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Simple Summary: Malignant melanoma is a highly metastatic disease disseminating to several
distant sites. This potential is also of great clinical impact for patient survival and therapeutic success.
Knowledge about melanoma genomics is mainly based on lymphatic or skin metastases derived data,
whereas data from distant sites is limited. Therefore, an autopsy-based visceral metastasis biobank
was established, and an array-based copy number variation (CNV) analysis was performed, focusing
primarily on major organs (brain, lung, and liver) and completed partly by proteomic analysis. A
unique picture emerged about organ-specific CNV-type distributions or gene alterations, including
the frequent loss of DNA damage error genes in brain metastases, the presence of HGF/MET
autocrine loop in brain and lung metastases, the traces of immunogenic mimicry exclusive for lung
metastases or the correlation of BRAF copy number and mutant allele frequency, especially in lung
metastases. All these above phenomena have a great influence on therapy efficacy or resistance.

Abstract: Malignant melanoma is one of the most aggressive skin cancers with high potential
of visceral dissemination. Since the information about melanoma genomics is mainly based on
primary tumors and lymphatic or skin metastases, an autopsy-based visceral metastasis biobank
was established. We used copy number variation arrays (N = 38 samples) to reveal organ specific
alterations. Results were partly completed by proteomic analysis. A significant increase of high-copy
number gains was found in an organ-specific manner, whereas copy number losses were predominant
in brain metastases, including the loss of numerous DNA damage response genes. Amplification of
many immune genes was also observed, several of them are novel in melanoma, suggesting that their
ectopic expression is possibly underestimated. This “immunogenic mimicry” was exclusive for lung
metastasis. We also provided evidence for the possible autocrine activation of c-MET, especially in
brain and lung metastases. Furthermore, frequent loss of 9p21 locus in brain metastases may predict
higher metastatic potential to this organ. Finally, a significant correlation was observed between
BRAF gene copy number and mutant allele frequency, mainly in lung metastases. All of these events
may influence therapy efficacy in an organ specific manner, which knowledge may help in alleviating
difficulties caused by resistance.

Keywords: distant organ metastasis; DDR deficiency; HGF/MET autocrine activation; immunogenic
mimicry; BRAF and NRAS mutant allele frequency
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1. Introduction

Skin melanoma is among the most metastatic human cancers and is also among those
with the highest tumor mutation burden (TMB~103) due to UV-induced carcinogenesis [1].
Furthermore, chromosomal instability (CIN) results in a high frequency of copy number
variations (CNV) in a similar range as TMB as determined by the highest resolution tech-
nologies such as whole genome sequencing (WGS) or whole exome sequencing (WES) [2].
Meanwhile the TMB and CNV of melanoma are not strictly tightened together [3]. Muta-
tional profile of skin melanoma is well characterized as well as those of CNVs, the latest
of which can be used to differentiate between premalignant and malignant pigment cell
neoplasia: Loss of heterozygosity (LOH) of CDKN2A (9p21.3) and MYB (6q23.3) as well as
amplification of CCND1 (11q13.3) and RREB1 (6p24.3) can be routinely used in pathological
diagnostics [4]. Furthermore, skin melanoma is characterized by frequent amplifications of
BRAF (7q34), NRAS (1p13.2), KIT (4q11) oncogenes (major mutated genes in melanoma)
but also by EGFR (7p11.2) and MET (7q31.2) genes [5–8]. Conversely, LOH frequently
affects PTEN (10q23.3) in melanoma [5,7,8]. Copy number alteration (CNA) analysis of
primary melanomas identified 77 minimal homozygous deletion signature, which carried
negative prognostic impact [9]. Another study demonstrated that whole genome duplica-
tions are responsible for the majority of copy number gains (CNG) in melanoma, while
LOH is responsible for the majority of copy number loss (CNL) [10].

Genomic analysis of circulating melanoma cells identified 249 CNAs consisting of
139 CNGs and 110 CNLs of >50% frequency [11]. Further analysis of the top 37 CNAs
defined 5-CNG signature (CNG:1p35.1, 2q14.3, 14q32.33 and CNL:14q32.11,21q22.3) with
prognostic impact [11]. Other studies identified individual CNVs during metastatic pro-
gression: amplification of MITF (3p13) or NEDD9 (6p24.2) metastasis genes, as well as
CDK6 (7q21.2), BRIC5 (17q25.3) and TEAD (11p15.3) [5,7]. It is also characteristic during
metastatic progression that PTEN or the metastasis suppressor, KISS1R (19p13.3) are lost [7].
However, it is not well known if these genetic alterations during progression are uniform
or progression-type specific.

Melanoma characteristically produces distant skin metastases as part of their homing
process or distant lymphatic metastases, but clinically, the most relevant metastases are the
visceral ones involving major organs such as brain, lung or liver, although other organs
can also be affected. Our knowledge on the genomics of skin melanoma progression
is mostly derived from biobanks dominated by lymphatic or skin metastases, and data
from visceral metastatic melanoma are much more limited. An analysis of melanoma
brain metastases revealed frequent deletion of CDKN2A/B locus, which had a negative
prognostic impact [12]. A more recent analysis of melanoma brain metastases detected
high frequency of EGFR amplification in metastases overall but the highest in the brain [13].
This study, although at lower frequency, discovered MET amplification in melanoma brain
metastases as well.

We have established an autopsy-based melanoma metastasis biobank [14], which was
used to analyze CNV alterations during the visceral progression of skin melanoma.

