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Abstract: Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor 

(EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. 

Recombinant human erythropoietin has been used successfully for over 20 years to treat ane-

mia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have 

other effects, such as tissue protection and promotion of tumor cell growth or survival. This 

became of significant concern in 2003, when some clinical trials in cancer patients reported 

increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-

stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed 

safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and 

that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since 

then, numerous groups have performed further research evaluating this potential mechanism 

with conflicting data and conclusions. Here, we review the biology of endogenous Epo and 

EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the 

expression of EpoR on normal nonhematopoietic and tumor cells.
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Introduction
Erythropoietin (Epo) is a hormone, so named because of early studies demonstrat-

ing that Epo had a singular effect on stimulation of erythropoiesis, the formation of 

red blood cells.1 Epo functions by binding to and activating the Epo receptor (EpoR) 

expressed on the surface of committed erythroid progenitor cells. This in turn induces 

erythroid progenitor cell survival, proliferation, and differentiation into circulating 

enucleated hemoglobin-containing red blood cells (RBCs), which are critical for 

oxygen transport.

The cloning of the EPO gene in the early 1980s allowed for the development of 

recombinant erythropoietins and analogs (erythropoiesis-stimulating agents [ESAs]), 

offering an alternative to transfusion as a method of raising hemoglobin levels in 

patients with anemia. However, in some clinical trials, the treatment of cancer 

patients with recombinant human Epo (rHuEpo) or other ESAs has been associated 

with decreased locoregional control of tumor growth and/or decreased survival.2,3 

Some investigators have reported that ESAs may have nonhematopoietic effects via 

direct activation of EpoR on nonhematopoietic cells, including tumor cells. This 

hypothesis was used as one possible explanation for the decreased locoregional 

control of tumor and decreased survival reported in some ESA clinical trials in 

anemic cancer patients.
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In this review, we examine the mechanisms by which 

ESAs stimulate the formation of normal erythroid cells, 

and explore the hypothesis that ESAs can stimulate growth 

or survival of other nonhematopoietic cell types, including 

tumor cells.

Erythropoiesis
Maturing erythroid progenitor cells expand in number and 

decrease in size as they progress through a series of dif-

ferentiation stages (Figure 1). The first committed erythroid 

cell type forms characteristic “burst” colonies in semi-

solid medium, and was therefore called a burst-forming 

unit- erythroid cell (BFU-E). BFU-E cells are present at 

40–120 cells per 105 bone marrow cells,4 and further dif-

ferentiate into colony-forming unit-erythroid (CFU-E) cells. 

CFU-E cells, present at concentrations of 200–600 cells 

per 105 bone marrow cells,4 begin synthesis of hemoglobin 

and differentiate into  erythroblasts. Erythroblasts enucleate 

forming reticulocytes, so named because of the “reticulin” 

associated with the residual ribosomal RNA detectable with 

dyes such as  methylene blue. After several days, mitochon-

dria are degraded, reticulin declines, and the cells become 

mature RBCs. RBCs lack DNA, and therefore can neither 

divide nor alter gene expression in response to stimuli.5

Erythropoiesis occurs in specialized niches in the bone 

marrow, encompassing a macrophage surrounded by matur-

ing erythroid cells.6 In healthy humans, 2 x 1011 RBCs are 

generated per day and constitute 99% of circulating cells and 

approximately 40%–45% of the blood volume. To sustain 

this level of RBC production, a substantial fraction (25%) 

of the cells in a normal bone marrow smear are erythroid 

precursors.7 However, erythroid precursors in the “liquid” 

portion of bone marrow represent a smaller proportion 

(0.01%–1%).8–11 RBCs have a lifespan of 3–4 months under 

normal conditions in humans,12 but can be decreased in such 

disease states as renal failure.13

Erythropoietin
Erythropoiesis is stimulated when Epo, a glycoprotein hor-

mone expressed primarily in the kidney, binds and activates 
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Figure 1 Erythropoiesis and the expression of stage-specific markers.
Notes: Shown is a schematic diagram of the various stages of human erythropoiesis that results in the formation of mature red blood cells (RBCs). Time-dependent 
expression of various proteins is shown, including erythropoietin receptor (EpoR) and other cell surface markers (green), transcription factors (orange), and effector 
molecules such as hemoglobin (red).
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Figure 2 (A and B) Erythropoietin (Epo) mRNA is expressed in kidney interstitial cells. 
Mice were made anemic by withdrawing 0.5 mL blood and replacing with 0.5 mL saline 
8, 16, and 24 hours prior to sacrifice. Standard in situ hybridization (ISH) on kidney 
sections was performed with an antisense 33P-labeled Epo probe. (A) ISH for mouse Epo 
mRNA in a control mouse; (B) ISH for mouse Epo mRNA in an anemic mouse. 
Notes: increased number of cells expressing Epo transcripts in kidney from anemic 
mice vs normal mice, but with a similar number of grains over renal Epo-producing 
cells from both normal and anemic kidneys. Data and figure kindly provided by 
Sheilah Scully, Amgen.

the EpoR expressed on the surface of erythroid progenitor 

cells. HuEpo is encoded by a single gene on chromosome 714 

(mouse chromosome 5) that is transcribed into a 1.6–2.0 kb 

mRNA15 and translated into a 193 amino acid (aa) precursor 

protein. During transit through the secretory apparatus, the 

27 aa signal peptide and C-terminal arginine are removed, 

carbohydrate chains are added (3 N-linked and 1 O-linked) 

and the ∼30-kDa glycoprotein is released into the  surrounding 

fluids. This process occurs rapidly, and Epo does not typically 

accumulate intracellularly.16

The normal level of circulating Epo in humans is 

approximately 5 pM (∼20 mU/mL; 100 pg/mL), substan-

tially below the K
d
 of the Epo–EpoR interaction (∼100 pM), 

indicating that only a fraction of the EpoR is Epo bound 

under normal conditions. However, this level of binding is 

sufficient to sustain erythropoiesis at a rate that will main-

tain normal RBC levels. Increased Epo concentrations result 

in an increased rate of erythropoiesis,17–19 thereby resulting 

in an increase in circulating RBCs with a maximal rate of 

erythropoiesis achieved at Epo concentrations of approxi-

mately 0.5–1 U/mL.18,20 Low Epo concentrations, on the 

other hand, result in apoptosis of precursor cells.21 Epo 

concentrations below the normal circulating concentration 

therefore result in a decline in RBC numbers in peripheral 

blood because the rate of loss (∼0.8%–1% per day) exceeds 

the rate of production.

Epo expression increases with decreasing oxygen ten-

sion (hypoxia), and this mechanism appears to be the pri-

mary driver of erythropoiesis. Hypoxia by itself has little 

effect on erythropoiesis in vitro.22 Hypoxia inducible factor 

(HIF), a heterodimer comprised of α- and β-subunits, is 

one of several transcription factors that regulate EPO gene 

expression,23,24 though HIF-2α has been shown to be the 

primary regulator of EPO transcription.25–28 HIFα (subunits 

HIF-1α or HIF-2α) protein levels are controlled by enzymes 

(HIF-prolyl hydroxylases [HIF-PH]) that hydroxylate the 

α-subunit of HIF, targeting it for ubiquitination by the 

Von Hippel–Lindau (VHL) protein and subsequent degra-

dation by the proteosome.29–34 HIF-PH activity increases 

with increased levels of oxygen, iron, and 2-oxoglutarate, 

and thus HIF-PH can act as a “sensor” of oxygen tension, 

iron levels, and metabolic activity. As HIF protein levels 

increase due to decreased HIF-PH activity, the rate of Epo 

production in the kidney and liver as well as mobilization 

of iron to support increased erythropoiesis also increases. 

