tetroxide in the same buffer at 4 °C, dehydrated 
and embedded in resin. Ultrathin sections were 
stained with uranyl acetate and lead citrate and 
photographed using TEM (Zeiss 10 EM) in the 
department of an electron microscope of the 
Kerman Neuroscience Research Center (KNRC). 
Semithin sections (400 nm thick) were stained 
with 1% toluidine blue for finding the area of 
interest. 

Statistical analysis

One-way analysis of variance (ANOVA) 
was used to analyse the data with Tukey’s post-
hoc, as a pairwise comparison between groups. 
All data were expressed as the mean ± SEM and  
P < 0.05 was considered statistically significant.

Results

The results indicated that the number of 
GFAP+ astrocytes was significantly increased in 
harmaline group compared to DMSO group in 
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NMDA receptors (NMDAR) constitute a 
major group of glutamate-gated ion channels 
and contribute to neurodegeneration related to 
excitotoxicity significantly (37). Since it has been 
indicated that ION and cerebellum involve a high 
density of (NMDAR) (38), it may be emphasised 
that functions abnormally of NMDAR in ET 
(39) can be treated by NMDA antagonists (19). 
The excitotoxic cellular death in the brain is 
considered as a series of necrotic, apoptotic, and 
autophagic morphologies (40). 

Recent studies indicated that harmaline in 
ION increases T-type calcium pulses. Therefore, 
T-type calcium channels blockers may have 
therapeutic results in tremor disorders (41). 
Dahmardeh et al. showed that FTY720 reduced 
the intensity of tremor and locomotor disorders 

FTY720 decreased caspase-3 positive cells in the 
cerebellum and ION neurons. In other works, 
Rolland et al., demonstrated that FTY720 in 
model of cerebral ischemia has anti-apoptotic 
effects (16). Cipriani et al., also reported that 
FTY720 has neuroprotective properties against 
NMDA (N-methyl-d-aspartic acid)-mediated 
excitotoxicity (33).

In vitro studies demonstrate that aspartate-
specific cysteine proteases (caspases) are 
effectors of apoptosis (34). In neurons, several 
lines of evidence show that caspase-3, a 32 kDa 
cytosolic protein, plays a key role in the executive 
phase of apoptosis (35). Neuronal death in 
experimental models of several acute and chronic 
neurodegenerative disorders was related to 
activation of caspase-3 (36). 
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Figure 1.	 Immunohistochemical analysis of GFAP+ cells in the cerebellum of rats (right panel) 
and ION (left panel). DMSO (A), harmaline (B), FTY720/1h (C) and FTY720/24 h (D).  
Scale bar: 10 µm. Bottom panel, the bar graph shows the quantitative analysis of 
GFAP+ cells in the cerebellum and ION of rats in different groups. Data are presented 
as means S.E.M. In the cerebellum * was considered for P < 0.045 compared 
with DMSO group and # was for P < 0.006 compared with harmaline group.  
In ION * was considered for P < 0.001 compared with the DMSO group and # was 
considered for P < 0.001 compared with harmaline (one-way ANOVA with Tukey’s post-hoc 
test for all comparisons).
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Figure 2.	 Upper panel, immunohistochemical 
analysis of caspase-3+ cells in the 
cerebellum. DMSO (A), harmaline 
(B), FTY720/1h (C) and FTY720/ 
24 h (D). Scale bar: 10 µm. White 
arrow shows normal cell (neuron) 
and black arrow shows caspase-3+ 
neuron. Bottom panel, the bar graph 
shows the number of caspase-3+ 
neurons was increased in harmaline 
group and pretreatment with 
FTY attenuated caspase-3+ cells.  
** P < 0.001 compared with DMSO 
group. # P < 0.031 compared with 
harmaline group (one-way ANOVA 
with Tukey’s post-hoc test for all 
comparisons).
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Figure 3.	 Upper panel, immunohistochemical 
analysis of caspase-3+ in inferior 
olive of the rat. DMSO (A), 
harmaline (B), FTY720/1h (C) and 
FTY720/24h (D). Scale bar: 10 µm. 
White arrow shows normal cell 
(neuron) and black arrow shows 
apoptotic neuron. Bottom panel, 
bar graph show the number of 
caspase-3+ neuron was increased in 
harmaline group and pretreatment 
with FTY attenuated caspase-3+ 
cells. * P < 0.001 compared with 
DMSO group. # P < 0.008 compared 
with harmaline group (one-way 
ANOVA with Tukey’s post-hoc test 
for all comparisons).
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Figure 4.	 Upper panel, an electron micrograph of the ultrastructure of Purkinje cells in the 
cerebellum of rats. Bottom panel, an electron micrograph of the ultrastructure of inferior 
olive neurons of rats. The prominent nucleolus (black arrow), intact nucleolemma and cell 
membrane (yellow and white arrows) were visible in part A. Note ultrastructural alterations 
including chromatin aggregation (dark red arrow) nuclear deformity and apoptotic bodies 
(narrow red arrow) in part B. Control (DMSO) (A), harmaline (B), FTY720/1h (C) and 
FTY720/24h (D). Scale bar: 1.5 µm.
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treatment can reduce cerebral cytokine levels 
(55). FTY720 may also act with restricting the 
release of neurotoxic mediators from astrocytes, 
in addition to the therapeutic effects through 
reducing the inflammatory cell influx into CNS 
(55). 

