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Highlights 

 We model learning effects in macaque visual cortex using Dynamic Causal Modeling.

 Microcircuit-level changes explain the repetition-induced gamma increases.

 The best models include changes 1) within V1 and V4 and 2) in neuronal input gain.

 Gamma may reflect bottom-up signal precision.
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Abstract 

Under natural conditions, animals repeatedly encounter the same visual scenes, objects or patterns 

repeatedly. These repetitions constitute statistical regularities, which the brain captures in an internal model 

through learning. A signature of such learning in primate visual areas V1 and V4 is the gradual 

strengthening of gamma synchronization. We used a V1-V4 Dynamic Causal Model (DCM) to explain 

visually induced responses in early and late epochs from a sequence of several hundred grating 

presentations. The DCM reproduced the empirical increase in local and inter-areal gamma synchronization, 

revealing specific intrinsic connectivity effects that could explain the phenomenon. In a sensitivity analysis, 

the isolated modulation of several connection strengths induced increased gamma. Comparison of 

alternative models showed that empirical gamma increases are better explained by (1) repetition effects in 

both V1 and V4 intrinsic connectivity (alone or together with extrinsic) than in extrinsic connectivity alone, 

and (2) repetition effects on V1 and V4 population input rather than output gain. The best input gain model 

included effects in V1 granular and superficial excitatory populations and in V4 granular and deep 

excitatory populations. Our findings are consistent with gamma reflecting bottom-up signal precision, 

which increases with repetition and, therefore, with predictability and learning. 

Keywords 

stimulus repetition, learning, plasticity, gamma, primate visual cortex, Dynamic Causal Modeling (DCM), 

precision of prediction error 
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1. Introduction

During natural viewing, animals repeatedly encounter the same scenes, shapes, colors, and patterns. These 

repetitions constitute statistical regularities in space and time that can be learned by the brain. Learning 

natural image statistics can serve to make better predictions about the environment (Bastos et al., 2012; 

Friston and Kiebel, 2009; Rao and Ballard, 1999; Srinivasan et al., 1982) and to encode information about 

it more efficiently (Ay et al., 2008; Gershman and Niv, 2010; Schwartenbeck et al., 2019; Smith et al., 

2020; Tervo et al., 2016; van Leeuwen, 1990). The learning process begins when the animal is presented 

with an unforeseen stimulus once or a few times (de Gardelle et al., 2013; Desimone, 1996; Friston, 2005). 

Numerous studies using oddball or roving-standard paradigms (e.g., studying mismatch negativity) have 

reported transient effects on neuronal responses to the first presentation of a new stimulus (Garrido et al., 

2009; Peter et al., 2021; Stauch et al., 2021; Stefanics et al., 2014), which can result from arousal (Stauch 

et al., 2021) or from rapid changes in synaptic efficacy (e.g., stimulus-specific adaptation). When the 

efficacy (or precision) of bottom-up prediction-error signals increases relative to those of top-down 

predictions, the animal can respond more readily to a novel stimulus in the environment. 

On a longer timescale, if the stimulus keeps appearing repeatedly, the relative probability of that stimulus 

and, thereby, the statistics of the environment change. For an animal to behave appropriately within the 

new environment, sensory learning must take place. This learning requires long-term plastic changes that 

imprint the content of learned predictions on sensory cortical circuits. In the visual cortex, changes in 

neuronal responses upon the repetition of visual stimuli have been found at the earliest stages of cortical 

visual processing in primates, in area V1. Responses in V1 have been shown to be modulated with stimulus 

repetition in two distinct ways: firing rates decrease (Peter et al., 2021), while simultaneously, gamma 

synchronization increases (Brunet et al., 2014; Peter et al., 2021) often up to two- or three-fold (Fig. 1B). 

These repetition-induced changes were found using both gratings and naturalistic stimuli (Peter et al., 

2021), and the gamma-power increase has also been replicated in a human MEG study using gratings 

(Stauch et al., 2021). The repetition-related change of gamma is specific for the repeated stimulus and 

persists over some time, as one would expect for a learning process. Finally, the repetition-related gamma-

power increase has also been reported for area V4, along with increased gamma coherence between V1 and 

V4 (Brunet et al., 2014). Superficially, there seems to be a disparity between the repetition-related changes 

of gamma power and firing rates. However, it has been proposed that increased synchronization in V1 can 

compensate for reduced firing rates by rendering spikes more efficient (Gotts, 2003; Gotts et al., 2012). 

This interpretation is consistent with the increased behavioral performance in tasks with repeated stimuli 

and with the notion that learning image statistics is essential within the predictive coding framework. 