2. Results
2.1. Metastatic Melanoma Cohort

We collected an autopsy-based fresh frozen melanoma metastasis biobank of ten cases
containing 28 samples of brain, liver or lung metastases, where the primary tumors were
formalin-fixed, paraffin-embedded (FFPE) materials of the resected tumors (Table 1, Sup-
plementary Table S1). Histologically, the primary tumors were classical skin melanomas,
and the cohort does not contain rare variants. The duration of the disease was on average
about 6 years. Sixty percent of this small cohort was BRAF mutant, 30% was NRAS mu-
tant and only one case was triple negative (KIT wild type too). The vast majority of the
patients were treated with IFN2a, three patients were treated with BRAF inhibitor (BRAFi)
while 2–2 patients each have been treated either with Dacarbazine (DTIC) or platina-based
chemotherapy. No patients were treated with immune-oncology drugs.
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Table 1. Metastatic melanoma patient cohort.

Primary Tumor N = 10 (100%)

Breslow thickness: range+SEM 4.44 (1.0–9.25)
<1.0 1 (10)

1.1–2.0 2 (20)
2.1–4.0 2 (20)

>4.1 5 (50)
Histological types

SSM 3 (30)
NM 2 (20)

LMM 1 (10)
unclassified 4 (40)

Anatomical location
trunk 2 (20)

head and neck 2 (20)
extremities 6 (60)

Mutational status
BRAFV600K/E 6 (60)
NRASQ61L/R 3 (30)

BRAF/NRAS/KIT wild type 1 (10)
Gender

male 6 (60)
female 4 (40)

Age (years) 47.6 + 18.1
Overall survival (months): range + SD 69.3 + 39.6

Treatment
IFN2α 7 (70)
BRAFi 3 (30)
DTIC 2 (20)

cisplatinum 2 (20)
Metastasis N = 28 (100%)

brain 10 (36)
liver 9 (32)
lung 9 (32)

Abbreviations: BRAFi, BRAF inhibitor; DTIC, Dacarbazine; LMM, lentiginous melanoma; NM, nodular melanoma;
SSM, superficially spreading melanoma.

2.2. CNV Landscape of Primary Tumors and Metastases of Skin Melanoma

The CNV landscape was identified in 38 primary melanomas and metastases using
OncoScan FFPE and CytoScan HD arrays (Figure 1). Only structural CINs were examined
since whole genome duplication was not observed in any of the investigated samples.
Compared to primary tumors, distant organ metastases showed frequent (>35%) gains of
several large chromosomal regions at chromosome 1, chromosomal arms 5p, 9q, 14q, 16p,
17q, 22q and losses at 6q, 9p, chromosome 10, 11q. Conversely, gains at 4p and 10q were
characteristic to primary melanomas exclusively. Meanwhile, common aberrations shared
by the primary and metastases were also represented across the entire genome, especially
on chromosome 7, 8, 20 and chromosomal arm 6p (Figure 1). Regarding the comparison of
distant melanoma metastatic sites, liver and lung metastases showed a more similar CNA
pattern to each other than brain metastases.

Genomic instability increased significantly (p = 0.045) parallel to the tumor progression,
when alterations of primary melanomas were compared to the pooled metastases or
individual metastases, except the one in the liver (Figure 2, Supplementary Table S2). A
more detailed analysis of genomic alteration types provided a refined picture of visceral
progression of melanoma. Most of the genomic alterations fall into the low-copy number
gain (lCNG) category, but this was not significantly different in metastases. Conversely,
high-copy number gain (hCNG) as well as all the three-copy number loss (CNL) types
(homozygous, heterozygous and LOH) significantly increased in visceral metastases as
compared to primary tumors with significant differences in individual metastases. High-
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CNG was the lowest in brain metastases and the highest in lungs. In contrast, lCNG
and heterozygous-CNL (heCNL) was the highest in brain metastases and the lowest in
liver metastases, similar to homozygous-CNL (hoCNL). Copy-neutral LOH (cnLOH) was
also observed to be significantly increased in metastases, and it was less frequent in brain
metastases and the most persistent was in liver.
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Figure 1. CNV landscape of examined melanoma samples: (A) primary tumors vs. distant melanoma metastases, (B) distinct
distant metastatic sites (brain vs. liver vs. lung). Blue and red colors indicate copy number gains and losses, respectively.

Since the average percentage of genomic alterations was higher in metastases, we tried
to examine what kind of governing features could be hindered behind this phenomenon.
We observed frequent heCNL events in regions bearing genes important in the DNA
damage repair (DDR) processes. Therefore, we examined the CNA status of 43 genes in
four DDR pathways involved in both single- and double-strand DNA error repairs, namely
base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and
homologous recombination (HR). Overall, metastatic melanomas were enriched in heCNLs
affecting DDR genes, especially brain metastases, where we detected the highest number
of alterations of genes acting in HR and NER (Figure 3). The most predominant genes
were APTX, FEN1, GTF2H5, DNA2, MUS81 and TOP3A with varying incidences between
visceral sites.
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Figure 2. Distribution of CNV types between primary tumors and distant metastases from distinct sites. Asterisk means the
level of significance (* p ≤ 0.05). Kruskal–Wallis test was used for the multiple group comparisons, and Mann–Whitney–
Wilcoxon test was applied for the primary vs. all metastasis analysis. Abbreviations: CNG, copy number gain (CN > 2);
CNL, copy number loss (CN < 2); LOH, loss of heterozygosity; hCNG, high-copy number gain (CN ≥ 4); lCNG, low-copy
number gain (4 > CN > 2); hoCNL, homozygous copy number loss (CN = 0); heCNL, heterozygous copy number loss
(2 > CN > 0).
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Figure 3. Copy number loss (CNL) frequency in different melanoma metastases affecting genes coding proteins in DDR
subpathways. Radar chart represents the CNL frequency in primary melanomas and visceral metastases. In brackets, we
indicated the count of samples resected from primary tumors and a given metastatic site. The vertical axis represents the
number of genes altered in any of the DDR subpathways. Table shows the frequency (percentage) of the TOP6 DDR genes
affected in melanoma. Abbreviations: DDR, DNA damage repair; BER, base excision repair; HR, homologous recombination;
MMR, mismatch repair, NER, nucleotide excision repair.