Conclusion

The most prominent results of the present 
work are as the following: harmaline can induce 
neurodegeneration in Purkinje cells of the 
cerebellum and ION and FTY720 attenuate 
harmaline induced neuronal injury, probably 
as results of the anti-apoptotic and anti-
inflammatory effects. To sum up, the FTY720 
seems to be an encouraging therapeutic factor 
against harmaline induced neurodegeneration 
changes in rat cerebellum and ION.
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(26) which may show its anti-tremorogenic 
efficacy. Via chemical ablation in olivo-cerebellar 
fiber may be prevent the degeneration of 
Purkinje cells. It has been highlighted that the 
excitotoxic destruction of the Purkinje cells may 
be caused by an excitatory amino acid release 
from the climbing fiber (42). Harmaline can 
increase synaptic activity of climbing fibers 
creating from ION (43). Excitatory amino acids 
levels in the cerebellum increase through the 
climbing fiber system activation. It is, therefore, 
possible that these acids are responsible for 
harmaline tremor mechanism (44).

Astrocytes are responsible for maintaining 
the brain homeostasis. Their processes 
through expressing the numerous receptors for 
neurotransmitters, some transporters, cytokines, 
and growth factors, modify the neuronal activity 
(45). Given that the variability of basic functions 
applied by astrocytes to support neurons, it has 
been made clear that astrocyte impairment 
play a key role in neuronal dysfunction in 
several neurodegenerative illnesses, including 
amyotrophic lateral sclerosis, Alzheimer’s and 
Huntington diseases (46). In the pathological 
conditions, the response of astrocytes is very 
heterogeneous. It was recently shown that glio-
transmission regulates the trafficking and surface 
expression of the NMDAR (47). 

For many key CNS functions, NMDAR is 
essential (48). It has been shown that NMDAR 
activity in astrocytes exerts neuronal antioxidant 
protection (49). 

In consistent with previous studies, 
our study results revealed that harmaline 
increased astrocyte number and FTY720 
diminished astrocytes number in treated groups. 
Harmaline may by acting on the NMDAR, 
induce tremor and causing cell death (50). 
Deogracias et al., reported that FTY720 can 
reduce cytotoxicity induced by NMDA in a 
brain-derived neurotrophic factor dependent 
method (51). So it can be predicted that 
FTY720 might reduce the effects of harmaline 
by blocking NMDAR (52). Besides, Hoffmann 
et al., suggested that neuroprotective effects 
of FTY720 on astrocytes may be through the 
induction of neurotrophic factors and inhibition 
of inflammatory genes expression and FTY720 
effects might be mediated by astrocytes (53). 
Furthermore, Van Doorn et al. showed that 
FTY720 inhibit production of inflammatory 
cytokines in human astrocytes (54). It is known 
that under pathological conditions, astrocytes 
release pro-inflammatory cytokines and FTY720 
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7.	 Rahimi Shourmasti F, Goudarzi I, Lashkarbolouki 
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NEN.0b013e3181d1ad04 
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