Here, we focus on the mechanisms underlying the changes in neuronal synchronization induced by many 

stimulus repetitions. We aim to illuminate the specific microcircuit-level effects in intrinsic (within-area) 

and extrinsic (between-area) connectivity that can generate the empirical repetition-induced changes and 

might be the substrate for learning new sensory input statistics. To this end, we modeled empirical V1 and 

V4 power spectra and V1-V4 coherence spectra using Dynamic Causal Modelling (DCM) for cross-spectral 

densities (CSD) (Friston et al., 2012). We used the dataset for which the repetition-related gamma increase 

was originally reported (Brunet et al., 2014). We simulate the repetition-induced changes of V1 and V4 

responses by fitting the DCM to the electrophysiological data. We use the ensuing model to identify the 

loci of synaptic modulation by stimulus repetition within V1, V4, or the extrinsic connectivity between 

them. Then, we proceed to further characterize the contribution of distinct intrinsic and extrinsic 

connections to repetition-related changes in the empirical neuronal dynamics and to identify the most 

concise set of repetition effects that can explain the experimental data. Finally, we discuss our findings in 
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the context of the predictive coding framework, where an increase in gamma synchronization can reflect a 

learning-induced increase in the precision of bottom-up prediction errors. 

2. Methods 

2.1. Experimental details 

The animal ethics committee of Radboud University (Nijmegen, the Netherlands) approved all animal 

experimental procedures. Data from two adult male Rhesus monkeys (Macaca mulatta) were used in this 

study. The monkeys were trained to perform a covert selective attention task (Fig. 1A bottom). The 

attention contrast has not been used in this paper; but task details are given here for completeness. The 

monkeys had to touch a lever and fixate on a spot that appeared in the center of a screen. At a variable time, 

one blue and one yellow drifting circular grating appeared at equal eccentricities from the fixation spot. 

The gratings had a diameter of 3°, the luminance within each grating was defined by a sine-wave function 

with a spatial frequency of ≈1 cycle/degree and a drift velocity of ≈1 degree/s and the two gratings were 

physically isoluminant. Also, at a variable time, the fixation spot changed color to either blue or yellow, 

cueing the grating with the same color to be attended. At a variable time after the cue appeared, the curvature 

of one of the gratings changed transiently, with an equal probability that the target or the distracter changed. 

The monkey had to respond to changes in the target by releasing a lever, after which the trial ended, and 

the monkey obtained a fluid reward. 

Electrocorticography (ECoG) grids, with 252 electrode contacts, were implanted in the left hemispheres 

of the two monkeys. They were used to collect Local Field Potential (LFP) data while the monkeys were 

performing the attentional task. The signal was low-pass filtered at 250 Hz. In order to remove the recording 

reference, the signals between neighboring electrodes were subtracted in the time domain. The ensuing 

bipolar derivatives are hereafter referred to as ‘(recording) sites”. For more details about the recordings and 

the assignment of sites to cortical areas see (Bastos et al., 2015b; Brunet et al., 2014). 

2.2. Data preprocessing 

Data was segmented into non-overlapping epochs of 500 ms, starting either 500 ms after the cue change, 

or 300 ms after the distractor-change onset. For each site separately, epochs were demeaned, the standard 

deviation (SD) across all values of all epochs was calculated and used to normalize by dividing all values 

by this SD.  

In order to characterize the increase in gamma power and coherence with stimulus repetition, we 

enriched our data features by selecting two groups of epochs from each recording session as follows: (1) We 

discarded the first 10 epochs from each session, because previous studies (Peter et al., 2021; Stauch et al., 

2021) have shown that there can be a rapid initial drop in gamma power, and this was not the phenomenon 

we wished to characterize. These 10 epochs corresponded to 2-6 trials per session (38 trials in total) in 

monkey K, and 3-5 trials per session (42 trials in total) in monkey P. (2) From the remaining epochs of a 

session, we selected the first 100 epochs, referred to as the ‘early’ condition, and the last 100 epochs, 

referred to as the ‘late’ condition. (3) We separately pooled the early epochs and the late epochs over 

sessions (monkey P: 11 sessions, 1100 epochs per condition; monkey K: 9 sessions, 900 trials per 

condition). If a recording session did not contain at least 210 epochs, it was excluded from the analysis (1 

session in monkey P). 

