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Abstract

Motivation: Poor protein solubility hinders the production of many therapeutic and industrially useful proteins.
Experimental efforts to increase solubility are plagued by low success rates and often reduce biological activity.
Computational prediction of protein expressibility and solubility in Escherichia coli using only sequence information
could reduce the cost of experimental studies by enabling prioritization of highly soluble proteins.

Results: A new tool for sequence-based prediction of soluble protein expression in E.coli, SoluProt, was created
using the gradient boosting machine technique with the TargetTrack database as a training set. When evaluated
against a balanced independent test set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of
0.62 exceeded those of a suite of alternative solubility prediction tools. There is also evidence that it could signifi-
cantly increase the success rate of experimental protein studies. SoluProt is freely available as a standalone pro-
gram and a user-friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/.

Availability and implementation: https://loschmidt.chemi.muni.cz/soluprot/.

Contact: jiri@chemi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Low protein solubility causes severe problems in protein science
and industry; insufficient protein solubility is probably the most
common cause of failure of protein production pipelines. The im-
portance of solubility is underlined by the findings of the large-
scale Protein Structure Initiative (PSI) project (Berman et al.,
2017), which sought to produce thousands of protein sequences
from different organisms, crystallize them and resolve their ter-
tiary structure. Unfortunately, in most cases it proved impossible
to produce the target proteins in soluble form. The inherent low
solubility of natural enzymes also limits the success of emerging
high-throughput pipelines that explore protein databases to iden-
tify novel enzymes with diverse functions (Hon et al., 2020;
Vanacek et al., 2018). Given the rapid growth of protein sequence
databases driven by the capabilities of next-generation sequencing
technologies, there is an urgent need to focus only on potentially
soluble targets to avoid wasting resources on hard-to-produce
orthologs. Solubility is thus a key attribute when choosing protein

targets for experimental characterization (Vanacek et al., 2018).
Strictly speaking, solubility is a thermodynamic parameter defined
as the protein’s concentration in a saturated solution in equilib-
rium with a solid phase under specific conditions. However, it is
challenging to quantitatively measure the solubility of large sets of
proteins (Kramer et al., 2012), so there is little quantitative ex-
perimental data on protein solubility. Moreover, this definition of
solubility is too narrow to encompass many of the practical prob-
lems that may occur during protein production with common ex-
pression systems. Therefore, inspired by existing tools
(Supplementary Table S1) (Agostini et al., 2014; Khurana et al.,
2018; Raimondi et al., 2020; Smialowski et al., 2012), available
data (Berman et al., 2017) and laboratory practice, we use a
slightly extended definition of protein solubility in this work.
Specifically, by solubility, we mean the probability of soluble pro-
tein (over)expression in Escherichia coli cells. The difference from
the classical thermodynamic solubility is in the perception of the
insoluble class. We assume that insoluble proteins were either not
expressed or were expressed in the insoluble form.
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Solubility depends on many extrinsic and intrinsic factors.
Extrinsic factors are dictated by the choice of expression system and
the experimental conditions used in protein production. Expression
systems may be either in vivo or in vitro (Carlson et al., 2012;
Rosano and Ceccarelli, 2014). In vivo protein expression is induced
inside living cells of a host organism, whereas in vitro expression
relies on the use of cell-free translational systems. Solubility can be
increased by adjusting extrinsic solubility factors, especially by using
different mutated host strains, codon optimization, coexpression of
chaperones and foldases, lowering cultivation temperatures and
adding suitable fusion partners (Costa et al., 2014). However, tun-
ing the expression system or experimental conditions is not always
sufficient to confer solubility, and is not feasible in high-throughput
protein production pipelines. If extrinsic factors cannot be varied,
protein solubility will depend only on the intrinsic properties of the
protein sequence. Unfortunately, the relationship between a pro-
tein’s sequence and its solubility is poorly understood, mainly due to
a lack of reproducible quantitative solubility measurements (Kramer
et al., 2012). Recent protein engineering studies suggest that charged
amino acids on the protein surface are key intrinsic determinants of
solubility (Carballo-Amador et al., 2019; Chan et al., 2013; Sankar
et al., 2018). However, this knowledge cannot be directly used for
solubility prediction due to a lack of structural data. Despite the
continuous growth of structural databases (Burley et al., 2019), the
structures of proteins of interest are generally unknown, and the lim-
ited availability of template structures prevents their accurate com-
putational prediction.