The renal Epo-producing cells appear to be either “on” or 

“off ” (Figure 2), and thus increased Epo production is due 

to recruitment of increased numbers of producing cells and 

not due to an increase in rate per cell.35,36 Under  conditions 

of severe anemia and therefore low O
2
 concentration, Epo 

levels can increase up to 1000-fold.37

The administration of Epo increases erythropoiesis, but 

has limited effects on other aspects of hematopoiesis. This 

conclusion is supported by a number of studies. Epo and EpoR 

knockout mice had an absence of post-CFU-E erythroid cells 

but numbers of earlier progenitor cell types – CFU-E, BFU-E, 

CFU-granulocyte macrophage, and CFU-megakaryocyte – in 

fetal liver were normal.38 These observations indicated that 

Epo was not essential for the generation of these progenitor 

cells. Though administration of Epo to animals and humans 

resulted in a rapid stimulation of erythropoiesis, the total bone 

marrow (BM) cellularity and numbers of myeloid, lymphoid, 

and megakaryocytes remained unchanged.17,39–43 Epo was also 

unable to stimulate early murine multipotential hematopoietic 

progenitor cells (Lin–, Sca+).44 Finally, in humans, constitutive 

overexpression of Epo affected erythropoiesis but not other 

hematopoietic lineages,45 and subjects with polycythemia 

due to a hypersensitive EpoR had normal white blood cell 

and platelet counts.46

Epo is expressed primarily in the kidney and liver,47,48 

with minimal levels of transcripts detected in most other 

tissues, including brain, heart, and lung.36,49–57 In a normal 

adult animal, the kidney produces 70%–90% of the total Epo, 

with much of the remainder produced in the liver.57–60 The 

Epo-producing liver cell is a hepatocyte,36 while in the kidney, 

it is a neuronal fibroblast cell type found in the interstitial 

region near the proximal tubular cells (Figure 2).36,51,55,61,62 

Consistent with the detection of Epo transcripts primarily in 

kidney and liver, transgenic mice expressing LacZ or green 

fluorescent protein (GFP) under control of an Epo promoter 
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showed B-gal activity/GFP in liver and kidney but not other 

tissues, including brain and lung.36,63 Although there are 

some reports that Epo expression may extend to other tissues 

and cell types (including cells in the brain), these data were 

based on Western immunoblot and immunohistochemical 

(IHC) methodologies that used nonspecific or insensitive 

antibodies or reverse transcription-polymerase chain reaction 

(RT-PCR).64–71 Therefore, the results of antibody studies are 

inconclusive. Furthermore, the significance of mRNA detec-

tion by nonquantitative RT-PCR is unclear, because there was 

no evidence provided that the transcripts were translated into 

significant amounts of Epo protein.

Erythropoietin receptors
The EPOR72–74 is encoded by a single gene found on human 

chromosome 19p and mouse chromosome 9.72,75 It expresses a 

2.0–2.2-kb mRNA that is translated into 508 aa (human) and 

507 aa (mouse) proteins.20,74 After the removal of the 24 aa 

signal peptide, 484 aa (human) and 483 aa (mouse) proteins 

with a calculated molecular weight of approximately 53 kDa 

are generated.76 Addition of an N-linked carbohydrate chain 

results in a protein with an estimated size of 56–57 kDa, 

which is comparable to the size of mature human and 

murine EpoR as determined by Western immunoblot analy-

sis (∼59–61 kDa).76–78 The mature form is then transported 

to the cell surface, making it accessible for binding to Epo. 

However, transport of EpoR to the cell surface is inefficient, 

and the majority of EpoR is detected in the endoplasmic 

reticulum, Golgi, and endosome-like structures.79 Less than 

10% of the total EpoR protein synthesized appears on the 

cell surface.80–83 The remainder is degraded, but EpoR “frag-

ments” can be detected by Western blotting with specific 

anti-EpoR antibody A82.78

Cloning of the mouse and human EPOR genes73,74 allowed 

for the further identification of potential EpoR-expressing and 

Epo-responding cells. According to in situ hybridization stud-

ies using EPOR probes, EPOR transcripts were detected in 

erythroid progenitor cells, with no EpoR transcripts detected 

in other hematopoietic cell types or in nonhematopoietic 

tissues, including adult liver, heart, skeletal muscle, and 

kidney.20,74,84–86 High-level EPOR mRNA expression was 

detected by Northern blot analysis in megakaryocyte/eryth-

roid cell lines, but levels were low to undetectable in other 

types, including pluripotent embryonic stem/carcinoma cells, 

multipotent hematopoietic cells, myeloid progenitors, and 

committed lymphoid and macrophage precursors.87 With the 

advent of more sensitive PCR and microarray methodologies, 

EPOR transcripts were detected in multiple nonerythroid 

cell types from the BM compartment as well as in various 

normal and tumorous tissues.56,64,84,85,88–94 However, compared 

to erythroid progenitor cells and tissues containing them, 

levels are relatively low, as shown in Figure 3.
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The observation that EPOR transcripts could be detected 

at low levels outside the erythroid compartment suggested that 

EpoR protein could be generated and that therefore Epo could 

potentially have effects in nonerythroid tissues. Indeed, initial 

Western immunoblot and IHC experiments with anti-EpoR 

antibodies suggested that EpoR protein was widely expressed 

in nonerythroid cells at relatively high levels.95 However, 

these results were confounded, as nonspecific antibodies with 

poor sensitivity and specificity were used.76,91,96–98 Concerns 

regarding anti-EpoR antibody specificity and sensitivity first 

became apparent when the reported size of putative EpoR 

proteins detected by Western blot differed from the calculated 

molecular size of EpoR in positive controls.76 Furthermore, 

putative EpoR proteins were also detected in EpoR negative 

control cells with these anti-EpoR antibodies.76 The use of 

nonvalidated anti-EpoR antibodies has caused significant 

confusion and conflicting data in the literature.99,100 This issue 

is not unique to EpoR, as nonspecificity of antibodies has 

caused issues in the reliable detection of many proteins.101,102 

This has resulted in misdirected research and unnecessary or 

inappropriate clinical decisions.

Another reason why the detection of EpoR protein has 

been problematic is that in nonerythroid cells, the levels 

of EpoR expression are generally very low, and therefore 

sensitive and specific detection methods are needed. For 

example, according to radiolabeled [125I]rHuEpo-binding 

assays, which are very sensitive, in erythroid progenitors 

EpoR was found to be expressed at ,2 × 103 surface recep-

tors/cell.103,104 This contrasts with other receptors such as 

EGFR, which is expressed in epithelial cells at 1 × 105 to 

1 × 106 receptors/cell.105,106 Using live freshly derived cells, 

Epo binding was detected on the surface of erythroid pro-

genitor cells,107,108 but not on unfractionated bone marrow, 

macrophage, thymocytes, monocyte, granulocyte, or late 

myeloid precursor cells;104,108–113 or on cells from normal tis-

sues, including heart, kidney, brain, and lung.8 Recently, a 

sensitive and more-specific anti-EpoR monoclonal antibody 

(A82) suitable to detect low levels of EpoR by Western immu-

noblot was described.78 Results with A82 indicated that only 

erythroid cells had high levels of EpoR protein, with low to 

undetectable levels in other nonhematopoietic tissues and 

hematopoietic cell types (Figure 4).80,94

Regulation of EpoR
During normal erythroid differentiation, EpoR mRNA 

and surface protein increase as cells progress through the 

BFU-E to CFU-E stage,11,20 with a decline thereafter and 

an absence of detectable expression on reticulocytes and 

RBCs104,110,111,114,115 (Figure 1, Figure 5). In knockout mice, 

neither Epo nor EpoR were required for the formation of 

BFU-E cells or the transition to the CFU-E stage.116 EpoR 

is required for the Epo-dependent expansion and survival 

of erythroid progenitors as they differentiate from CFU-E 

into mature hemoglobinized RBCs, and Epo responsive-

ness correlates with EpoR expression level.20,104,113,115,117 The 

observation that BFU-E grew with GM-CSF or interleukin 

(IL)-3 plus Epo but not with Epo alone, but did grow with 

Epo alone if EpoR expression was increased by forced 

overexpression using retrovirus-mediated gene transfer,108 

suggests that increased EPOR mRNA and protein expression 

is an important step preceding Epo responsiveness. However, 

increased EPOR mRNA is necessary but not sufficient for 

surface EpoR expression,118 and other factors are required, 

such as JAK2, which acts as a key signaling intermediate as 

well as a chaperone.119

EPOR mRNA has a relatively long half-life, approxi-

mately 90 minutes in human cells and 75 minutes in murine 

cells,20,120 and the half-life is not affected by Epo or by cel-

lular differentiation. The EPOR promoter was found to be 
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Figure 4 High-level erythropoietin receptor (EpoR) protein expression is found in 
erythroid cells but not in other tissues. EpoR expression was analyzed by Western 
immunoblot analysis with anti-EpoR antibody A82 that was shown to specifically 
detect human EpoR in erythroid cells.78 The arrow shows the location of full-length 
EpoR. Smaller proteins have been shown elsewhere to be EpoR fragments.78 UT-7/
Epo cells (EpoR positive control) are derived from a megakaryoblastic leukemia and 
are Epo-dependent.462

Notes:  This research was originally published in Blood. Sinclair AM, Coxon A, McCaffery i,  
et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, 
neuronal, and renal cells. Blood. 2010;115(21):4264–4272. © American Society of 
Hematology.94

Abbreviations: HUVEC, human umbilical vein endothelial cells; RPTEC, renal 
proximal tubule epithelial cells.
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active in erythroleukemia cell lines MEL and HEL, but not 

in nonerythroid cell types, including NIH3T3, HeLa, EL4, 

S194, WEHI-3, or COS.121–125 These findings suggested that 

EPOR gene transcription is controlled by essential erythroid-

specific transcription factors that are limiting or absent in 

some cell types. In one study, the sequence of the EPOR in 

Epo-responsive and -unresponsive mouse erythroleukemia 

cells was the same,126 suggesting that lack of response was 

not due to defects in EpoR itself.