We pre-whitened the data in order to remove the 1/𝑓 component and accentuate the gamma component 

in the power and coherence spectra, as this was the data feature of interest. Before pre-whitening, we 
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downsampled the LFP to 250 Hz. Then we used the ARfit toolbox (Neumaier and Schneider, 2001; 

Schneider and Neumaier, 2001) to calculate the single coefficient 𝑟 that parameterizes the first-order auto-

regressive (AR) model to fit the data. The coefficient was used to calculate the whitened signal samples as: 

𝑧𝑡+1
𝑤 = 𝑧𝑡+1 − 𝑟𝑧𝑡  

where 𝑧 and 𝑧𝑤 are the samples of the original and whitened data respectively and 𝑡 denotes time steps. 

After pre-whitening, we used the BSMART toolbox (Cui et al., 2008) to fit an 8-order AR model to the 

data and to estimate the CSD data features that were then fitted by the DCM. In our plots we show the 

power and coherence from the data-fitted AR model and those predicted by the DCM. Note that all 

displayed coherence spectra show the coherence in terms of its magnitude, as reported in Brunet et al. 

(2014) and as opposed to magnitude squared used in some other reports. 

2.3. V1-V4 site pairs 

To study the repetition-related changes on gamma power and coherence, we selected V1-V4 site pairs, 

which were most visually responsive and showed the strongest coherence. This selection used the pooled 

data from all trials to avoid selection bias. To quantify how responsive each site was, we calculated the 

stimulus-induced power change, i.e. the percent change relative to a pre-stimulus baseline (500-0 ms before 

stimulus onset), and summed those values over a frequency range of 52-74 Hz for monkey P and 68-82 Hz 

for monkey K (same frequency bands as used in Brunet et al. (2014)) to obtain their ‘visual gamma’. Then, 

for each monkey, we performed the following selection: (1) We used the visual gamma to select the 20 

most driven V1 sites and 5 most driven V4 sites. (2) We formed all possible combinations between them 

resulting in 100 V1-V4 pairs. (3) We measured—per V1-V4 pair—the V1-V4 gamma coherence within the 

same frequency range as for the gamma power and selected the 25 pairs with the strongest total gamma 

coherence. Thus, in total 50 site pairs were selected for modelling. 

2.4. Dynamic Causal Modelling 

We fitted the cross spectral density of the selected V1-V4 pairs with DCM for CSD. DCM for CSD is a 

well-established model for EEG/MEG and LFP responses, as it describes the mesoscopic scale of neuronal 

activity and operates on frequency domain data features, making use of both the absolute value and the 

argument of the complex cross-spectral density matrix (Friston et al., 2012). It can therefore be used to 

explain neuronal oscillations in terms of their relative amplitude and, crucially, phase, and to infer 

repetition-induced changes in intrinsic and extrinsic connectivity parameters. 

Our DCM comprised two nodes, one for V1 activity and one for V4. Within each node, neuronal 

populations were modelled using neural masses (David and Friston, 2003; Friston et al., 2012; Jansen and 

Rit, 1995). The dynamics of each population are determined by two operations: the transformation of 

average presynaptic firing rates to an average postsynaptic depolarization—by convolution with an alpha 

function—and the transformation of the postsynaptic depolarization to the firing rate output of the 

population using a sigmoid function. The two nodes had the same four neuronal populations: an excitatory 

population in the input (granular) layer (g), two pyramidal populations in the superficial (s) and deep (d) 

layer and an inhibitory population (i) (Auksztulewicz and Friston, 2015; Bastos et al., 2015a; Bastos et al., 

2012). The model also described the intrinsic and extrinsic connectivity within and among populations, 

respectively. This model has been previously validated with regard to the anatomy of the early visual cortex 
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and the functional architectures implied by predictive coding schemes (Fig. 1C). The inhibitory connections 

that stem from excitatory populations can be read as being mediated indirectly by local inhibitory 

populations (that are not included explicitly in the model for simplicity). This ensures excitation-inhibition 

balance in the network, and that the microcircuit dynamical system has a fixed-point attractor around which 

it can be expanded (Bastos et al., 2015a; Moran et al., 2007). 

An observation model accounts for the measurement of the data by modeling the LFP as the sum of a 

neuronal component, which is the weighted sum of the depolarizations of all contributing populations, and 

channel-specific and non-specific noise that is inherent to the recording. The specific observation model 

used here included a parameter that accounted for pre-whitening of the data. In this study, only the 

superficial pyramidal population contributed to the LFP as described previously in Katsanevaki et al. 

(2023). 