The simultaneous effects of extrinsic and intrinsic factors make
solubility prediction challenging. For example, the prediction of
solubility from sequence data using machine learning is hindered by
the high level of noise in typical training datasets due to the influ-
ence of diverse extrinsic variables. Because the molecular mecha-
nisms governing protein solubility are poorly understood, recent
solubility prediction tools rely heavily on statistical analysis and ma-
chine learning, using previously reported experimental data to train
and validate model parameters. One of the most widely used data
sources is the TargetTrack database (Berman et al., 2017), formerly
known as PepcDB or TargetDB, which integrates information from
the Protein Structure Initiative projects. This database contains data
from over 900 000 protein crystallization trials involving almost
300 000 unique protein sequences, which are referred to as targets.
The database does not contain solubility data per se, but target pro-
teins can be considered soluble if they were successfully purified in
the experimental trials. A major limitation of this database is the
low quality of its annotations. For example, reasons for failure are
generally not provided for unsuccessful crystallization attempts.
Therefore, it is impossible to distinguish failures due to insolubility
from failures due to other problems later in the experimental pipe-
line. Second, the experimental protocols used for protein production
and crystallization are described in free text with no internal struc-
ture, making it hard to automatically extract information about ex-
perimental conditions and expression systems for a given target.
Filtering is therefore needed to reduce noise before using the
TargetTrack data for model training. However, the application of
stringent filtering rules to the target annotations can dramatically re-
duce the number of usable records.

eSOL is another well-known and commonly used solubility data-
base (Niwa et al., 2009, 2012) that contains experimentally meas-
ured solubilities for over 3 000 E.coli proteins produced in the
PURE (Shimizu et al., 2001) cell-free expression system. eSOL is an
impressive collection of highly homogenous data but has its own
limitations. First, it only contains data on proteins originating from
E.coli. Second, it has relatively little negative data; adding the three
main cytosolic E.coli chaperones (TF, DnaKJE and GroEL/GroES)
to the PURE expression system reduced the number of insoluble pro-
teins from 788 to 24 (Niwa et al., 2012). eSOL is a valuable source
of exact solubility data that were generated using a robust pipeline
and provide a good quantitative measure of thermodynamic solubil-
ity. However, these data cannot be used to assess solubility accord-
ing to our expanded definition, which also encompasses
expressibility.

The relationship between protein sequence and solubility has
been studied for over 30 years, leading to the development of several
predictive models and software tools. There are 11 such models or
tools that use definitions of solubility like that described above and
take protein sequences as their sole input. These are the revised
Wilkinson-Harrison model (rWH) (Davis et al., 1999; Wilkinson
and Harrison, 1991), SOLpro (Magnan et al., 2009), RPSP (Diaz
et al., 2010), PROSO II (Smialowski et al., 2012), ccSOL omics
(Agostini et al., 2012, 2014), ESPRESSO (Hirose and Noguchi,
2013), CamSol (Sormanni et al., 2015), Protein-Sol (Hebditch et al.,
2017), DeepSol (Khurana et al., 2018), SKADE (Raimondi et al.,
2020) and the Solubility-weighted index (SWI) (Bhandari et al.,
2020). However, the accuracy of these tools is limited, and there is
clear room for improvement. Additionally, these tools exhibit poor
generality when used to make predictions based on previously un-
seen data. A comprehensive review of advances in solubility predic-
tion, including predictors that use protein structures as inputs, was
published recently (Musil et al., 2019). Here, we present a novel ma-
chine learning based tool, SoluProt, for predicting soluble expression
from protein sequence data. SoluProt benefits from thorough dataset
pre-processing and predicts soluble expression more accurately than
previously reported methods.