Reporter experiments have been performed in transgenic 

mice to track the in vivo expression of endogenous EpoR in 

different cell populations. Using the Cre-Lox system, EpoR 

Cre mice were crossed to Lox Rosa26 enhanced yellow fluo-

rescent protein (eYFP) reporter mice, and expression of eYFP  

was found to correlate with activity of the EpoR promoter.127 

In hematopoietic cells, eYFP was detected in erythroid cells 

up to the erythroblast stage. However, no eYFP was detected 

in megakaryocytes, platelets, macrophages, granulocytes, 

monocytes, or leukocytes. Further, eYFP was not detected 

in highly purified hematopoietic stem cells, mesenchymal, or 

osteoblastic enriched populations from the bone microenvi-

ronment. In a similar experiment, GFP-Cre was introduced 

into the EPOR locus by homologous recombination.88 With 

this construct, EpoR-driven Cre activity was observed in 

Ter119+ erythroid cells but not in other hematopoietic lin-

eages, including granulocytes, macrophages, monocytes, 

leukocytes, lymphoid cells, megakaryocytes, or platelets, 

nor in early Sca-1+ hematopoietic “stem cells.” Cre activity 

was observed in fetal liver and bone marrow, but not in any 

other tissue, including brain, heart, lung, and kidney. These 

observations are consistent with in situ EpoR hybridization 

experiments with tissues and purified hematopoietic cell 

types (see above) where high-level EpoR mRNA expression 

was detected only in erythroid cells or tissues containing 

erythroid cells.

EpoR expression does not appear to be controlled by 

Epo. In support of this, EpoR protein is increased in the 

absence of Epo in differentiating erythroid cells (Figure 4), 

and in nonhematopoietic tissues, EpoR mRNA levels were 

not altered in Epo-deficient skeletal muscles,128 nor were 

EpoR levels changed when endothelial cells were cultured 

with Epo.129

EpoR also does not appear to be regulated by hypoxia. 

Neither EPOR transcripts22,80,91,130–135 nor protein levels80 were 

increased under hypoxic conditions. The lack of elevated 

EPOR transcription with hypoxia is consistent with the 

absence of a consensus hypoxia response element in the 

EPOR transcriptional regulatory regions. However, some 

reports have suggested EpoR expression is regulated by 

hypoxia.132,134,136–140 These latter data are confounded, because 

the studies were not appropriately controlled and conclusions 

were based on the use of nonspecific anti-EpoR antibodies 

to detect EpoR by IHC.

Several different transcription factors have been reported 

to play a role in regulating EPOR transcription, includ-

ing GATA−1.43,123 GATA-1 knockout mice do not develop 

erythroid cells, but are able to develop other hematopoietic 

cell types.141–143 GATA-1 expression is primarily restricted to 

the erythroid lineage and is essential for high-level EPOR 

promoter activity.123 Indeed, this relationship can be seen 

when EPOR and GATA-1 mRNA levels in various tissues are 

compared (Figure 3). EPOR transcript levels correlate with 

GATA-1 transcript levels across tissue and cell types, levels 

of both change concomitantly during cell division,144 both 

are expressed in the same cell types during erythropoiesis,145 

and GATA-1 levels correlate with Epo responsiveness in cell 

lines.146,147 However, GATA-1 alone is insufficient to drive 

EPOR expression, and other factors appear to be essential, 

including Friend of GATA (Fog1),148 a factor that forms a 

complex with GATA-1;149 the erythroid specific factor SCL/

TAL1,150–153 which demonstrates a similar expression profile 
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10 ng/mL interleukin (iL)-3, 10 ng/mL iL-6 with (w/) and without (no) 5 U/mL  
recombinant human erythropoietin (rHuEpo) for the indicated number of days. 
The arrow denotes the position of full-length EpoR (59 kDa). FLAG-EpoR COS7 
is an EpoR positive control cell lysate from COS-7 cells expressing a FLAG-tagged 
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as EPOR and GATA-1 (Figure 3); and ETV6/RUNX1, 

which when overexpressed can also increase EPOR gene 

transcription.154 Consistent with a similar tissue expression 

profile, SCL/TAL1 is coexpressed with GATA-1 in the same 

hematopoietic cells.155 Another possible regulator is SP1, a 

transcription factor found in lysates from erythroid but not 

in nonerythroid cell lysates.124

The EPOR promoter appears to be leaky because tran-

script levels are detected in numerous cell types, albeit at 

lower levels compared to erythroid cells. This is consistent 

with the finding that the EPOR gene promoter has character-

istics of a ubiquitously expressed gene (ie, lacks a TATA box) 

and thus should have low basal transcription in nonerythroid 

cells.156,157

Activation of EpoR
Activation of EpoR is initiated by the direct binding of a 

single Epo molecule with two membrane-spanning EpoR 

proteins158–160 that form a homodimer (Figure 6). The 

binding of Epo induces a conformational change in EpoR 

that brings the transmembrane and intracellular regions 

of the receptor in close proximity. Following binding, the 

Epo–EpoR complex is activated, internalized, and some 

is degraded in lysosomes, with the remainder recycled to 

the cell surface.8,161 However, EpoR can also be internal-

ized and degraded in lysosomes without Epo binding and 

activation.162

EpoR does not contain intrinsic tyrosine kinase activity 

but instead requires an accessory tyrosine kinase (JAK2) to 

induce the signaling cascade.119 JAK2 interacts with EpoR 

at the juxtamembrane region,119 and the conformational 

change induced by Epo binding to EpoR163,164 brings the 

JAK2 molecules into close proximity, resulting in their 

transphosphorylation.165 The activation of JAK2 results in 

the phosphorylation of tyrosine residues in EpoR, which 

serve as docking sites for mediators of the STAT5, MAP 

kinase, and PI3 kinase/Akt signaling pathways166 (Figure 6). 

Following activation, negative regulators of EpoR, including 

Src homology region 2 domain-containing phosphatase 1 

and suppressor of cytokine signaling proteins SOCS-1 and 

SOCS-2, down-modulate signaling responses.167,168 Further 

control of Epo-induced signaling in cells is mediated through 

PI3K

AKT
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EpoR EpoR

Epo

STAT5

Jak2Jak2
RAF

MEK1/2

ERK1/2
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Survival

differentiation
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Cyclin G2

Cyclin D2

Cyclin D1

BclXL

SOS
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Figure 6 Erythropoietin receptor (EpoR) activation and signaling with Epo in erythroid progenitor cells.
Note: Schematic diagram of the signaling cascades and effector responses observed in erythroid progenitor cells when EpoR is activated with erythropoiesis-stimulating agents.
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inhibition of EpoR cell surface expression through ubiquit-