Because of the stochastic nature of the dynamical model, we can only identify the model 𝑚 and 

parameters 𝜃 that are more likely to give rise to the empirical CSD data 𝑦, i.e., for which there is more 

evidence based on the data. The calculation of both the evidence 𝑝(𝑦|𝑚) and of the posterior distribution 

𝑝(𝜃|𝑦, 𝑚) requires a specification of the joint probability 𝑝(𝑦, 𝜃|𝑚), known as the generative model: 

𝑙𝑛 𝑝(𝑦, 𝜃|𝑚) = 𝑙𝑛 𝑝(𝑦|𝜃, 𝑚) + 𝑙𝑛 𝑝(𝜃|𝑚) 

𝑝(𝑦|𝜃, 𝑚) = 𝑁(𝛤(𝜃), 𝛴(𝜃)) 

𝑝(𝜃|𝑚) = 𝑁(𝜇, 𝜎) 

The first term on the right side of the first equation is the likelihood of the data given the model and the 

parameters, and the second term is the prior distribution over the parameters. The likelihood is defined as 

a multivariate normal distribution 𝑁 with mean 𝛤(𝜃) and covariance matrix 𝛴(𝜃).  𝛤 denotes the nonlinear 

model that generates the CSD data and is parameterized by 𝜃, i.e., the set of differential equations that 

comprise the neuronal and observation model. The mean and variance of the observation model act as 

hyperparameters. The prior mean and variance of all parameters 𝜃 (including the hyperparameters) are 

given in Table 1. 

To obtain an approximation 𝑞(𝜃) of the true posterior over parameters 𝑝(𝜃|𝑦, 𝑚) one can perform 

gradient ascent on the variational negative free energy 𝐹. 𝐹 is a logarithmic quantity that is equal to the log 

evidence of the data minus the gap (in the form of a Kullback-Leibler divergence) between the approximate 

and the true posterior parameter distribution (𝑞(𝜃) and 𝑝(𝜃|𝑦) respectively): 

𝐹(𝑞(𝜃)) = 𝑙𝑛 𝑝(𝑦|𝑚) − 𝐷𝐾𝐿[𝑞(𝜃)‖𝑝(𝜃|𝑦)] 

Conditioning the terms on the model has been omitted for simplicity. Since the evidence is fixed but 

unknown, maximizing 𝐹 minimizes the divergence term, i.e., improves the approximation to the posterior 

over parameters, and F better approximates the log model evidence. 𝐹 is maximized using the standard 

Variational Laplace (VL) scheme described in detail elsewhere (Friston et al., 2007; Zeidman et al., 2023). 

In brief, VL performs gradient ascent in alternating steps of optimizing the parameters to maximize 𝐹, while 

fixing the hyperparameter estimates, and then optimizing the hyperparameters to maximize 𝐹, while fixing 

the parameter estimates. 
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Because 𝐹 is a good approximation to the log model evidence, it can be used to score different models 

by how well they explain the data. This is easier to understand if the above definition of 𝐹is rearranged as: 

𝐹(𝑞(𝜃)) = 𝐸𝑞[𝑙𝑛 𝑝(𝑦|𝜃)] − 𝐷𝐾𝐿[𝑞(𝜃)‖𝑝(𝜃)] 

This expression shows that F is a trade-off between the model accuracy (expected log likelihood of the 

data) and the model complexity (the divergence of the posterior parameter estimates from their prior 

densities). 

As in our previous study (Katsanevaki et al., 2023), we used a mean and variance for the 

hyperparameters that reflect both the high precision (low variance) of the ECoG measurement—relative to 

EEG or MEG data—and the averaging implicit in computing the complex cross spectra. The data features 

on which the DCMs were inverted were a weighted mixture of (1) the V1-V4 complex CSD values, (2) the 

cross-covariance function and (3) the MVAR coefficients estimated from the data, weighted with relative 

precisions of 1, 1 and 1/8, respectively. We specified a window of 0-100 Hz as the frequencies of interest 

for inverting the DCM. We used MATLAB and the SPM12 toolbox for specifying and inverting the DCMs 

and subsequent analyses. The SPM12 functions containing all model parameters and specifications are 

mentioned in Table 1. 

2.5. Quantification of repetition effects 

Within the DCM we have defined, changes between the early epochs and the late epochs were modelled by 

a vector of repetition effects (𝛽) that modulate the strength (𝛾) of the 24 intrinsic and 4 extrinsic 

connections. The two forward and backward connections were modulated by a single 𝛽 value each, giving 

a total of 26 𝛽 values. 