Cancers 2021, 13, 5984 6 of 18

2.3. Marked Genetic Differences between Visceral Metastases of Melanoma

Searching for organ specific CNV alterations, we primarily focused on the presence
of hCNGs (CN ≥ 4) and hoCNLs, as cutaneous melanoma usually shows a high genetic
instability increasing with progression (Figure 4).
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and homozygous losses. Blue and red arrows represent copy number gains and number losses,
respectively.

Overall, lung metastases had the highest number of alterations. All of these were
hCNGs and affected 25 chromosomal regions including a total of 3010 genes. Out of these
genes, 1440 genes (47.8%) on 10 loci (5q34-p35, 6p12, 7q11, 7q21-22, 8p21, 8q22, 19p13,
20p11-p13, 20q11, 22q11-q13) were exclusive for melanoma lung metastases (Figure 4,
Supplementary Tables S3A,B). Searching for alterations associated with metastatic ability,
lung metastases were characterized by NEDD9, TEAD1/2/4, SNAI1 and TWIST1/2 ampli-
fications. Lung metastases uniquely contained the amplification of CDK6, MAPK1 and
ABL2 (Table 2). Chromosomal regions, including 19 immune cell (dendritic cells, T cells,
B cells, macrophages) specific genes, were frequently harbored by amplification in lung
metastases and partially in liver ones (Table 3), suggesting that immunoselection might
play a significant role exclusively at this site.

Table 2. Copy number changes of historical genes associated with the metastatic ability of malignant melanoma.

Gene Locus

BRAIN LIVER LUNG

Mean CN
Type

of
Change

Frequency
(%) Mean CN

Type
of

Change

Frequency
(%) Mean CN

Type
of

Change

Frequency
(%)

CDKN2A
9p21.3

0 hoCNL 20 - - - 0 hoCNL 22

CDKN2B 0 hoCNL 10 - - - 0 hoCNL 11

TERT 5p15.33 4.5 amp. 20 - - - - - -

MAPK15 8q24.3 5 amp. 10 4.5 amp. 22 4.66 amp. 33

TWIST1 7p21.1 5 amp. 10 5 amp. 11 4.75 amp. 44

TWIST2 2q37.3 - - - - - - 4 amp. 11
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Table 2. Cont.

Gene Locus

BRAIN LIVER LUNG

Mean CN
Type

of
Change

Frequency
(%) Mean CN

Type
of

Change

Frequency
(%) Mean CN

Type
of

Change

Frequency
(%)

SNAI1 20q13.13 - - - - - - 4 amp. 11

SNAI2 - - - 5 amp. 22 4.66 amp. 22

S100A9

1q21.3

- - - 6 amp. 11 4.66 amp. 33

S100A10 - - - 5 amp. 11 4.66 amp. 33

S100A11 - - - 5 amp. 11 4.66 amp. 33

S100A12 - - - 6 amp. 11 4.66 amp. 33

NEDD9 6p24.2 - - - - - - 4 amp. 22

TEAD1 11p15.3 - - - - - - 4 amp. 11

TEAD2 19q13.33 - - - - - - 4 amp. 22

TEAD4 12p13.33 - - - - - - 4 amp. 22

CDK6 7q21.2 - - - - - - 4 amp. 44

MAPK1 22q11.22 - - - - - - 4 amp. 22

ABL2 1q25.2 - - - - - - 4.66 amp. 33

HGF 7q21.11 6 amp. 10 8.33 amp. 33

MET 7q31 6 amp. 11 9 amp. 11

The amplification of TERT was specific for brain metastases. MAPK15 and TWIST1 amplification was observed in all metastatic sites; brain
and lung metastases represented the homozygous loss of cell cycle regulators CDKN2A/B. SNAI2 and the S100A gene amplification had
been called in liver and lung metastases. HGF amplification was detected in brain and liver metastases, while MET amplification were
found in all metastases, except for the brain. The rest of the represented alterations were specific only to lung metastases. Abbreviations:
CN, copy number; hoCNL, homozygous loss; amp., amplification.

Regarding liver metastases, 19 regions with 1560 genes exhibited amplification. Only
a low proportion (25 genes, 1.6%) of genes located on two loci (6p21, 8p23) was unique
to liver and more than 98% of genes (N = 1530) was overlapped with ones found in lung
metastases (Figure 4, Supplementary Tables S3A,B). Searching for historical metastasis
genes, amplification of TWIST1 and SNAI2 together with S100A9/10/11/12 and MAPK15
kinase was observed (Table 2). Regarding the previously mentioned immunogenic pattern
of lung metastases, only CD40/83/172 gene amplification was found to be a shared feature
between lung and liver metastases (Table 3).