ination and subsequent proteosomal degradation.169

The rate of assembly of a functional EpoR homodimer 

is EpoR concentration–dependent.158,170 In HEL cells, the 

magnitude of increase in phosphorylated JAK2 after Epo 

treatment, minimal in the parental cells, is increased with 

overexpression of EpoR.171 However, levels of surface 

EpoR are not always correlated with EPOR mRNA level.172 

Thus, low-level protein production and/or inefficient EpoR 

processing and surface translocation may be limiting fac-

tors for Epo–EpoR responses. In support of this possibility, 

increasing levels of EpoR in growth factor–dependent cell 

lines caused them to become demonstrably Epo-respon-

sive.20,104,108,147,171,173,174 EpoR levels also appear to affect mag-

nitude of response to Epo in vivo. For example, mice that were 

haplo-insufficient (EpoR+/– mice) had reduced hematocrit 

and reduced responsiveness of CFU-E to Epo compared to 

normal mice.175 While these studies indicate that a minimal 

level of EpoR expression is required for a functional response, 

the absolute level of EpoR required is unclear. SH-SY5Y 

cells (a neuroblastoma cell line) were reported to respond to 

rHuEpo despite very low levels of surface EpoR, less than 

50 surface EpoR/cell.176,177 However, others could not detect 

responses in SH-SY5Y cells.91,94,178

Another possible explanation for the lack of functional 

EpoR in some cells even though the receptor protein is 

expressed is that other accessory factors for functional 

responses are missing. Consistent with this proposal, the 

leukemia cell lines K562 and OCIM-1 do not respond to 

Epo (signaling or proliferation/survival) despite detectable 

EpoR expression on the cell surface using Epo-binding 

assays.103,112,115 In addition, EpoR was detected at ∼1000 

receptors/cell in other cell lines derived from patients with 

acute myelogenous leukemia (AML), chronic myelogenous 

leukemia (CML), and erythroleukemias, but only some 

were responsive to Epo.73,103,179–182 This may be at least 

partly explained by constitutive activation of pathways 

making them nonresponsive to cytokine stimulation.183 

For example, K562 cells have the Bcr/Abl fusion,184 while 

OCIM-1 cells have constitutive phosphorylation of STAT5, 

though the pathways contributing to this constitute activa-

tion are unknown.185 However, other processes could also 

be defective in those cells, explaining the lack of  Epo–EpoR 

response.

EpoR overexpression can confer Epo dependence in 

some cell types but not others, indicating EpoR expression 

is necessary but not sufficient for a response. For example, 

forced overexpression of EpoR resulted in Epo dependence 

for growth in factor-dependent murine progenitor cell lines 

(FDCP-1, 32D, BaF3) but not in others, such as mouse 

IL-2-dependent T-cell lines HT-2 and CTLL2186–195 or in 

NIH-3T3 cells,121 which are dependent on platelet-derived 

or fibroblast growth factor for growth.196 Infection of BM 

cells with virus expressing EpoR or a constitutive-active 

EpoR variant (R129C) resulted in an increase in eryth-

roid, macrophage, and megakaryocyte cells but not other 

lineages, including lymphocytes, granulocytes, mast cells, 

and eosinophils.108,197–199 This suggests that macrophage 

and megakaryocyte progenitors cells are programmed for a 

response but lack sufficient EpoR expression, while other cell 

types lack programming. For example, HT-2 cells express-

ing EpoR failed to grow with Epo despite Epo-induced 

phosphorylation of EpoR and JAK2. However, these cells 

had a deficit in Epo-induced STAT5 phosphorylation,186 

suggesting a deficiency in downstream signaling pathways. 

A somatic fusion of EpoR-expressing HT-2 cells with 

BaF3 cells resulted in Epo dependent growth and signaling, 

suggesting addition of an essential factor by BaF3 cells. 

Taken together, these observations suggest that in addition 

to the accumulation of a certain level of EpoR, the cells must 

contain the required intracellular signaling networks for a 

“programmed” response.

Is functional EpoR expressed  
in tumor cells?
The potential for ESAs to stimulate tumor growth has been 

of significant controversy since 2003, when it was reported 

that patients with head and neck cancer receiving rHuEpo 

had reduced locoregional control of their tumors compared 

to control subjects.2,200 This was followed by an analysis of 

patient samples for expression of EpoR,201 in which an asso-

ciation between staining with the anti-EpoR antibody C-20 

and negative clinical outcomes was reported. This raised 

the hypothesis that EpoR was expressed on tumors and that 

ESAs directly stimulated tumor growth. This hypothesis 

appeared to be supported by preclinical data that suggested 

that most tumors and cell lines expressed high levels of EpoR, 

and further that ESAs directly promoted tumor cell growth 

and survival.100,202,203 However, these data contrasted with 

data from other groups that reported EpoR was not present 

on tumor cells and that ESAs did not have a direct tumor-

stimulating effect.99,204–206 Further, with clinical data from 

other trials and meta-analyses, there was not a significant 

association between ESAs and tumor progression end points.2 

These conflicting data have caused considerable confusion 

and have led to calls for additional research. Here, we  provide 
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a critical evaluation of the research that pertains to the 

expression and function of EpoR in tumor cells.

Tumor growth is commonly driven by oncogenes, which 

are marked by shared characteristics, including overexpres-

sion due to genomic amplification, mutations that induce con-

stitutive activation, and increased transcriptional/translational 

activity. Although EPOR genomic amplification and gene 

rearrangements have been described in some erythroleukemia 

and megakaryoblastic leukemias and derived cell lines (eg, 

UT-7 F36E and TF-1),172,207–209 EPOR amplification is thought 

to be a rare event. Several studies failed to show amplifica-

tion of EPOR or alterations to chromosome 19, the location 

of the EPOR gene,209,210even in erythroleukemia, the disease 

above all others in which involvement of Epo/EpoR might 

have been predicted. Furthermore, in contrast to oncogenic 

receptors such as HER2 and EGFR, in a screen of .1000 

different solid tumors, EpoR gene amplification was rarely 

found, and when observed was similar to the frequency and 

magnitude of amplification of other nononcogenes.92

Constitutive activation of EpoR could theoretically also 

provide a growth advantage to tumors. This has been observed 

with Friend virus infection, which results in constitutive 

activation of EpoR through the binding of Env protein gp55 

to EpoR, and has been shown to induce erythroleukemia in 

mice.211,212 An activating mutation in murine EpoR was identi-

fied (R129C) in a mutagenesis screening study that induced 

constitutive activation and conferred growth factor indepen-

dence in IL-3-dependent BaF3 cells.213 However, activating 

EpoR mutations do not appear to play a role in tumorigenesis, 

and naturally occurring activating EpoR mutations have not 

been found in human erythroleukemias.209,210 For example, 

EpoR sequence analysis was performed on six tumor cell 

lines (UT-7/Epo, MCF-7, 769-P, CAKI-2, SH-SY5Y, and 

HeLa), and no activating EpoR mutations were found 

(Amgen data on file). Moreover, while EpoR hyperactivating 

mutations214,215 have been reported in patients with congenital 

erythrocytosis, these subjects had normal platelet and white 

blood cell counts and no increased incidence of tumors or 

leukemic transformation,192,209,211,216–218and were otherwise 

normal.

A prerequisite for a direct effect of ESAs on tumor 

cells is that they must express EpoR. EPOR mRNA was 

detected in multiple tumor cells and cell lines using RT-

PCR.20,90,96,134,219–228 However, EPOR transcript levels were 

10–1000-fold lower in tumor tissues and cell lines com-

pared to Epo-responsive positive control cells.64,80,91,229–234 

These results were consistent with Northern analysis of 

solid tumor and leukemic cell lines, in which EPOR mRNA 

was expressed at low to undetectable levels.87,235 One group 

reported a direct correlation between EPOR transcript levels 

and poor clinical outcome in a subset of patients treated with 

ESAs, but definitive prognostic conclusions could not be 

made.230 Moreover, levels of EPOR mRNA in tumors were 

similar to that of their normal counterpart.92,134 These data 

demonstrate that though the EPOR gene is expressed in nor-

mal tissues and tumor cells, EPOR mRNA transcripts are not 

overexpressed in tumors, with levels detected representing 

the low basal transcription seen in normal tissues.

As EPOR mRNA was detected in tumors, it seemed likely 

that EpoR protein was also present on tumor cells. Indeed, 

Henke et al reported that high levels of EpoR protein was 

expressed in tumors from head and neck cancer patients 

who had poor outcomes when treated with ESAs using IHC 

studies.201 EpoR expression was also reported by multiple 

groups in various tumors and tumor cell lines by Western 

immunoblot and IHC using the same antibody (C-20).236–242 

Over 30 different studies have been published with putative 

detection of EpoR in tumors and tumor cell lines that all used 

the C-20, M-20 and H194 antibodies (produced by the same 

manufacturer – Santa Cruz Biotechnology). These studies 

were thought to indicate that ESAs may stimulate EpoR 

expressed in tumors and thereby promote tumor growth and 

survival. However, analysis of the Henke et al clinical samples 

indicated that the level of EpoR protein expression suggested 

by the C-20 staining did not correlate with the level of EPOR 

mRNA.230 In addition, not all groups reported correlations 

between C-20 antibody staining of other clinical tumor 

specimens and adverse clinical events.243–246 Further, in cells 

deemed to be EpoR-positive through staining with C-20 anti-

body, no cellular responses, such as changes in proliferation 

or viability, were observed.247 These discordant results were 

highlighted in a study in which tumor cells from patients with 

B-CLL were reported to express EpoR using a nonspecific 

anti-EpoR antibody, but no EpoR protein was detected on 

the cell surface using a more specific digoxigenin-labeled 

rHuEpo binding method.96

Several issues have recently come to light in the analysis 

of anti-EpoR antibodies, including C-20: the putative EpoR 

proteins detected with the antibodies varied in size by West-

ern immunoblot analysis, were detected in negative control 

cell lines, differed in size from the EpoR detected in positive 

control samples, and in control studies many were shown to 

be nonspecific.76,91,97,98,230,248,249 Therefore, it is likely that the 

putative EpoR detected with these antibodies were non-EpoR 

cross-reacting proteins, thereby giving false-positive results. 