Generally, to ensure that scale parameters (e.g., rate and time constants) have non-negative values, all 

parameters (except the electrode gains) have log-normal distributions and log-normal priors. This means 

that connection strengths in the early epochs were specified as 𝑒𝛾, where 𝛾 is the parameter that is being 

estimated when a DCM is inverted. The repetition effects are added to the early-epoch connection strengths, 

resulting in connection strengths 𝑒𝛾+𝛽 in the late epochs. The relative ratio of ‘late’ to ‘early’ connection 

strength is: 

𝑒𝛾+𝛽 𝑒𝛾⁄ = 𝑒𝛾+𝛽−𝛾 = 𝑒𝛽  

Thus, positive and negative 𝛽 values mean that parameters increase or decrease with repetition, 

respectively. 

To combine results over the 50 fitted V1-V4 pairs, we used Parametric Empirical Bayes (PEB) (Friston 

et al., 2016; Zeidman et al., 2019), considering each pair as a ‘unit’. PEB assumes that all units have the 

same neuronal architecture but differ in their specific parameter values, e.g., connection strengths or 

condition-specific changes. This means that one can build a hierarchical model with multiple levels, where 

the parameter values of each level are encoded by a Gaussian distribution whose mean and variance are 

generated by the level above. These constitute empirical priors for the DCM parameters, which effectively 

shrink the individual unit estimates around a group mean, in proportion to the confidence about the unit 

estimates. Crucially, PEB takes the posterior covariance (and not just the posterior means) of parameters to 
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the group level, which means that units with more precise estimates will contribute more to the group mean 

(Friston et al., 2016; Zeidman et al., 2019). 

In our case, the parameters of interest are the repetition effects 𝛽, for which PEB is defined as: 

𝑦𝑘 =  𝛤𝑘
(1)

(𝛽𝑘
(1)

) + 𝑋0𝑏𝑘 + 𝜀𝑘
(1)

 

𝛽(1) =  𝑋𝛽(2) + 𝜀(2) 

𝛽(2) =  𝜂 + 𝜀(3) 

The superscripts in parentheses indicate the PEB level. The first row represents the first hierarchical level 

of PEB, and it simply describes how the data 𝑦𝑘 of each unit 𝑘 is generated: 𝛤𝑘
(1)

is the nonlinear model, i.e. 

DCM, of that unit with parameters 𝛽𝑘
(1)

 that generates the data, parameters b𝑘 and design matrix 𝑋0 specify 

a general linear model (GLM) that models uninteresting effects, such as the signal mean, and 𝜀𝑘
(1)

is the 

unit-specific zero-mean additive random or sample effect (c.f., observation or sample noise). The second 

and third row describe the level above: the parameters 𝛽(1) that specify the first-level models are generated 

by a GLM with group-level parameters 𝛽(2), design matrix 𝑋 and between-unit variability 𝜀(2). The second-

level parameters are sampled from a distribution with mean 𝜂 and variability 𝜀(3), as shown in the last 

equation. In effect, Parametric Empirical Bayes is the (Bayesian) generalization of general linear models 

of random effects. 

2.6. Sensitivity analysis 

To assess the contribution of specific model parameters (e.g., connectivity) to measurable responses (i.e., 

gamma activity), we perturbed the parameter estimates—from the full DCM—by adding a value ranging 

from -0.1 to +0.1 in steps of 0.025 to the posterior expectation of individual parameters expressing repetition 

effects. We then calculated the new cross-spectral densities of the modified DCM and plotted them for each 

perturbation. We show the sensitivity to the perturbation of all parameters that showed significant repetition 

effects following PEB. We did this analysis for two representative DCMs, one from each monkey, which 

were closest to the PEB estimates for the repetition effects. For this, we calculated for each of the 50 DCMs 

the total absolute difference between all repetition effects in the DCM and in the PEB and selected for the 

sensitivity analysis, per monkey, the DCM with the lowest total difference (these DCMs from the two 

monkeys also happened to be the two DCMs with the overall lowest total difference when considering both 

animals together). 

This sensitivity analysis allows one to see how measurable DCM features, i.e., cross spectral densities, 

are caused by underlying changes in key model parameters, i.e., connectivity. The trends shown in Fig. 3 

and Fig. S3 are not necessarily the same in the rest of the DCMs. Also, they would not necessarily be the 

same if all or some other repetition-related (or any other) parameters were perturbed simultaneously. This 

analysis only aims to quantify how individual parameters shape the power- and cross-spectra. 

2.7. Bayesian Model Reduction (BMR) 

BMR allows to infer the posterior parameter distributions and evidence for a DCM from the posteriors and 

evidence of a previously inverted DCM, provided the two models (the new DCM and the inverted DCM) 

Katsanevaki et al. Repetition effects on V1 and V4 microcircuits explain gamma increase Page 8 of 40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627165doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627165
http://creativecommons.org/licenses/by-nc-nd/4.0/


differ only in their priors. For example, a reduced DCM with fewer parameters (where some parameters 

have zero mean and variance) or more restrictive priors (where some parameters have lower variance) can 

be easily computed from a more expressive model (in our case, this is the full model). With this in mind, 

BMR can be used to estimate the contribution of specific parameters to model evidence. 