Melanoma brain metastases showed a different picture. High-copy gain was observed
in only four chromosomal regions including 299 genes. A total of 55.5% of these genes
(N = 166) on 3 loci (1q21, 5p15, 8q24) was only characteristic for the examined brain metas-
tases (Figure 4, Supplementary Table S3A,B). We found TERT and CD160 amplification
as a unique hCNG of brain metastasis (Tables 2 and 3). Homozygous loss of 9p21.3 locus
(28 genes) was exclusive for this distant site, including several interferon genes as well as
CDKN2A and B.

We also analyzed the distribution of driver oncogene-specific CNA types per distant
metastatic sites and independently from visceral localization as well. The proportion of
LOH was higher in NRAS mutant samples in case of liver metastases. Furthermore, a
marginal statistical difference was found in the incidence of hoCNL in both brain and liver
samples in favor of NRAS oncogene mutation (Supplementary Table S4A,B). Independently
from the metastatic site, homozygous loss of 1q24 and 15q24 regions was observed in NRAS
positive samples only, while hCNGs could be observed across the entire genome. Shared
alterations were observed on 1q, 3q, 5q, 7p, 9q, 13q, 14q and 16p (Supplementary Figure S1).
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Table 3. Chromosomal regions including immune cell markers affected by amplification in melanoma metastases.

Gene Locus

BRAIN LIVER LUNG

Mean CN Type of
Change

Frequency
(%) Mean CN Type of

Change
Frequency

(%) Mean CN Type of
Change

Frequency
(%)

CD160 1q21.1 4 amp. 10 - - - - - -

CD40 20q13.12 - - - 5.5 amp. 22 6 amp. 22

CD83 6p23 - - - 5 amp. 11 4 amp. 22

CD172 20p13 - - - 5 amp. 11 4.5 amp. 22

CD1A-E 1q23.1 - - - - - - 4.66 amp. 33

CD48

1q23.3

- - - - - - 4.66 amp. 33

CD84 - - - - - - 4.66 amp. 33

CD244 - - - - - - 4.66 amp. 33

CD247 1q24.2 - - - - - - 4.66 amp. 33

IDO1
8p11.21

- - - - - - 5 amp. 22

IDO2 - - - - - - 5 amp. 22

BCR 22q11.23 - - - - - - 4 amp. 33

IL17R 22q11.1 - - - - - - 4 amp. 22

CD36 7q21.11 - - - - - - 4.25 amp. 44

CD37 19q13.33 - - - - - - 4 amp. 22

CD70 19p13.3 - - - - - - 4 amp. 11

CD93 20p11.21 - - - - - - 4.5 amp. 22

CD209 19p13.2 - - - - - - 4 amp. 11

CD320 - - - - - - 5 amp. 11

CD160 amplification was characteristic in only the brain, while CD40, CD83, CD172 amplifications were a common phenomenon between
liver and lung metastases. Abbreviation: CN, copy number; amp., amplification.

HGF/MET autocrine activation is a well-known process in the development of malig-
nant melanoma. The co-occurrence of copy number gain of MET receptor and its ligand,
HGF was the most pronounced in brain metastases (5 out of 10 examined cases). By cor-
relating the probe medians of MET and HGF genes, a strong significant correlation was
found in lung metastases (Pearson’s Rho; R = 0.699, p = 0.036; Supplementary Table S5).

2.4. Expression Profiles of the Immunogenic Mimicry Related Genes

The expression profiles of the 19 genes identified with higher copy numbers in
metastatic melanomas were explored in three different validation cohorts at the ProteoGe-
nomic; transcript and/or protein level. The transcript data from 443 melanomas were
curated and processed from the Cancer Genome Atlas (TCGA) repositories [15]. The
clinical protein expression profiles were generated from a prospective, and a postmortem
study cohort, recently presented within the Human Melanoma Proteome Atlas [16,17].
In summary, only one out of 19 amplified immunogenic mimicry (IGM) genes (CD172)
was not detected at transcript levels in TCGA, while at the protein level, 10 proteins were
identified in each proteomics cohort. Herein, 9 out of the 19 genes were quantified in the
three datasets (Table 3, Supplementary Table S6). The transcriptomics cohort was divided
according to the sample origin in: (1) primary tumors, (2) cutaneous, (3) lymph node, and
(4) distant metastases. The comparison within the expression levels showed significant
differences in 13 genes between the primary and at least one group of the metastases. With
the exception of CD1A, all presented higher levels in the metastases (Figure 5). This is
particularly true for the lymph node metastases.
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Conversely, at the proteome level, seven proteins indicated significant differences.
In the prospective cohort, two proteins; CD93 and CD84, displayed higher levels within
the tumor samples when compared to non-tumors (Figure 6A). In the case of CD247, it
was not detected in non-tumors and additionally was found to be upregulated in metas-
tases from the lymph node group, when compared to primary tumors. In addition, two
proteins; CD1A and CD70 were downregulated during the progression of the disease.
We also observed within the study that only two proteins showed significant differences
between different groups of metastases from the postmortem cohort (Figure 6B). This was
particularly clear for CD320, that was differentially expressed between the lung and liver
metastases groups. Altogether, the expression profiles of these genes indicate to a large
extent, that an upregulation of these genes occurs in metastatic melanomas, as compared
to the primary tumors.