One of the proteins detected by C-20 was 66 KDa in size 
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and thought to be EpoR, but was subsequently shown to be 

heat shock protein (HSP)70.76 Since HSP70 is ubiquitously 

expressed and expression is increased when cells and tumors 

undergo stress responses, the IHC results reported with 

C-20 may have reflected HSP70 biology and not EpoR. The 

use of nonspecific antibodies in general,101 and anti-EpoR 

antibodies in particular,76 is a well-recognized problem in 

research that has resulted in recommended guidelines for 

antibody validation.250–254

Recently, a specific and sensitive anti-EpoR antibody 

(A82) suitable for detecting EpoR by Western immunoblot 

analysis was described.78 Using A82 in Western analyses 

of total protein lysates (intracellular and cell surface pro-

tein), EpoR was undetectable in normal nonhematopoietic 

human and mouse tissues94,185 and in tumor specimens from 

breast, lung, ovary, colon, and skin.255 In another analysis 

of 66 tumor cell lines with A82, 80% of the lines had over 

100-fold lower or undetectable levels of EpoR compared to a 

positive control hematopoietic cell line.80 The remaining cell 

lines had relatively low levels (5–100-fold lower) compared 

to that observed with a positive-control hematopoietic cell 

line. Only one tumor cell line (the NSCLC line NCI-H661), 

which had the highest level of total EpoR, had detectable 

EpoR on the cell surface according to [125I]rHuEpo-binding 

experiments. However, neither NCI-H661 nor any of the 

other solid tumor lines examined responded to ESAs in 

signaling studies.80 Mouse monoclonal antibody MAB307 

has also been used to detect cell surface EpoR by flow 

cytometry. While EpoR was detected on positive controls, 

including primary erythroid progenitors with MAB307, no 

EpoR was detected on the surface of viable tumor cells from 

over 180 different biopsies from patients with tumors includ-

ing breast, colon, ovary, lung, head and neck, and kidney.256 

These findings are consistent with Western immunoblot data 

generated with A82.

Another method used to examine surface EpoR in tumor 

cells and cell lines is competitive binding experiments 

with labeled rHuEpo. Specific rHuEpo binding to some 

hematopoietic cells and certain myeloid and erythroleukemia 

cells and cell lines was reported.103,107,112,257 However, 

surface EpoR was not detected in primary hematopoietic 

 leukemias, such as B-CLL or multiple myeloma,258 or in 

most hematopoietic cell lines and nonhematopoietic cancer 

cell lines.78,80,92,103,113,115,180,259,260 In a controlled flow cytometry 

study using biotinylated rHuEpo, 81/136 samples from AML 

patients were reported to bind rHuEpo, of which only 13 

of 81 had an increase in growth with rHuEpo treatment.257 

However, there was no correlation between the amount of 

EpoR and the in vitro proliferative response to rHuEpo. 

In the same study, 4/14 acute lymphoblastic leukemia patient 

samples were reported to bind rHuEpo, but none proliferated 

with rHuEpo. In other studies, one group reported that 

rHuEpo increased colony number and plating efficiency with 

cells from CML patients.261 In contrast, in other studies, no 

proliferative effect of ESAs in AML and B-cell leukemic cell 

types were found,258,262 and rHuEpo did not have an effect on 

STAT5 phosphorylation on those cells.263

A few studies have evaluated [125I]rHuEpo binding in 

epithelial tumor cell lines. While some studies have reported 

specific binding to solid tumor cell lines,235,264,265 other studies 

reported none.80,99 In Epo-responsive hematopoietic cell lines 

and primary erythroid cells, rHuEpo has a high binding affin-

ity (Kd ∼50–400 pM).103,104,109,172,266,267 In contrast, in the stud-

ies with solid tumor cells that reported binding, the rHuEpo 

binding affinity was unusually low (Kd ∼1400–16,000 pM). 

The low affinities reported in these studies may be due to 

nonspecific interactions of rHuEpo268 related to the hydro-

phobic nature of rHuEpo.

To independently determine if functional EpoR was 

present on the cell surface, investigators have also examined 

EpoR downstream signaling events after treatment of cells 

with ESAs in vitro. Signaling through EpoR is dependent 

on JAK2, which transduces downstream signaling though 

the STAT5, PI3K, and MAPK pathways269 (Figure 5). Thus, 

positive results showing phosphorylation of JAK2 or STAT5 

with ESAs in tumor cells would be important evidence for 

activation of EpoR with Epo. However, there are a number 

of reports indicating no increased phosphorylation of JAK2 

or STAT5 with rHuEpo in tumor cell lines,80,193,270–272 with 

only rare positive reports: SH-SY5Y (neuroblastoma), H838 

(lung cancer), and several head and neck cell lines.132,224,273,274 

However the results in the SH-SY5Y and H838 cell lines 

were not reproducible by others.91,94,255

In other attempts to demonstrate specificity of potential 

responses to EpoR, a putative JAK2 inhibitor (AG490) 

has been used and effects on rHuEpo signaling and other 

functional effects in cell lines reported.132,246,275–278 However, 

AG490 shows minimal JAK2 inhibitory activity in vitro.279 

Further, AG490 has been reported to also inhibit JAK3, 

EGFR, HER2, guanylyl cyclase C, and BCR-ABL.279–283 

These data raise significant questions as to the validity of 

results from studies that have used AG490 to ascribe effects 

mediated through EpoR and JAK2.

In the studies reporting positive signaling effects of 

ESAs on tumors or tumor cell lines, increases in phos-

phorylation of ERK or AKT were reported.205,229,272,275,276,28
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4 However, those results are in conflict with results from 