In our case, any DCM in which only a subset of intrinsic or extrinsic connections can be modulated by 

stimulus repetition is a reduced model relative to the full model. For each hypothesis we wanted to test, we 

removed relevant repetition effect combinations from the model, e.g., extrinsic and intrinsic V4 repetition 

effects. Then, we compared the evidence of all ensuing reduced models, the full model, and a null model 

without any repetition effects. This enabled us to assess the relative evidence for different sets of parameters 

in explaining repetition-induced changes in the empirical spectra. 

2.8. Comparing DCMs with Bayes factors 

Bayes factors can be used to assess the relative evidence for alternative DCMs in an intuitive manner. The 

Bayes factor in favor of one model against another is the ratio of their model evidences, i.e., the probability 

to observe data 𝑦 given each model. Since 𝐹 is the approximation of evidence, the logarithmic Bayes factor 

in favor of model 𝑖 against model 𝑗 is simply the 𝐹 difference between two models: 

𝐵𝑖𝑗 =
𝑝(𝑦|𝑚𝑖)

𝑝(𝑦|𝑚𝑗)
= 𝑒𝐹𝑖−𝐹𝑗 

One can calculate the posterior probability of each model using 𝐹 (or 𝐵). Assuming all models have 

equal prior probabilities, the posterior probability of model 𝑖 is: 

𝑝(𝑚𝑖|𝑦) =
1

1 + 𝐵𝑗𝑖 + 𝐵𝑘𝑖 + ⋯
=

1

1 + 𝑒𝐹𝑗−𝐹𝑖 + 𝑒𝐹𝑘−𝐹𝑖 + ⋯
 

where 𝑖, 𝑗, 𝑘, … are all models that can explain the data 𝑦. Under a uniform prior over models, the Bayes 

factor is also equivalent to the ratio of posterior model probabilities. 𝐵𝑖𝑗 = 20 means that model 𝑖 is 20 

times more probable than model 𝑗 given the data, or in other words, a 95% belief that model 𝑖 is true. This 

corresponds to free energy difference 𝐹𝑖 − 𝐹𝑗 = 𝑙𝑛𝐵𝑖𝑗 ≈ 3. For each comparison, we report 𝑙𝑛𝐵−1, the 

logarithmic Bayes factor in favor of each model against the best model (that has the maximum posterior 

probability), which is more negative for less probable models. We use the Bayes factor interpretations of 

(Kass and Raftery, 1995) but provide a slightly modified version to show 𝑙𝑛𝐵−1for ease of reference 

(Table 2). 

2.9. Bayesian Model Averaging (BMA) 

To estimate the magnitude of interesting parameters, i.e., repetition-induced changes, when the evidence of 

any single model is not definitive, it can be useful to average the posterior estimates of the parameters over 

multiple models. This can be done with BMA, where each posterior parameter estimate is weighted by the 

posterior probability (marginal likelihood) of the respective model (Madigan and Raftery, 1994): 
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𝑝(𝜃|𝑦)𝐵𝑀𝐴 = ∑ 𝑝(𝜃|𝑚𝑖 , 𝑦)

𝑁

𝑖=1

𝑝(𝑚𝑖|𝑦) 

It is considered that it is most meaningful to calculate the BMA over models whose posterior probability 

relative to the best model (with the maximum posterior probability, 𝑚𝑀𝑃) is within a predefined Occam’s 

window (Madigan and Raftery, 1994; Penny et al., 2010). Here, we have set the limit for Occam’s window 

to 𝑙𝑛𝐵−1 ≥ −5 so that we consider all models against which the evidence is less than ‘very strong’

compared to the 𝑚𝑀𝑃 model. The results were virtually the same when a stricter window of 𝑙𝑛𝐵−1 ≥ −3

was used. 

3. Results

We modelled electrophysiological data from two monkeys presented with repeating stimuli (Fig. 1A, 

section 2.1). It has been previously shown that the repetition of stimuli within a recording session results in 

an increase of V1 and V4 LFP gamma power and an increase of V1-V4 LFP gamma coherence (Fig. 1B) 

(Brunet et al., 2014). In the current study, we characterize the mechanisms underlying the repetition-

induced changes in the V1 and V4 spectra by fitting a V1-V4 DCM (Fig. 1C) to the empirical CSD. After 

discarding the first 10 epochs of each session (see section 2.2), the CSD was averaged over the following 

100 epochs, referred to as the ‘early’ condition, and over the last 100 epochs, referred to as the ‘late’ 

condition. The difference between the average CSD from the two conditions exhibited the previously 

reported repetition-increase in local and inter-areal gamma synchronization. 

