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Dear Editor,

Tuberculosis (TB) is a significant cause of morbidity and mortal-
ity in developing countries, with a global burden of ~10.0 mil-
lion cases in 2019. China accounts for 8.4% of TB cases globally,
ranking third after India and Indonesia [1]. Abdominal TB is a
common extrapulmonary manifestation, often presenting as lym-
phadenopathy. Accurate differentiation between abdominal tu-
berculosis lymphadenopathy (ATBL) and lymphoma holds signif-
icance for treatment decisions and prognosis. Numerous case re-
ports highlight the challenge of misdiagnosing TB as lymphoma
due to the overlapping imaging characteristics of these diseases,
presenting a hurdle for conventional computed tomography (CT)
methods [2-4]. Radiomics, an automated extraction of imaging
features, offers a promising solution. While prior radiomics stud-
ies focused on lymphoma and lymph node (LN) metastasis, the ap-
plication of radiomics to differentiate ATBL and lymphoma in ab-
dominal sites has not been explored [5, 6]. Here, we retrospectively
included 107 patients with confirmed ATBL and 194 patients with
lymphoma affecting the abdominal LNs. We proceed to develop
and validate a radiomics-based model, using contrast-enhanced
CT (CECT) images, to accurately differentiate between abdominal
lymphadenopathy associated with TB and lymphoma.

The diagnosis criteria for ATBL included histopathologi-
cally confirmed caseating granulomas and bacteriological iden-
tification of mycobacterium tuberculosis [7]. Lymphoma was
histopathologically confirmed by means of biopsy of enlarged LNs.
The criteria were as follows: (i) other neoplastic diseases, oppor-
tunistic infections, liver cirrhosis, or hepatitis; (ii) LNs with calci-
fication; (iii) LNs minimum diameter not >1.0 cm; and (iv) poor
image quality. Radiological CT features were analysed by two ra-
diologists, including LN distribution, diameter, and enhancement
patterns. The LN distribution included areas such as the hep-
atoduodenal ligament, the hepatogastric ligament, the gastros-
plenic ligament, the anterior pararenal space, the upper and lower
para-aortic regions, the mesentery, and the greater omentum [8].
Blinded to clinical data, two radiologists performed 3D segmen-
tation of the volumes of interest (VOIs) using 3D Slicer software

(Fig. 1). All images were resampled toa 1 x 1 x 1 mm voxel size to
partially counter the heterogeneous reconstruction settings. The
voxel values were aggregated into bins 25 Hounsfield Unit (HU)
wide to reduce the interference of image noise and normalize in-
tensities. The logistic regression (LR) and the support vector ma-
chine (SVM) were applied for selecting predictive radiomics signa-
ture. Clinical (selected clinical and radiological features), radiomic
(selected radiomic features), and combined (selected clinical, ra-
diological, and radiomic features) predictive models were devel-
oped. All statistical analyses, feature selection, and modelling
were performed in R (version 4.0.3, http://www.r-project.org). A
two-tailed P value < 0.05 was considered significant.

All subjects were randomly divided into a training set (n = 209)
and a validation set (n = 92) (supplementary Table 1, see on-
line supplementary material). A total of 1130 radiomics fea-
tures were initially extracted, categorized into shape-based fea-
tures, first-order statistics, texture features [e.g. gray-level cooc-
currence matrix (GLCM), gray-level dependence matrix (GLDM),
gray-level run-length matrix (GLRLM), gray-level size zone matrix
(GLSZM), neighborhood gray-tone difference matrix (NGTDM)],
and transformed features. After the removal of 222 features due
to poor reproducibility, 908 features proceeded to multistep di-
mension reduction. At the end of the process, the 8 most impor-
tant and independent features were selected, including 1 shape
feature (major axis length), 3 first-order features (kurtosis, skew-
ness, 90 percentile), and 4 texture features (dependence non-
uniformity normalized, small area emphasis, run entropy, Imc2)
(supplementary Table 2, see online supplementary material). The
Radscores showed significant differences between ATBL and lym-
phoma in both training (0.0752 + 0.8898 vs —1.0891 + 0.7184,
P < 0.001) and validation (0.1754 £ 0.7628 vs —1.1495 + 0.5783,
P < 0.001) sets.