2 SoluProt training and test set

We used the TargetTrack database to build the SoluProt training
set. Since this database does not directly provide solubility informa-
tion, we inferred solubility computationally, using an approach
similar to those adopted previously (Magnan et al., 2009;
Smialowski et al., 2012). A protein was considered soluble if it was
recorded as having reached a soluble experimental state or any sub-
sequent state requiring soluble expression (Supplementary Table
S2). If failed expression or purification was mentioned in the experi-
ment record’s stop status, the protein was labeled insoluble. In con-
trast to a previous approach (Smialowski et al., 2012), we required
an explicit stop status relating to insolubility to reduce the frequency
of incorrect classification of insoluble sequences. To improve the
quality of the training set, we also performed several additional steps
to clean the data.

Most importantly, we performed keyword matching combined
with manual checking of TargetTrack annotations to extract only
proteins expressed in the most common host organism, E.coli. This
was necessary because a protein soluble in one organism might be
insoluble in another. By focusing solely on the most common expres-
sion system, we reduced the noise in the training data. We also used
specific keywords to search the unstructured descriptions of experi-
mental protocols provided in the TargetTrack database
(Supplementary Table S3). Generic search phrases like ‘E.coli’ or
‘Escherichia coli’ were used to identify potential E.coli related pro-
tocols. These protocols were then manually checked and confirmed
(Supplementary Table S4). A full list of 248 TargetTrack protocols
signifying expression in E.coli is available at the SoluProt website.

We next identified transmembrane proteins in the dataset based
on direct annotations from the TargetTrack database and predic-
tions generated using TOPCONS (Tsirigos et al., 2015) with default
settings. The transmembrane proteins were then removed, along
with sequences shorter than 20 amino acids, and sequences with un-
defined residues. We also removed sequences that had been classi-
fied as insoluble but for which a protein structure was available in
the Protein Data Bank (PDB) (Berman, 2000). To this end, we com-
piled an E.coli PDB subset containing sequences of proteins whose
structures had been solved by NMR or X-ray crystallography and
which had been expressed in E.coli according to the PDB annota-
tions (64 416 sequences, downloaded April 4, 2018). Because both
NMR and X-ray crystallography require soluble proteins, any pro-
tein in this PDB subset can be considered soluble in E.coli. This step
reflects advances in molecular biology: methodological develop-
ments have made it possible to produce and crystallize some proteins
that were previously considered insoluble.

Finally, we reduced the sequence redundancy in the training set
by clustering to 25% identity using MMseqs2 (Steinegger and
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Söding, 2017) and retaining only representative sequences from
each cluster. This was done separately for positive and negative sam-
ples to avoid simplifying the prediction problem. We balanced the
number of soluble and insoluble samples such that both classes were
equally represented. Additionally, we balanced the sequence length
distribution so that length alone would not play a dominant role in
the predictions. Sequence length correlates with protein solubility—
larger proteins are usually less soluble. However, we wanted to sup-
press its influence in the model because we anticipate that SoluProt
would mainly be used to prioritize proteins of similar lengths, usual-
ly from a single protein family. A typical expected use case is that of
the EnzymeMiner web server (Hon et al., 2020) for automated min-
ing of soluble enzymes. A prediction model relying heavily on se-
quence length would not perform well in this use case.