3.1. DCM reproduces the empirical repetition-induced changes 

For each of the two monkeys, 25 pairs of simultaneously recorded V1 and V4 sites were selected, resulting 

in a total of 50 V1-V4 pairs (see section 2.3). For each pair, the V1-V4 CSD matrix was fitted with a DCM 

that consisted of a V1 and a V4 node (see section 2.4 and Table 1 for all prior parameter distributions and 

Fig. S1 for 5 randomly selected example pairs per animal). Power and coherence were averaged over the 

25 V1-V4 pairs and 25 V1-V4 DCM-predicted spectra from each monkey separately to show how closely 

the predicted spectra fit the observed empirical spectra and that they replicate the effects of stimulus 

repetition (Fig. 2A, S2). The full spectra were not averaged over the two monkeys, because they exhibited 

different gamma peak frequencies. 

DCM allows one to quantify directed functional connectivity between V1 and V4 in the form of 

Geweke’s Granger Causality (GC) (Geweke, 1982). GC measures the reduction of unexplained variance in 

the AR model of the receiver, when it is computed using information from the sender and the receiver, as 

opposed to when it is computed from using information from the receiver alone (Bressler and Seth, 2011; 

Chicharro, 2011). The V1-to-V4 GC estimated directly from the empirical data exhibited a clear peak in 

the gamma-frequency range, both for the early and the late epochs. The comparison between the conditions 

revealed that stimulus repetition resulted in GC increases, which also peaked in the gamma-frequency 

range. The GC derived from the DCM closely reproduced all these features. The V4-to-V1 gamma GC was 

much weaker than the V1-to-V4 gamma GC (Bastos et al., 2015b; Michalareas et al., 2016; van Kerkoerle 

et al., 2014) but showed qualitatively similar changes from early to late epochs, which were also well 

explained by DCM. 
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By fitting 50 DCMs, we obtained 50 sets of posteriors that can generate the empirically observed 

repetition effects of gamma power and coherence. We then used PEB to fit a hierarchical model that could 

explain the distribution over the posterior parameters of the multiple DCMs (see section 2.5). In this way, 

we obtained a group-level estimate of the mean and variance of repetition effects on the strength of each 

intrinsic and extrinsic connection in the V1-V4 microcircuit (Fig. 2B, 2C). We found significant repetition 

effects in V1 (𝛽𝑖⊸𝑠 = 0.38 ± 0.06; 𝛽𝑠⊸𝑠 = −0.1 ± 0.04; 𝛽𝑔⊸𝑔 = 0.13 ± 0.03; 𝛽𝑖⊸𝑔 = 0.27 ±

0.07; 𝛽𝑠→𝑖 = −0.29 ± 0.09), in V4 (𝛽𝑖⊸𝑖 = 0.13 ± 0.04; 𝛽𝑔⊸𝑔 = −0.13 ± 0.05; 𝛽𝑠⊸𝑔 = −0.14 ± 0.04; 

𝛽𝑖⊸𝑔 = −0.24 ± 0.14; 𝛽𝑔→𝑠 = 0.07 ± 0.04; 𝛽𝑑⊸𝑑 = −0.24 ± 0.06), and in extrinsic connectivity 

(𝛽𝑓𝑤 = 0.14 ± 0.04). These values correspond to the logarithmic ratio (and its variance) of the late-epochs 

connection strength over the early-epochs connection strength, which means that positive and negative 

values correspond to increases and decreases with stimulus repetition, respectively. 

In order to better understand how the individual repetition-related changes revealed in the PEB model 

can impact the microcircuit dynamics and especially gamma power and coherence, we performed a 

sensitivity analysis (see section 2.6). The sensitivity of V1 and V4 power and V1-V4 coherence is shown 

for two representative DCMs, one from monkey P (Fig. 3) and one from monkey K (Fig. S3). We observed 

the following trends: 

 Increasing s self-inhibition in V1 increased V1 gamma power and V1-V4 gamma coherence in 

monkey P, whereas it decreased V1 gamma power in monkey K.  

 Increasing s-to-i excitation in V1 decreased V1 gamma power and slightly decreased V1-V4 gamma 

coherence in monkey P, whereas it had no observable effect in monkey K. 

 Increasing i-to-s inhibition in V1 increased V1 gamma power in both monkeys, and in monkey P 

increased V1-V4 gamma coherence. 