other groups who reported no effect on the same path-

ways using the same or similar cell types.80,91,223,232,233,259,285  

Interestingly, there are several reports where rHuEpo had 

no effects on phosphorylation of JAK2 or STAT5, but did 

have effects on ERK phosphorylation.271,272,276,284,286–288 In 

those experiments, cells were serum-starved to increase 

the signal-to-noise ratio, making them sensitive to minor 

manipulation/stimulatory effects. Because the MAPK, 

PI3K/AKT, and JAK2-STAT5 pathways are stimulated 

by multiple receptor ligand complexes beyond Epo,289–291 

contaminating factors could produce similar effects. Indeed, 

signaling that had been suggested to be mediated through 

EpoR was mimicked in cell lines using a media change 

alone.292 ESA-induced signaling can also be mimicked with 

endotoxin, which can accumulate in contaminated prepara-

tions and can enhance AKT and ERK phosphorylation.293,294 

Bovine serum albumin (frequently used to stabilize ESA 

preparations), can also support cell growth as well as stimu-

late ERK phosphorylation of cell lines, particularly when 

serum-starved cells are used,292,295 due to contaminants such 

as IGF1296 and insulin.297

ESAs have also been evaluated for potential chemotaxis 

activity. In some studies, ESAs were reported to increase 

movement of cells in Matrigel in vitro.271,276,278,288 These data 

supported the hypothesis that ESAs could promote metastases 

of tumor cells. However, others reported no effect of ESAs 

on migration with the same or similar cell types.232,233,298–300 

In some of the cell lines reported to migrate in Matrigel with 

ESAs (eg, MCF-7, HeLa), EpoR protein was undetectable,78,80 

raising questions about the significance of data generated 

with those cell lines. Furthermore, the effects reported to be 

mediated by ESAs were generally small compared to mol-

ecules known to induce migration, such as EGF or FGF,298,300 

and could be a result of endotoxin, a contaminant that can 

similarly stimulate migration.301–304

Effects of ESAs on tumor cell line proliferation have 

also been evaluated. However, in most studies, ESAs had no 

effect.99,205 For example, in a controlled study, though estra-

diol increased the proliferation of 29 tumor cell lines derived 

from multiple tissue sources, rHuEpo treatment did not.305 

These findings were supported by studies in other groups 

that evaluated multiple different cell lines.80,91,300 However, in 

one study, rHuEpo was reported to enhance proliferation in a 

head and neck cell line LU-HNSCC-7 in serum-free medium 

(,1.4-fold increase). Notably, the authors commented that 

the effects observed could have been due to the medium 

change, although no control for that was presented.233

In primary tumors from renal and colorectal tumors, 

rHuEpo was also unable to stimulate proliferation.306 More 

recently, in a study with biopsies from a large cohort of 

patient samples with epithelial tumors (.180) from breast, 

colorectal, lung, ovary, head and neck, and kidney, rHuEpo 

was unable to increase the phosphorylation of AKT, ERK, 

or STAT5 ex vivo.256 The lack of response may be explained 

by the lack of EpoR expression on those cells256 or the high 

incidence of constitutive activation of pathways rendering 

them insensitive to growth factor stimulation.263

In vivo xenograft studies have been used to examine the 

effect of exogenously administered ESAs on cell growth or 

the ability to prevent cell ablation with chemotherapeutic 

agents or radiotherapy in rodents. In 31 different studies, there 

was no tumor growth or survival-promoting effects observed, 

even when high doses of ESAs were used99,205 (Table 1). This 

may be explained, in part, because most of the cell lines 

examined expressed little to no EpoR, and therefore would 

not be expected to directly respond to ESAs. However, the 

lack of a tumor-promoting effect was not solely explained 

by insufficient EpoR, because even with cells (eg, in ovarian 

carcinoma line A2780) having tenfold-higher levels of EpoR 

due to forced overexpression, no growth-promoting effects 

with rHuEpo were observed.232 Further, one group performed 

studies using mice that produced spontaneous tumors, but 

again no increase in tumor incidence or growth with rHuEpo 

treatment was observed.307

In contrast to xenograft studies with ESAs, in vivo Epo 

antagonism studies have been described where the blockade 

of Epo–EpoR inhibited tumor growth.64,227,272,308 However, 

these reports are inconsistent with in vitro experiments dem-

onstrating that the cell lines used expressed little/no EpoR 

and had no detectable response when treated with ESAs. 

Antagonism studies can be impacted by other inhibitors and 

factors, such as endotoxin in the preparations, that can inhibit 

tumor cells.309 The possibility that the tumor growth inhibi-

tion reported was due to the experimental design also cannot 

be excluded, as negative controls were not included in those 

studies. Taken together, these data suggest that functional 

EpoR is not expressed on tumor cells.

Epo–EpoR autocrine/paracrine 
loops
Paracrine stimulation of EpoR in cells has been reported 

to support growth of Epo-responsive cell lines.310,311 

Accordingly, some groups have also suggested that both 

Epo and EpoR are coexpressed in tumor cells and this may 

be a mechanism that drives autocrine tumor growth.312–314 
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Table 1 Effect of erythropoiesis-stimulating agents in xenograft or syngenic tumor models

Tumor type and origin EPO/DA dose Reported tumor and survival outcomes Study

Tumor regression alone
Murine myelomas MOPC-315, 5T33 MM 30 U Epo QD Tumor regression and prolonged survival Mittelman et al440

Murine BCL-1 leukemia/lymphoma 30 U Epo QD Tumor regression and prolonged survival Mittelman441

Enhanced tumor ablation
Neurogenic sarcoma ENE2 750 U/kg Epo Tiw improved RT therapy in anemic mice Stuben et al442

Lewis lung carcinoma 60 U/kg Epo (two doses) No effect alone; enhanced CT Sigounas et al443

Rat DS-sarcoma 1000 U/kg Epo No effect alone; improved ablative RT Thews et al444

Ovary adenocarcinoma 20 U Epo Tiw No effect alone; improved CT Silver and Piver445

Glioblastoma HTZ II 1000 U/kg Epo Tiw No effect alone; improved RT in anemic mice Stuben et al446

Rat DS-sarcoma 1000 U/kg Epo Tiw No effect alone; improved CT in anemic rats Thews et al447

Colon adenocarcinoma 1000 U/kg Epo QD Restored PT in anemic mice Golab et al448

Human glioblastomas GBM-Nan1 and U87 300 U/kg Epo QD No effect on tumor alone; enhanced RT in both lines Pinel et al357

Murine SCC vii squamous cell carcinoma  
and RIF-1 fibrosarcoma

30 μg/kg DA Qw or Q2w No effect alone; improved RT in anemic  
mice in both lines

Ning et al231

Lewis lung carcinoma 10 μg/kg DA Qw No effect alone; improved CT Shannon et al270

Human squamous cell A431, colorectal  
carcinoma HT25

150 U/kg Epo Tiw No effect alone; enhanced CT  
in both models

Tovari et al449

Rat breast cancer line LCM 2388 into rat 60 iU Epo Qw ± tamoxifen No effect Epo alone; increased regression  
Epo + tamoxifen

Sairah et al356

Human squamous cell carcinoma (A431) 150 U/kg Epo Tiw No effect alone; improved RT in anemic mice Lovey et al450

No enhanced tumor ablation
Murine MmB16 melanoma 20 U Epo BiD No effect alone; no enhanced iL-12 therapy Golab et al451

Rat R3230 mammary carcinoma 2,000 U/kg Epo Tiw No effect alone Blackwell et al452

Rat 13762 mammary adenocarcinoma 50 μg/kg Epo Tiw No effect alone Bianchi et al453

Rat DS-sarcoma 1000 U/kg Epo Tiw No effect Kelleher et al454

Rat R3230 mammary carcinoma 3 μg/kg DA Tiw No effect to enhance RT Kirkpatrick et al455

Murine C26-B colon adenocarcinoma 25 U Epo QD to 25 U Tiw No effect on tumor; decreased body weight loss van Halteren et al456

Rat R3230 mammary carcinoma, murine  
CT26 colon carcinoma, human HCT-116  
colon carcinoma, human FaDu head and  
neck carcinoma

2000 U/kg Epo Tiw No effect alone Hardee et al355

Rat R3230 mammary carcinoma 2000 U/kg Epo Tiw No effect alone; no enhanced CT Hardee et al457

Human breast carcinomas MDA-MB-231  
and MCF-7

2.5 mg/kg epoetin-α, 7.5  
mg/kg DA, and 2.5 mg/kg  
epoetin-β

No effect alone; no enhanced CT  
in either model

LaMontagne et al300

Head and neck squamous cell carcinoma  
LU-HNxSCX-7

400 U/kg epoetin-β Q3D No effect alone; slight increased tumor  
growth with surgical transection

Kjellen et al458

Human breast MCF-7, renal 786-0,  
gastric SCH, lung A549, ovary SK-OV-3  
tumor cell lines into mice

1000, 3000, or 10,000 iU/kg  
epoetin-β Qw

No effect alone; no enhanced effect on  
bevacizumab on A549 and MCF-7 (avastin)

Kataoka et al223

Murine B16F10 melanoma 30 mg/kg DA Qw No effect alone Miller et al307

Human glioblastoma U87 5000 U/kg Epo Tiw No effect alone Hassouna et al299

Human breast MDA453β and  
MCF7-HER18 (engineered)

100 U rHuEpo daily  
(weekdays)

No effect alone; antagonized trastuzumab  
effect on tumor regression

Liang et al275

Promoted tumor growth
Murine MCA-induced fibrosarcoma 100 iU/kg Epo Qw Epo promoted tumor growth Okazaki et al459

Murine colorectal cancer cells in 50%  
hepatectomized mice

10 mg/kg DA once increased tumor growth after hepatectomy Rupertus et al460

Abbreviations: Tiw, three times per week; BiD, twice per day; QD, once daily; Qw, once per week; Q2w, every two weeks; Q3D, every three days; RT, radiotherapy; 
CT, chemotherapy; PT, photodynamic therapy; DA, darbepoetin alfa; Epo, erythropoietin. 

 Consistent with this possibility, some erythroleukemia cells 

were reported to express Epo315,316 and Epo was reported to 

support their growth.317 Erythrocytosis is observed in some 

patients with renal carcinomas, liver carcinomas, in Wilms’ 

tumors and cerebellar hemangioblastomas.47,48,318–320 In VHL 

syndrome patients that contain pVHL mutations, paraneo-

plastic Epo production and erythrocytosis is associated with 

renal carcinoma, cysts, cerebellar hemangioblastoma, and 
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pheochromocytoma.321 However, in many of these cases, it 

is likely that Epo production is secondary to activation of the 

HIF pathway, or alternatively, secondary to tumor formation 

in cell types that normally produce Epo (eg, hepatocytes). 