The SoluProt test set was built from a dataset generated by the
North East Structural Consortium (NESG), which represents 9644
proteins expressed in E.coli using a unified production pipeline (Price
et al., 2011). The dataset contains two integer scores ranging from 0
to 5 for each target, indicating the protein’s level of expression and
the soluble fraction recovery. The reproducibility of the experimental
results in the dataset was validated by performing repeat measure-
ments for selected targets. The NESG dataset targets are included in
the TargetTrack database because the NESG participated in the PSI
project. However, the expression and solubility levels from the NESG
dataset were not included in the TargetTrack database; instead, they
were provided to us directly by the authors of the original study (W.
Nicholson Price II, personal communication). The high consistency
and quality of the NESG dataset make it suitable for benchmarking
purposes. We processed the NESG dataset using the same procedure
as the training set, although the computational solubility derivation
and expression system filtration steps were omitted because they were
pointless in this case. Instead, we transformed the solubility levels
into binary classes: all proteins with a solubility level of 1 or above
were considered soluble and all others insoluble.

Finally, we ensured that no pair consisting of a sequence from the
test set and a sequence from the training set had a global sequence iden-
tity above 25% as calculated using the USEARCH software (Edgar,
2010). This made the test set more independent because it ensured that
predictions were not validated against data similar to those used during
training. In total, 11 436 protein sequences remained in the SoluProt
training set and 3 100 in the independent SoluProt test set. Both data-
sets had equal numbers of soluble and insoluble samples with balanced
sequence length distributions (Supplementary Fig. S1). The datasets are
available at the SoluProt website. The dataset construction steps are
summarized in Supplementary Table S5.

3 Prediction model

The SoluProt predictor is implemented in Python using scikit-learn
(Pedregosa et al., 2011), Biopython (Cock et al., 2009) and pandas
(McKinney, 2010) libraries. We used a gradient boosting machine
(GBM) (Friedman, 2001) to generate the predictive model.
Prediction features were selected from a set of 251 sequence charac-
teristics that were divided into eight groups: (i) single amino acid
content (20 features), (ii) amino acid dimer content (210 features),
(iii), sequence physicochemical features (12 features, Supplementary
Table S6), (iv) average flexibility as computed by DynaMine (Cilia
et al., 2014) (1 feature), (v) secondary structure content as predicted
by FESS (Piovesan et al., 2017) (3 features), (vi) average disorder as
predicted by ESPRITZ (Walsh et al., 2012) (1 feature), (vii) content
of amino acids in transmembrane helices as predicted by TMHMM
(Krogh et al., 2001) (3 features) and (viii) maximum identity to the
E.coli PDB subset as calculated using USEARCH (1 feature). All
sequences equal to any sequence from the test set were excluded
from the E.coli PDB subset for the calculation of maximum identity.
The objective was to eliminate even the indirect presence of test set
sequences from model training. We standardized all features by sub-
tracting the mean and scaling to unit variance. The means and var-
iances were calculated using the training set.

We removed correlated features in two steps. First, we fitted a
GBM with default parameters using the full training set and all

features. Second, we calculated Pearson’s correlation coefficient for
each pair of features. If the correlation between any two features
exceeded 0.75, we removed the feature with the lesser importance in
the fitted GBM model. We also removed irrelevant features using
LASSO (Tibshirani, 1996). LASSO’s alpha parameter was optimized
to maximize the mean AUC of the GBM model with default parame-
ters over 5-fold cross-validation. The alpha parameter was varied
between 0.08 to 0 with a step size of 6.25�10�4; its optimal value
was 0.005. In total, 96 features were selected for inclusion in the
predictive model (Supplementary Table S7). The DynaMine, FESS
and ESPRITZ features were not included in the final feature set.

We next optimized the hyperparameters of the GBM model,
using an iterative 7-stage strategy to maximize the mean AUC over
5-fold cross-validation using the training set (Supplementary Table
S8). In each stage, one or two parameters were optimized using grid
search; other parameters were left either at their final values from
the previous stages or at the default value if the parameter had not
yet been optimized. The best GBM model achieved mean AUC val-
ues of 0.85 6 0.003 for the training part and 0.72 6 0.02 for the val-
idation part. Overall, the feature selection and hyperparameter
optimization had little effect on the mean AUC: without these meas-
ures, the mean AUC values for the training and validation sets were
0.83 6 0.003 and 0.72 6 0.02, respectively. The main benefit of the
feature selection and parameter tuning steps was that they reduced
the number of features and thus made the feature calculation step
roughly two times faster.