We also observed that there is an upregulation within the expression profiles of
melanomas in general when compared non-tumor samples at the protein level. However,
the differences between metastases originating in different locations were found to befall
at a lower level.

2.5. Mutant Allele Frequency (MAF) Changes of Driver Oncogenes during Progression

Since we observed frequent CNG events on large chromosomal regions of chromo-
somes 1 and 7, where NRAS and BRAF genes are localized, we compared copy number
alterations of these two genes to the changes of mutant allele frequency. Comparing to the
matched primary tumor, proportion of NRAS mutant clones was unchanged or higher in
metastatic samples (Table 4). All the examined samples were diploid for NRAS gene. How-
ever, a 120,000 kbp long cnLOH region, including the SNP variant of NRAS gene at 1p13.2
locus as well was observed in case of brain metastasis of the MF53 sample (NRASQ61L) and
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primary tumor of the No. 55 sample (NRASQ61R). In parallel to this, MAF was more than
three times higher in the No. 53 brain metastasis, whereas no change of MAF was noticed
in the case of No. 55 sample pairs.
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Table 4. Comparison of copy number changes and mutant allele frequency in matched primary tumors and metastasis pairs.

Scheme. Site
Driver

Mutation in
DM

% of Mutant
Cells * (P **)

% of Mutant Cells
* (DM ***)

DM/P
Ratio

Alteration of
Driver Mutant

Gene in Primary
Tumor

Alteration of Driver
Mutant Gene in

Metastasis

BRAF primary

17
liver BRAF

29.1
69.1 2.37

n.d.
CN 4 + LOH

lung BRAF 77.9 2.68 CN 3 + LOH

19
liver BRAF

40.8
50.4 1.24

CN 3
CN 3

lung BRAF 55.3 1.36 CN 3

24
brain BRAF

38.4
28.6 0.74

no change
no change

brain BRAF 24.0 0.63 no change

28

brain BRAF

21.2

35.7 1.68

n.d.

CN 3

brain BRAF 32.8 1.55 no change

lung BRAF 37.5 1.77 CN 3
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Table 4. Cont.

Scheme. Site
Driver

Mutation in
DM

% of Mutant
Cells * (P **)

% of Mutant Cells
* (DM ***)

DM/P
Ratio

Alteration of
Driver Mutant

Gene in Primary
Tumor

Alteration of Driver
Mutant Gene in

Metastasis

31
liver WT

27.4
8.3 0.30

n.d.
no change

lung BRAF 29.5 1.08 no change

32
liver BRAF

4.0
14.9 3.73

no change
SNP

lung BRAF 33.1 8.28 CN 5

36 brain BRAF 23.7 68.6 2.89 n.d. CN 3

48 brain BRAF 40.3 50.9 1.26 no change no change

54 lung BRAF 2.2 80.0 36.36 n.d. CN 3 + LOH

56
liver BRAF

4.7
14.0 2.98

CN 3
CN 3

lung BRAF 54.1 11.51 CN 4

57

brain BRAF

11.0

24.8 2.25

no change

CN 3

liver BRAF 28.0 2.55 CN 3

lung BRAF 37.8 3.44 CN 3

59 lung BRAF 4.3 75.4 17.53 no change CN 5

NRAS primary

20 liver NRAS 4.6 29.2 6.35 −

53 brain NRAS 15.8 49.4 3.13 no change LOH

55
brain NRAS

35.4
22.8 0.64

LOH
no change

liver NRAS 38.0 1.07 no change

WT primary ****

33 brain WT 0.0 0.0 − n.r. n.r.

Asterix represents: * corrected to tumor cell content of the sample, ** primary tumor, *** distant metastasis, **** no minor cell population
with BRAF or NRAS mutation was found in both primary and metastatic samples. Abbreviations: n.d., no data available; n.r., not relevant.

BRAF gene was usually observed in distant metastatic melanomas with increased
BRAF MAF value comparing to the primary tumor [14]. BRAF high copy gain was the
most typical for lung metastases, often bearing an average of 4-5 copies per cell (Table 4). A
moderate, but significant correlation (R = 0.540, p = 0.009) was observed between BRAF
gene copy number alteration and mutant allele frequency in BRAF mutant metastases
compared to their matched primary tumors (Table 5). We determined the threshold of
mutational homozygosity from MAF ≥ 60%. Only five samples met these criteria, three of
which we also found bearing LOH, which can hypothetically boost the development of
homozygosity.

Table 5. Correlation between BRAF gene copy number alteration and mutant allele frequency in BRAF mutant metastases.

BRAF
Copy Number State (N)

CN2 (7) CN3 (11) CN4 (2) CN5 (2)

MAF * (mean ± SE) 27.00 ± 5.16 46.36 ± 6.63 61.60 ± 7.50 52.25 ± 21.25

heterozygous 1 2 1 0

homozygous 0 3 1 1

subclonal 6 6 0 1

Correlation coefficient
** (p-value) 0.540 (0.009)

Asterisks represent: * mutant allele frequency, ** Spearman’s Rho correlation, two-tailed.
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3. Discussion

Chromosomal instability (CIN) is one the principal forms of genomic instability,
which is known to be a hallmark of cancer. CIN as a definition refers to enhanced rate of
chromosomal mis-segregation, which is one of the main driving forces of the development
of aneuploidy. As every other alteration in the genome of cancer cells, CIN has the
bidirectional power to both increase or decrease cell survival. Gaining additional copies
of oncogenes can be advantageous to the cell, just as homozygous loss of essential tumor
suppressor genes. It is a long-known phenomenon, that CIN is an enduring process
occurring already in primary tumors in the early phase of tumor progression. We compared
and analyzed the frequent (>35%) copy number gains (CNG) and losses (CNL) captured in
the genome of melanoma patients with visceral metastases. We also found that genomic
instability increased in both pooled metastases and individual ones except for liver when
the copy number variation (CNV) landscape of primary tumors was compared to the CNV
pattern of visceral metastases. When we delved into these frequent CNVs, we generally
observed that most of the alterations were low CNGs. We also explored a statistically
significant increase of high CNGs in metastases in an organ specific manner, the number
of these kind of aberrations was the highest in lung metastases and the lowest in brains,
while low CNG and both heterogenous and homogenous CNLs were predominant in
brain metastases.