Alternatively, tumors may produce other substances that 

can synergise with Epo and promote erythropoiesis, such as 

thyroid hormone, glucocorticoids, SCF, IL-3, or GM-CSF.

The possibility that tumors express both Epo and EpoR 

and that this is a driver of their growth is not supported by 

other data. Indeed, anemia and not erythrocytosis is a general 

characteristic of patients with solid tumors, suggesting that 

most tumor cells do not express significant amounts of Epo. 

Several groups reported that an Epo–EpoR cytokine loop is 

not a general property of tumors.80,322 Forced expression of 

Epo in mouse erythroid cells, using a human EPO gene under 

the control of a human β-globin locus control regulatory 

element, resulted in autocrine stimulation of erythropoiesis 

and erythrocytosis in transgenic mice. However, those mice 

did not develop erythroleukemia.45 Similarly, constitutive Epo 

expression in the bone marrow of mice using retroviral vectors 

with EPOR expression cassettes resulted in erythrocytosis 

but not erythroleukemia,45 and Epo gene therapy in mice did 

not result in tumors when Epo was overproduced.323,324

The suggestion that tumor cells may express Epo at 

levels sufficient to activate resident EpoR is based almost 

exclusively on IHC experiments on tumor sections or West-

ern immunoblot analysis on tumor cells using nonvalidated 

anti-Epo polyclonal antibodies. In the kidney, where Epo is 

expressed at relatively high levels, Epo is secreted efficiently, 

resulting in very low intracellular stores. Consequently, 

attempts to identify the Epo-producing cell type by IHC 

with anti-Epo antibodies would be difficult and have been 

unsuccessful.16,51 This indicates that it would be even more 

difficult to detect Epo in tissue sections that have even lower 

Epo expression levels than in the kidney.50 In addition, similar 

to anti-EpoR antibodies, many available anti-Epo antibodies 

used by investigators are also nonspecific (Amgen, unpub-

lished data) raising further questions about the significance 

of positive IHC or Western data with anti-Epo antibodies.

Epo and angiogenesis
Blood vessel development consists of two distinct phases – 

vasculogenesis and angiogenesis. Vasculogenesis is the assem-

bly of vessels de novo and angiogenesis arises through the 

proliferation, movement, and incorporation of endothelial cells 

into existing vessels.325 Given the important role that Epo and 

EpoR play in regulating oxygen  delivery, hypothetically Epo 

may also play a role in regulating blood flow through effects 

on the endothelium or through  stimulation of blood vessel 

formation. Supporting this  possibility, in EpoR and Epo knock-

out mouse embryos, though de novo vasculogenesis remained 

intact,326,327 a defect in angiogenesis was reported. Positive 

effects of Epo on vasculogenesis or angiogenesis using bone 

marrow-derived endothelial progenitor cells (EPCs) in vitro 

and in vivo have also been reported by some groups,328–332 but 

positive effects were not observed by others.333–336 ESAs have 

been reported to increase circulating levels of EPCs,337–341 and 

in the case of a subject with erythrocytosis caused by a muta-

tion in EpoR resulting in hypersensitivity to Epo, there were 

increased levels of circulating EPCs.342 However, interpreta-

tion of some of this positive data can be confusing, because a 

surface marker found on endothelial cells (endoglin: CD105)343 

is also expressed on erythroid cells,343,344 resulting in possible 

false-positive identification of EPCs with that marker.

In contrast to the data described above, there are other 

reports that ESAs did not affect the vasculature. For example, 

rHuEpo did not affect endothelial progenitor levels345,346 or 

endothelial markers in patients receiving hemodialysis in clini-

cal studies,347 and Epo did not recruit BM-derived endothelial 

progenitor cells in BM-transplanted mice to neointima in 

arteries with wire-induced injury despite accelerating reen-

dothelialization.348 Further confounding the data are other 

studies suggesting BM-derived endothelial progenitor cells do 

not contribute to the vasculature.349,350 These included a study 

where EpoR–/– mice had normal vascular endothelium,38 as did 

EpoR–/– mice crossed with transgenic mice where EpoR expres-

sion was restricted to the erythroid compartment.351 Therefore, 

if EPCs do not even contribute to the vasculature, the role of 

Epo itself in possibly mobilizing the EPC becomes irrelevant. 

These conflicting studies raise questions about the significance 

of reports that ESAs affect endothelial progenitors.

In several independent studies, endothelial cells were 

reported neither to express significant levels of EpoR nor to 

respond to ESAs. In one study using a specific anti-EpoR 

antibody, A82, endothelial cell preparations expressed very 

low levels of total EpoR protein, with no detectable protein on 

the cell surface and no response to ESAs in vitro.94 In other 

studies, rHuEpo had no effect on endothelial cell preparations 

in controlled in vitro and in vivo experiments.94,352–354 In tumor 

xenograft studies, no effect on angiogenesis was observed 

when animals were administered ESAs.355–357

While several groups have reported that EpoR was present 

in endothelial cell preparations, the studies were based on 

the detection of EpoR using anti-EpoR antibodies that suf-

fered from the same antibody nonspecificity issues described 

above. In ESA response studies, effects were only observed at 
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supraphysiologic and suprapharmacologic levels of rHuEpo 

(.10 U/mL), a concentration which may be more prone to 

provide false-positive results. Some groups reported that 

[125I]rHuEpo bound to endothelial cell preparations,129,358,359 

but the binding properties included unusually high EpoR 

density and low affinity, characteristics more consistent 

with nonspecific or off-target binding.268 Further, the high 

EpoR density reported did not correlate with the relatively 

low EpoR transcript levels or EpoR protein levels detected 

by Western analysis with a specific anti-EpoR antibody.94 

Increased thymidine incorporation into brain capillary 

endothelial cells following addition of rHuEpo was reported 

in one study, but only if the addition was accompanied by a 

change in growth medium,358 raising concerns about potential 

artifacts. Artifact was most likely the reason that rHuEpo 

reportedly induced increased vascularization in chicken eggs 

(chick chorioallantoic membrane assay),337,360,361 because 

there is no evidence of cross-species activity between human 

Epo and chicken EpoR.362–364

Cytoprotective effect of Epo  
on normal nonhematopoietic cells 
and tissues
In addition to erythropoietic defects in Epo or EpoR knockout 

mice, nonhematopoietic developmental defects in the heart 

and vasculature were also reported, suggesting a functional 

role for Epo–EpoR in those organs.326,365 This possibility was 

further evaluated in transgenic mice with EpoR expression 

limited to the hematopoietic compartment using a GATA-1 

promoter linked to the EpoR gene.351 Though the GATA-

1-EpoR transgenic mice had no detectable EpoR mRNA 

expression outside the erythroid compartment using RT-PCR 

analysis, the mice developed normally and had normal organ 

function and vasculature. These data suggested that EpoR was 

not required for normal nonhematopoietic organ develop-

ment, and that reported nonhematopoietic effects may have 

been mediated though indirect mechanisms, such as insuf-

ficient oxygen delivery due to the defect in erythropoiesis.

Cytoprotection studies in animals have been performed 

to evaluate the possibility that ESAs have nonhematopoietic 

effects. Overall, in a number of different animal studies 

(rodents, pigs, rabbits), ESAs were reported to enhance 

angiogenesis after injury in models of hypoxia-induced 

hypertension366 and peripheral hind limb ischemia,367 and 

reduce tissue injury in heart,368–374 brain,375–377 kidney,378,379 

and other organs204,367,380–383 using different injury model 

systems. Though these data suggest that ESAs have direct 

effects on nonhematopoietic tissues, the positive findings 

from these studies may be related to RBC increases, such 

as enhanced oxygen delivery or changes in ferrokinetics.384 

In the particular case of neuroprotection by ESAs, cerebro-

spinal fluid (CSF) Epo levels did not correlate with plasma 

Epo levels,385 ESAs were not transported into the brain at 

significant levels,386 and even though there was some increase 

in CSF levels of Epo where there was blood–brain barrier 

dysfunction, Epo concentrations were still very low385,387 

(1–3 mU/mL vs 10–30 in serum), raising questions about 

possible direct effects of ESA addition on brain function in 

animal or human studies.