Finally, we used the best GBM hyperparameters to train the final
SoluProt model using the full training set. The resulting model had an
AUC of 0.84 and an accuracy of 76% for the full training set. The five
most important features according to the GBM are: (i) maximum iden-
tity to the E.coli PDB subset (14.5%), (ii) isoelectric point (6.2%), (iii)
predicted number of amino acids in transmembrane helices in the first
sixty amino acids of the protein (4.2%), (iv) lysine content (4.0%) and
(v) glutamine content (3.5%) (Supplementary Table S7).

4 Performance evaluation and comparison

We used the SoluProt test set to evaluate and compare SoluProt to
11 previously published tools. The evaluation relied on both
threshold-independent (area under the ROC curve) and threshold-
dependent metrics (accuracy, Matthew’s correlation coefficient and
confusion matrices). For the threshold-dependent metrics, we
applied a threshold of 0.5 or the thresholds recommended by the
authors of the corresponding method (Table 1). SoluProt achieved
the highest accuracy (58.5%) and the greatest AUC (0.62) of the

Table 1. Performance of various solubility predictors using the bal-

anced SoluProt test set of 3100 sequences

Method AUC T ACC MCC TP TN FP FN

SoluProt 0.62 0.50 58.5% 0.17 939 873 677 611

PROSO II 0.60 0.60 58.0% 0.17 630 1167 383 920

SWI 0.60 0.50 55.9% 0.13 1206 527 1023 344

CamSol 0.57 1.00 54.1% 0.08 676 1001 549 874

ESPRESSO 0.56 0.50 53.8% 0.08 1003 664 886 547

rWH 0.55 0.50 54.0% 0.08 670 1005 545 880

DeepSol 0.55 0.50 52.9% 0.09 230 1409 141 1320

Protein-Sol 0.54 0.45 51.6% 0.03 1056 544 1006 494

SOLpro 0.53 0.50 52.0% 0.04 654 959 591 896

SKADE 0.51 0.50 49.2% –0.03 159 1366 184 1391

ccSOL omics 0.51 0.50 50.8% 0.02 884 690 860 666

RPSP 0.50 0.50 49.8% 0.00 501 1044 506 1049

Note: The different definitions of solubility and target expression system

(Supplementary Table S1) should be considered when comparing the perform-

ance of individual tools.

AUC—area under the ROC curve, T—threshold for the soluble class,

ACC—accuracy, MCC—Matthew’s correlation coefficient, TP—true posi-

tives, TN—true negatives, FP—false positives, FN—false negatives.
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tested tools when evaluated against the SoluProt test set (Table 1
and Fig. 1),followed by PROSO II and SWI.

While the SoluProt test set is independent of the SoluProt train-
ing set, other tools’ training sets might overlap with our test set.
Therefore, we compared the SoluProt test set to the training sets of
DeepSol, SKADE, SWI and SOLpro to quantify their overlaps
(Table 2). DeepSol and SKADE have a common training set, which
showed the largest overlap (74.0%), followed by the SWI training
set (26.5%) and the SOLpro training set (15.5%). SWI benefits
from the overlap; it was the third-best tool in our comparison.
DeepSol and SKADE ranked 7th and 12th by accuracy with respect
to the SoluProt test set despite having the greatest proportion of test
sequences in their training set. This comparatively poor performance
can be partly explained by differences in solubility annotations be-
tween the DeepSol training set and the SoluProt test set (Table 2):
360 (11.6% of the total) sequences annotated as insoluble in the
DeepSol training set were annotated as soluble in the SoluProt test
set. The total number of disagreements (the sum of false positives
and false negatives) ranged from 336 to 551, depending on the
binarization threshold applied to the SoluProt test set
(Supplementary Table S9). No training set was published for
PROSO II; only an initial set of soluble and insoluble sequences
without pre-processing is available. However, the initial set exhibits
95.2% overlap with the SoluProt test set. Therefore, we expect the
overlap of the PROSO II training set to also be very high, like the
DeepSol training set. Unfortunately, the training sets of other previ-
ously developed tools have not been published, preventing a more
comprehensive comparison.