Homologous recombination deficiency (HRD) characterizes a unique set of cancers of
various histologic origin leading to increased tumor mutation burden and special sensitivity
to immune checkpoint inhibitors or to PARP inhibitors [18]. A study demonstrated that in
breast cancer disseminated brain metastases genomic aberration-based HRD measures are
significantly higher in metastases relative to their matched primary tumors suggesting that
HR-deficient brain metastases might be more sensitive to PARP inhibitor treatment [19].
Another recent analysis of human melanoma found that 21.4% of this tumor type has at
least one HRD gene mutation including BRCA1, ARID1A, ATM, ATR and FANCA [20]. To
see whether there is a possible connection between increasing rate of genomic errors and
DNA damage repair (DDR) defects regarding melanoma, we examined the CNA status
of more than 40 genes whose protein products act in this pathway module. Herein, we
found a common occurrence of heCNL events harboring genes important in the repair
machinery in visceral metastases of human melanomas compared to primary tumors. In
melanoma brain metastases, heterozygous copy number loss of HR and SSB repair, but no
mismatch repair-associated genes, was found, which from the most prevalent genes were
APTX, FEN1, GTF2H5, DNA2, MUS81 and TOP3A. Accordingly, the loss of DNA repair
function could be underestimated, at least in melanoma.

The recent science milestone on “The Human Proteome Project High-Stringency
Blueprint”, has opened up new avenues on the ability to align the gene-protein functional
relationship at a cellular level that previously was unprecedented [21]. We have observed
the amplification of a wide variety of immune genes in metastatic melanoma. However,
out of these 19 genes, five were not found at protein levels in validation sets (CD37, CD83,
CD160, CD172, CD244). Expression of immune cell genes by various cancers is a well-
known phenomenon, where the best-known example is the expression of PD-L1 [22,23].
The overrepresentation of PD-L1 in tumor cells is rarely due to gene amplification, rather
due to epigenetic mechanisms. [24]. There are several other examples for the ectopic
expression of immune cell genes in cancer, such as CD36, CD70, CD40, CD47, CD172
and IDO1 [25–29]. Most of these studies reported these ectopic expressions as part of the
immune escape of cancers. Except CD70, all these genes have been reported in human
melanoma as well. Furthermore, CD36 and CD83 expressions were detected in human
melanoma cells, but we were not able to confirm it in our studies [30,31]. Meanwhile, our
observation of gene amplification and expression of CD1A, CD48, CD84, CD93, CD209,
CD247, CD320, IDO2, BCR and IL17R in human melanoma is novel. It is also intriguing
to see that this immunogenic mimicry characterizes the lung metastases exclusively, sug-
gesting that this type of immunoselection may takes place exclusively in lung metastasis
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and not in liver or brain metastasis. Liver is an organ of the reticuloendothelial system
(RES) where the innate immune system can be functional to be involved in immunologic
selection for metastatic cells, while the brain is a unique immunological microenvironment
where the function of antitumoral immunity is not well described.

There is another aspect of this immunogenic genotype (at least in melanoma) which
has to be considered. Characterization of tumor microenvironment especially immune cells
is mostly based now on bioinformatic analysis of RNA-seq-expression data [26,32] but not
immunohistochemistry (IHC). Such an analysis is based on the presumption that immune
cell markers are solely expressed by immune cells and does not consider the possibility
of ectopic expression by cancer cells (in our case by melanoma cells). Such an analysis
may provide false data on the exact composition of immune cells infiltrate. At least in
human melanoma these analyses must be double checked by IHC analysis to exclude the
possibility of interpreting false data.

Contrary to melanocytes, it is a well-known fact that melanoma cells have the ability
to express c-MET and also to release HGF, thus activating c-MET in an autocrine fash-
ion [33]. Stimulation of the HGF/MET pathway strengthens numerous processes that are
essential for melanoma development and construction of visceral metastatic niche [34].
Autocrine activation of MET by HGF is reported to be an influencing factor in immediate
resistance to RAF inhibitors in BRAF positive melanomas as a bypass mechanism by re-
activating the mitogen-triggered protein kinase (MAPK) and phosphatidylinositol-3-OH
kinase (PI(3)K)-AKT signaling pathways [35]. Mutation of MET was considered to be a
melanoma progression marker [13]. A recent large-scale analysis of mutational networks
in cancer revealed 23 distinct such driver gene networks two of which were assigned to
malignant melanoma [36]. One of these mutational networks presented in melanoma was
the one containing MET besides CARD11, CBLB, PPP6C and RAC1. Here, we provide
supporting evidence for the frequent co-occurrence of copy number gain events affecting
the MET receptor and its ligand, HGF especially in brain metastases. In addition, array
CGH derived probe medians of these two genes showed strong significant correlation
in case of lung metastases in our melanoma cohort. The same co-amplification of MET
and HGF is reported to be a relatively frequent genetic aberration of various cancer types
including lung cancer or renal cancer serving as a useful target for anti-MET therapies [37].