The radiomic signature, evaluated by LR analyses, demon-
strated favorable discriminatory ability with areas under curves
(AUCs) of 0.91 and 0.86 in the training and validation sets, re-
spectively. Accuracy, sensitivity, and specificity were notable at
88%, 76%, and 94% in the training set and 83%, 72%, and 88%
in the validation set. The performance of the SVM algorithm was
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Figure 1. Radiomics workflow. (A) Venous-phase CECT image in a 15-year-old male with ATBL. (D) Venous-phase CECT image in a 55-year-old woman
with lymphoma. (B, E) Axial venous-phase CECT image marked with a VOLI. (G, F) 3D model of VOI. (G) Nomogram for differentiation between ATBL and
lymphoma was established using the training cohort, with Radscore, sex, age, LN diameter, and LN enhancement pattern. (H) Calibration curves of the
radiomics nomogram in the training. (I) Decision curve analysis of the models. The y-axis indicates net benefit to patients. Across the threshold
probability, the application of a nomogram to differentiate lymphoma from ATBL provides more benefit than clinical and radiomics alone.

similar to that of the LR analysis, with an AUC of 0.91 in the train-
ing set and 0.87 in the validation set. Univariable analysis identi-
fied age, sex, LN diameter, and enhancement patterns as signifi-
cant between ATBL and lymphoma (P < 0.05). The clinical model
with these characteristics performed equally well compared to
the radiomic model in distinguishing ATBL from lymphoma in the
training and validation cohorts (supplementary Table 3, see online
supplementary material).

Notably, the AUCs for the combined model were 0.96 in the
training set and 0.92 in the validation set, with sensitivity, speci-
ficity, and accuracy at 85%, 95%, and 91% in the training set,
and 76%, 86%, and 83% in the validation set. In both sets, AUC
values for the combined model significantly surpassed those of
the radiomic and clinical model (P < 0.05). The combined model
was developed and presented as the nomogram, and the cali-
bration curve of the nomogram demonstrated great agreement
in the training cohort. Decision curve analysis indicated the
nomogram’s superior net benefit across threshold probabilities in
distinguishing ATBL from lymphoma compared to other methods
(Fig. 1).

This study underscores the effectiveness of machine learning-
assisted radiomic-based quantitative CECT analysis in accurately
distinguishing between ATBL and lymphoma. Run entropy mea-
sures the uncertainty/randomness in the distribution of run
lengths and gray levels. Dependence non-uniformity normal-
ized measures the similarity of dependence throughout the im-
age. Our study showed higher run entropy in ATBL patients and
higher dependence non-uniformity normalized in lymphoma pa-
tients, suggesting greater heterogeneity in texture patterns and
increased homogeneity among dependencies in ATBL, possibly
linked to the complex pathophysiological process of TB. The TB
lymphadenopathy’s different pathological stages [9], character-

ized by varying enhancement patterns, provide additional insights
into disease progression.

Another feature that has to be mentioned is shape. The feature
of major axis length yields the largest axis length of the region
of interest (ROI)-enclosing ellipsoid and is calculated using the
largest principal component. In the present study, ATBL patients
had lower major axis lengths than lymphoma patients. This may
be because TB is a pathologically self-limiting growth disease. This
aligns with the self-limiting growth nature of TB, where enlarged
LN diameters are consistently <4 cm (average 1.5 cm), contrasting
with the rapid growth and larger nodes observed in lymphoma [9].

A radiomic model combined with machine learning is non-
invasive and can be performed on images obtained in clinical
work. This study observed fairly consistent performance using
two different classic machine learning approaches (LR and the
SVM algorithm), which increases confidence in the results ob-
tained. A nomogram integrating radiomic signature, LN diame-
ter, LN enhancement pattern, sex, and age yields excellent dif-
ferentiation ability, with an AUC of 0.92 in the validation cohort.
The combined model surpasses the individual radiomic and clin-
ical models in differential diagnosis, serving as a valuable non-
invasive tool for accurate differentiation between ATBL and lym-
phoma when clinical information and CT images are available.
Finally, due to the retrospective single-center nature of our study
design, these findings require external validation to assess their
reproducibility and clinical applicability.

In conclusion, we first explored the performance of CECT ra-
diomic features in differentiating TB from lymphoma involving
abdominal LNs. The combined model, incorporating radiomic fea-
tures and clinical characteristics, emerges as a powerful tool for
precise and convenient differential diagnosis, offering valuable in-
sights for precision medicine.
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