The absolute accuracy of the available solubility prediction tools
is low (below 60%), so there is clearly room for improvement.
Nevertheless, SoluProt and other tools can be useful for protein se-
quence prioritization (Fig. 2), i.e. for selecting a small number of
sequences for in-depth experimental characterization from a large
database of several hundreds or thousands of sequences.
Specifically, predicted solubility values can be used to select a lim-
ited number of high-scoring protein sequences. For example, if we
use SoluProt predictions to order the SoluProt test set and remove
all sequences bar the 10% with the highest scores, we get 232 true
positives, i.e. 49.7% more true positives than would be expected
with blind selection (155 true positives). This shows that despite
their limited accuracy, current solubility predictors are valuable for
protein sequence prioritization and can increase the success rate of
experimental protein studies.

5 Conclusions

We have developed a novel method and software tool, SoluProt, for
sequence-based prediction of soluble protein expression in E.coli.
The tool simultaneously predicts the solubility and expressibility of
the proteins under consideration. SoluProt achieved a higher accur-
acy (58.5%) and AUC (0.62) than a suite of alternative solubility
prediction tools when evaluated using the balanced independent
SoluProt test set of 3100 sequences. PROSO II, SWI and CamSol
were the next best tools, achieving accuracies of 58.0%, 55.9% and
54.1%, respectively. SoluProt also performed well in protein priori-
tization. The main strengths of SoluProt are that it was trained using
a dataset generated by thorough pre-processing of the noisy
TargetTrack data, and was validated using a high-quality independ-
ent test set.

Surprisingly, the recently reported DeepSol (Khurana et al.,
2018) and SKADE (Raimondi et al., 2020) tools, which are based
on deep learning methods, performed worse than the simpler and
mostly older methods PROSO II (Smialowski et al., 2012), SWI
(Bhandari et al., 2020) and CamSol (Sormanni et al., 2015) in our
comparison. This may be partly due to the overlap of their training
set with our test set and disagreements between these sets with re-
spect to the solubility of certain sequences.

The SoluProt predictor is available via a user-friendly web server
or as a standalone software package at https://loschmidt.chemi.
muni.cz/soluprot/. The SoluProt web server has already predicted
the solubility of over 4700 unique protein sequences in ten months
since its launch in February 2020. It has also been integrated into
the web server EnzymeMiner (Hon et al., 2020) for automated

Fig. 1. Receiver operating curves (ROC) calculated for the balanced SoluProt test set of 3100 sequences. The predictors are ordered by the area under the receiver operating

curve (AUC)

Table 2. Overlaps between the SoluProt test set and available train-

ing sets

Dataset Size Test set overlap TP TN FP FN

PROSO II initial 129643 2952 (95.2%) 951 1437 50 514

DeepSol/SKADE 69420 2294 (74.0%) 737 1130 67 360

SWI 12216 820 (26.5%) 537 210 53 20

SOLpro 17408 480 (15.5%) 178 120 39 143

Note: Two sequences were considered identical if their global sequence

identity reported by USEARCH was 100%. Differences in solubility annota-

tions for identical sequences were quantified using confusion matrix terms

(TP, TN, FP and FN). The solubility annotations of the SoluProt test set are

assumed to reflect the true solubilities of the proteins.

TP—true positives, TN—true negatives, FP—false positives, FN—false

negatives. a DeepSol and SKADE share the same training set.
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mining of novel soluble enzymes from protein databases (https://
loschmidt.chemi.muni.cz/enzymeminer/).
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