Melanoma is a tumor that is able to disseminate their tumor cells relatively early
during cancer progression. It is now a well-known fact that melanoma cells have multiple
forms of movement during migration, including collective and individual forms [38]. The
most studied forms of individual migration are the elongated-mesenchymal and rounded-
amoeboid mode which between melanoma cells can easily shift in order to migrate tumor
cells effectively towards a new prestructured recipient microenvironment [39]. The hub
regulators of the bidirectional transition between these motility modes are Rac and Rho
GTPases, whose activity are modified by numerous other interactors also included in our
dataset as amplified genes, such as NEDD9, TWISTs, SNAIs, TEADs and ABL [7,40–42].
Beside the aforementioned motility associated genes, high-copy number gain of cell prolif-
eration regulators (CDK6, MAPK1, MAPK15) were also observed in both lung and liver
metastases, while in brains the amplification of TERT and deletion of CDKN2 genes were
represented only. According to Rákosy et al. clear homozygous deletion of the 9p21 locus
bearing CDKN2 is usually infrequent in primary cutaneous melanomas [43]. Therefore, its
relatively frequent presence in brain metastases may predict higher metastatic potential
to this distant site. These results suggest lung and liver metastases, regarding the path-
way membership of the coded proteins, were more similar to each other than to brain
metastases.

Approximately 50% of cutaneous melanoma patients are mutant in BRAF gene,
15–20% of patients are positive for NRAS damaging mutations both leading to a con-
stitutively enhanced MAPK pathway activity [44]. The efficacy of targeted therapies such
as BRAFi or MEK inhibitors are known to be weakened by an early evolving acquired
resistance in melanoma patients. The amplification of BRAF and NRAS genes supporting
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the reactivation of MAPK pathway is one of the main reasons behind this phenomenon.
A multicenter analysis focusing on acquired BRAFi resistance reported that 13% of the
examined patient cohort had increasing BRAF gene copy number during tumor progression
compared to the CNA status of the gene at the time of diagnosis [45]. The same effect
was reported by several other studies about metastatic melanoma patients who did not
respond to the targeted therapy due to BRAF amplification [46–48]. We detected frequent
and common aberrations shared by the primary tumors and melanoma metastases on
chromosome 7, where BRAF localizes, while CNGs on chromosome 1 bearing NRAS was a
metastases-only feature. Because of this, we analyzed the potential connection between
copy number alterations and mutant allele frequency (MAF) of BRAF and NRAS genes.
Comparing to the matched primary tumor, proportion of NRAS mutant clones was un-
changed or higher in metastatic samples but there was no detected copy number gain of
NRAS gene. Copy number of BRAF gene was significantly correlating with increasing
BRAF MAF values in visceral melanoma metastases compared to the matching primary tu-
mors, especially in case of lung metastases [14]. It is a long-known fact, both about primary
and metastatic melanomas, that chromosome 7 and chromosome 1 are frequently enriched
by whole chromosome or chromosome arm affecting CNAs, which could contribute to the
variations of mutant allele frequency in melanoma and therefore interfere with the clinical
efficacy of mutant–protein targeted therapy [45–48].

4. Materials and Methods
4.1. Primary Tumors and Visceral Metastases

Frozen autopsy melanoma tissues were obtained from the 2nd Department of Pathol-
ogy and the 1st Department of Pathology and Experimental Cancer Research at the Sem-
melweis University (Budapest, Hungary) within 48 h after death. FFPE (formalin-fixed
paraffin-archived) samples were derived from several locations including the Semmel-
weis University (2nd Department of Pathology, 1st Department of Pathology and Exper-
imental Cancer Research and Department of Dermatology, Venereology and Dermato-
oncology), the Szent György University Teaching Hospital, Department of Dermatology
(Székesfehérvár, Hungary), the Nyírő Gyula and Honvéd Hospitals (Budapest, Hungary),
the National Institute of Oncology (Budapest, Hungary) and the National Institute of
Clinical Neurosciences.

This study was approved by the Semmelweis University Regional and Institutional
Committee of Science and Research Ethics (document no.: 191-4/2014) and was carried
out according to all relevant regulations. Lesions were diagnosed and tumor content was
determined on the basis of formalin-fixed paraffin-embedded tissue sections stained with
hematoxylin–eosin. A total of 10 primary and 28 metastatic melanoma samples were used
for the microarray analysis (Table 1).