In a conditional EpoR knockout study in mice with 

brain-specific inactivation of the EpoR gene, endogenous 

Epo–EpoR was found nonessential for protecting neurons 

from ischemic injury, though a role was suggested in 

poststroke neurogenesis.388 In this study, mice with no EpoR 

expression in the brain had a slight reduction in proliferation 

and migration of neuroblasts to the peri-infarct cortex. 

A similar role of endogenous Epo–EpoR was suggested using 

another conditional EpoR knockout system.389 In the absence 

of neural EpoR, a twofold increase in neural cell apoptosis 

and a two- to threefold decrease in neural progenitor cell 

proliferation compared to wild type was reported. However, 

the functional neurological impact of the findings in these 

two studies was not reported.

Although ESAs were reported to have cytoprotective 

activities by directly interacting with EpoR present on cells, the 

data supporting this hypothesis are confounded by a number 

of issues similar to those associated with the hypothesis that 

ESAs directly stimulate tumor cells. Some investigators 

reported EpoR mRNA was expressed in nonerythroid 

 tissues and suggested functional EpoR protein may also be 

present.176,286,358,365,370,389–392 However, EpoR mRNA levels 

in nonhematopoietic tissues were 5–1000 times lower than 

in bone marrow (see also Figure 3), and detection of EpoR 

mRNA in cell lines and endothelial cells did not predict surface 

expression.94 Many of the investigators that reported EpoR 

protein expression in normal nonhematopoietic tissues390,391,393 

used antibodies known to be nonspecific, most likely resulting 

in false-positive results.76,91,97,98,248,249,394 Alternative approaches 

to determine surface protein, such as radiolabeled [125I]rHuEpo 

binding studies, found EpoR characteristics (high receptor 

number, low affinity) that are substantially different from EpoR 

characteristics on erythroid progenitor cells (low receptor 

number, high affinity).11,129,235,358,359,391 Recently, results using 

a specific anti-EpoR antibody (A82) indicated that EpoR was 

undetectable in most nonhematopoietic tissues from humans 

and mice (see Figure 4), raising further questions about the 
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potential for ESAs to have a direct effect on nonhematopoietic 

tissues.94,255

ESAs were reported to activate downstream antiapoptotic 

signaling pathways in nonhematopoietic tissues, a mechanism 

that could inhibit cell death associated with tissue insult (eg, 

ischemia, reperfusion injury, and exposure to cytotoxins) 

in vitro.369,372,375,376,389 For example, rHuEpo was reported 

to activate AKT and ERK signaling in cardiac myocytes in 

vitro, reducing apoptosis by ∼30% upon exposure to hydro-

gen peroxide.395 In studies evaluating the effects of ESAs on 

nonhematopoietic cell proliferation, signaling, or inhibition 

of apoptosis, modest effects (two- to threefold increases 

that are within the experimental noise of the system) were 

reported.368,375,378,395,396 Many of these studies used cells 

starved of serum and did not describe the use of an appro-

priate vehicle control, both of which raise the possibility of 

nonspecific effects.286,375,395,397,398 Furthermore, rHuEpo doses 

used for the in vitro studies were approximately tenfold higher 

(.10 U/mL) than levels achievable in patients with modest 

responses reported, raising the possibility of artifacts as well 

as questions about the physiological and clinical relevance 

of these findings.286,368,370,378,396,399

While the possibility that ESAs may be cytoprotective is 

supported by some studies, many of the in vivo studies with 

ESAs are conflicting. For example, though in two studies 

rHuEpo reduced ischemia reperfusion-induced renal injury 

and preserved renal function,400,401 in another study rHuEpo 

did not preserve renal function.402 In studies using the same 

transgenic mouse model of amyotrophic lateral sclerosis, 

mixed findings have been reported. In one, rHuEpo delayed 

symptom onset and prolonged survival times.403 In a second, 

rHuEpo delayed disease onset in females but not males,404 

and in the third, rHuEpo had minimal improvement in motor 

neuron function, with no effect on motor neuron loss or 

overall survival.405 In another central nervous system (CNS) 

model, though high doses of rHuEpo (500–5000 U/kg daily) 

were reported to inhibit CNS inflammatory effects rats with 

experimental autoimmune encephalomyelitis,406 no protec-

tive effect was found in animals with adjuvant arthritis, even 

when the same high-dosing regimen was used.406

In other in vivo animal studies, ESAs did not provide 

nonhematopoietic protective effects. Pretreatment of rats with 

darbepoetin alfa did not alter endotoxin-evoked myocardial 

depression or the expression of proapoptotic or antiapoptotic 

genes in the heart.407 rHuEpo was unable to provide neu-

roprotective effects in a rabbit bacterial meningitis model, 

even though the systemically administered rHuEpo was 

reported to penetrate the CNS in infected rabbits.408 rHuEpo 

was also unable to prevent endotoxinemia-induced liver and 

kidney damage in rats.408 Human clinical studies with tissue-

protective end points have also been performed. To date, the 

cytoprotective effects reported in animal models have gener-

ally not translated into a clinical benefit in humans (reviewed 

in Sølling409) who had injury to brain,410–412 heart,413–419 or 

kidney.420–426 Further, in a recent study, rHuEpo had no effect 

on intracellular signalling with human skeletal muscle.427 

Taken together, these data suggest that ESAs may not have 

the broad, reproducible, robust, nonhematopoietic protective 

abilities described by some investigators.

Alternative receptor complexes  
for Epo and Epo derivatives
An alternative receptor complex that can bind ESAs and medi-

ate cytoprotective activity has been proposed based on the 

unusual binding affinities of ESA reported on nonhematopoi-

etic cells. The proposed alternative receptor was reported to 

consist of a heteromeric complex of EpoR and the GM-CSF/

IL-3/IL-5 β-common chain (βc).393 It was further proposed 

that a chemically modified Epo molecule (carbamoylated Epo 

[cEpo]) bound the alternative receptor complex and provided 

tissue-protective effects in the absence of stimulation of eryth-

ropoiesis.428 Similar to rHuEpo, a number of model systems 

with various cytotoxic insults have been used to describe this 

cytoprotective activity of cEpo, such as inhibition of cardiac-

myocyte apoptosis,393,429 improvement in cardiac function after 

permanent ischemia,429 inhibition of renal tubule apoptosis, 

improvement in renal function after ischemia-reperfusion or 

obstructive injury,430–432 and reduction in neural lesions and 

apoptosis in the CNS with various rodent model systems.433–435 

Data used to support the hypothetical cytoprotective role of the 

βc–EpoR heteromer were generated using mice in which the 

GM-CSF βc had been knocked out. Based on these data, cEpo 

and ESAs were reported to bind to the heteromer, activate 

signaling pathways, and prevent apoptosis in several normal 

nonhematopoietic tissues.393,397,428 However, this hypothesis is 

controversial, as other investigators have found βc does not 

play a role in preventing apoptosis with ESAs.176 It is particu-

larly noteworthy that the investigators who initially generated 

the GM-CSF βc knockout mice436 examined the receptor status 

and responsiveness of those animals thoroughly and con-

cluded that there was no evidence of an interaction between 

the GM-CSF βc and EpoR.437–439

Summary and conclusions
Epo is an essential cytokine that binds and activates EpoR 

resident on the surface of erythroid progenitor cells, thereby 
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promoting erythropoiesis. To this end, ESAs are currently 

indicated for treatment of anemia in patients with chronic 

kidney disease and chemotherapy-induced anemia. Epo has 

also been reported to have effects beyond erythropoiesis, 

such as tissue-protective effects and promotion of tumor 

cell growth or survival. This Epo–EpoR tumor stimulation 

hypothesis has been used to explain the safety signals seen 

in some clinical trails in anemic cancer patients treated with 

ESAs. However, putative positive results for this hypothesis 

are generally confounded by the absence of controls to detect 

false-positive effects and the use of nonspecific reagents in 

many studies. EpoR levels outside the erythroid compartment 

are very low, and the data that such low-level EpoR can bind 

significant amounts of Epo and promote a functional response 

are unconvincing. Further, in controlled clinical trials, the 

cytoprotective benefits observed in animal studies have not as 

yet translated into benefit in the clinic. The totality of evidence 

suggests that ESAs do not directly stimulate tumor cells and 

that similarly the cytoprotective and other nonhematopoietic 

effects of ESA treatment reported are not a direct effect of 

ESAs acting through EpoR on nonerythroid cells.
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