4.2. DNA Extraction, Quality Control, and Microarray Hybridization

Tumor to normal ratio of the analyzed primary tumors was 76% (±20), while it
was in the case of metastases 78.9% (±18). Genomic DNA was isolated using QIAamp
DNA FFPE Tissue and QIAamp DNA Mini Kits (BioMarker Kft., Gödöllő, Budapest,
Hungary) according to the manufacturer’s protocol. Quantity and quality of DNA were
both established by NanoDrop ND-1000 UV–visible spectrophotometer (Thermo Fisher
Scientific, Inc., Waltham MA, USA) and Qubit dsDNA HS Assay on a Qubit 1.0 fluorometer
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). DNA samples with 260/280 ratio more
than 1.8 were used for further analysis. Fragment analysis of the previously isolated DNA
was carried out applying 1% agarose gel electrophoresis as well as BioAnalyzer 2100 using
High Sensitivity DNA Kit (Agilent Technologies, Inc., Santa Clara, CA, USA). Samples
with appropriate quality were considered for labeling and hybridization to CytoScan
HD or OncoScan FFPE microarrays (Affymetrix Inc., Santa Clara, CA, USA). Labeling,
hybridization, and imaging setup were performed by UD GenoMed Medical Genomic
Technologies Ltd. (Clinical Genomic Center, University of Debrecen, Debrecen, Hungary)
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according to the recent laboratory protocol using 600 ng of sample DNA. The data discussed
in this publication have been deposited in NCBI’s Gene Expression Omnibus [49] and are
accessible through GEO Series accession number GSE185165 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE185165, accessed on 30 September 2021).

4.3. aCGH Experiments and Analysis

Molecular inversion probes (MIP)-based arrays were used to identify genome-wide
CNV in DNA extracted from FFPE tumor samples and its matched distant metastasis
pairs. DNA provided from the manufacturer was used as controls in each array batch.
Quality scores were calculated for each sample, and specimens with poor data quality were
excluded from further analysis. CNVs were then segmented using the SNP-FASST2 (Fast
Adaptive States Segmentation Technique) algorithm in ChAS (Affymetrix, Inc., Santa Clara,
CA, USA). DNA samples with 120–200 bp fragment length were hybridized onto OncoScan
FFPE arrays (N = 21), while less fragmented DNA samples, mainly from snap-frozen tissues
were hybridized onto CytoScan HD arrays (N = 18). Visualization and statistical analysis
to determine copy number alterations (CNAs) and LOH were performed using both Nexus
Copy Number Discovery 8.0 (BioDiscovery, Inc., El Segundo, CA, USA) and ChAS 2.1.0.16
(r6634) (Affymetrix, Inc., Santa Clara, CA, USA) software working with the processed
CHP files. We determined a significance threshold of 0.05, differential threshold of 25%
and specified 1000 kbp as the maximum spacing between adjacent probes. To eliminate
small copy number alterations, the minimum number of probes per segment was set at
25. To detect gains and losses, the following log2 ratio thresholds were set: ± 0.3 for gains
and losses, 0.7 for high CN gains and −1.0 for homozygous deletions. In case of allelic
events, LOH calls smaller than 2 Kbp and not overlapped by a minimum of 25 probes
were removed from further analysis. To avoid sex bias, all probes on chromosomes X
and Y were excluded. Altered regions of 100% overlap with segmental duplications were
also excluded.

4.4. Driver Mutation Analysis and Defining Mutant Allele Frequency

Driver mutation status of cutaneous melanoma samples were determined during the
routine diagnostic by both Sanger sequencing and NGS (pyrosequencing) as previously
described (Doma et al. 2019). Pyrograms were then analyzed with the PyroMarkQ24
software (Qiagen, Hilden, Germany) to determine the proportion of mutant versus wild
type allele. Determination of the allele ratio was based on the relative peak heights of the
corresponding nucleotides. In all cases the obtained PyroMark MAF values were corrected
for the tumor/normal cell ratio by multiplying PyroMark% by 100/x% tumor DNA [14].

4.5. Gene Expression Analyses of the IGM Related Genes

All the experiments were performed within the “Human Melanoma Proteome Atlas”
project as described previously [16,17].

5. Conclusions

We conducted a comparative array genomic hybridization analysis of CNV patterns
of primary melanomas and their matched visceral metastases, especially focusing on
brain, liver and lung disseminations. We confirmed some well-known biomarkers already
reported in melanoma progression, such as organ-specific alterations of historical metastasis
genes and HGF-MET autocrine reactivation. We observed that in lung metastases the
mutant allele frequency of BRAF is increasing parallel with BRAF copy numbers, which
may predict acquired therapy resistance to targeted therapies at this site.

We also identified some novel biomarkers important in immune cell escape mech-
anisms detected in mainly lung metastases, and successfully validated the findings on
proteotranscriptomic levels, suggesting that the lung may represent a unique site for the
metastatic dissemination of human melanoma. Besides this, we also observed an enrich-

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185165
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185165
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ment of DDR affecting aberrations specific to brain metastases, which may attract the
attention back to DDR targeting in cases of melanoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13235984/s1. Figure S1: Shared and specific chromosomal regions distorted by
high-copy number gains (CN ≥ 4) and homozygous losses, Table S1. Clinical–pathological data
of cutaneous melanoma tissue samples used in microarray analysis, Table S2. Proportion of CNV
types per genome in primary and distant metastatic melanomas, Table S3. (A) Chromosomal regions
and captured genes bearing homozygous loss and amplification that are specific for given visceral
metastatic sites. (B) Chromosomal regions and captured genes harbored by homozygous loss and
amplification that are specific for given visceral metastatic sites in a driver oncogene status specific
manner, Table S4. Proportion of CNV types per genome in dataset regarding oncogene status.
(A) When metastases were pooled based on driver oncogene mutation status regardless their visceral
metastatic sites. (B) When metastases were categorized into groups based the metastatic site and
driver oncogene mutation status, Table S5. Proportion of melanoma samples (primary and melanoma
metastases) with HGF/MET/HGF+MET copy number gain in our melanoma cohort, Table S6.
Representation of immunogenic mimicry related genes on transcriptomic and proteomic level.
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