 Increasing extrinsic excitation increased V1-V4 coherence in both monkeys. 

 Increasing i self-inhibition in V4 increased V4 gamma power and V1-V4 gamma coherence in both 

monkeys. 

 Increasing d self-inhibition in V4 did not have any observable effect on gamma power and might 

have slightly decreased V1-V4 gamma coherence. 

 Increasing g self-inhibition in V1 or V4 reduced local gamma power and V1-V4 gamma coherence 

in both monkeys. Increasing the same connection in V1 of monkey P additionally reduced V4 gamma 

power. 

 Increasing other inhibition to g (s-to-g in V4 and i-to-g in V1 and V4) increased local gamma power 

and V1-V4 gamma coherence in both monkeys. 

3.2. Extrinsic vs. intrinsic repetition effects 

Using the estimated PEB model as a full model, we used BMR (see section 2.7) to remove potentially 

redundant parameters in order to disclose the most likely concise subset of repetition effects in the 

microcircuit. BMR is an analytical method to calculate the free energy and posterior estimates for a reduced 

DCM directly from the free energy and posteriors of the full model, offering an efficient way to test multiple 

hypotheses about which subset of connection strength changes can best explain the empirical repetition-

induced changes.  

The first question we asked was whether the extrinsic, the intrinsic V1 and the intrinsic V4 parameter 

changes all contribute significantly to the repetition effects. To this end, we grouped connections as V1-

intrinsic, V4-intrinsic, or extrinsic. Then, we formed all combinations of ‘switching on’ or ‘off’ repetition 
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effects on all connection strengths within each of the three groups (23 = 8 combinations). Finally, we

estimated the relative evidence of all models that corresponded to these combinations (see section 2.8) to 

find the model with the highest posterior probability in light of the data 𝑦 (namely, the marginal likelihood 

of the model in question, under a uniform prior over all possible models) (Fig. 4A). For a given set of 

models that are being compared, the best model is referred to as 𝑚𝑀𝑃. For the comparison presented in this 

paragraph, the 𝑚𝑀𝑃 is the PEB model that allows the full range of repetition effects in V1, V4 and in the 

extrinsic connections (𝑝(𝑚𝑓𝑢𝑙𝑙|𝑦) = 0.74). The next best model is the model with only intrinsic repetition 

effects (𝑝(𝑚3|𝑦) = 0.26). These are the only two models with non-trivial posterior probabilities. The 

evidence in favor of the 𝑚𝑀𝑃 against the second-best model was, following the definitions in (Kass and 

Raftery, 1995), ‘not worth more than a bare mention’ (𝑙𝑛𝐵−1 > −1) (Fig. 4B, Table 3).

3.3. Repetition effects on neuronal populations 

Next, we examined how different populations within V1 and V4 were affected by stimulus repetition. We 

wished to test two different types of population-level repetition effects, namely the repetition dependent 

changes in the population input or output gain. To test all possible input-gain models, we grouped intrinsic 

and extrinsic connections according to which of the eight (V1 or V4) populations they target (Fig. 5A top), 

resulting in eight non-overlapping connection groups. We then formed all possible combinations of 

‘switching on’ or ‘off’ all repetition effects within each group (28 = 256 combinations). For the output-

gain models, we grouped all connections according to which population they originate from, and then 

followed the same logic (Fig. 5A bottom). This yielded a total of 𝑁 = 510 reduced models, as the full 

model and the null model for input gain and the output gain are the same. We compared all models based 

on their posterior probability, which we report together with the respective logarithmic Bayes factors 

(against the best model) of all models with a posterior probability higher than 0.005 in Table 4. Finally, we 

did the same analysis but without including extrinsic connections in any of the input or output gain models 

(𝑁 = 508) to verify that we get the same results under the second-best model of the previous section, i.e. 

the model that allowed repetition effects only on intrinsic connections, since the evidence against it was not 

substantial. 

Interestingly, all models with a non-trivial posterior probability (𝑝(𝑚|𝑦) ≥ 0.005) were input gain 

models. The 𝑚𝑀𝑃 for this comparison was (V1gs V4gd)in with 𝑝(𝑚|𝑦) = 0.81, which allowed repetition

effects in the inputs of the g and s populations in V1 and the g and d populations in V4 (Fig. 5B). This 

confirms the finding of the previous section, that both V1 and V4 modulations are crucial to explain (or 

generate) the repetition-induced changes in the empirical spectra. Following the definitions in (Kass and 

Raftery, 1995), the evidence in favor of the 𝑚𝑀𝑃 compared to the next best models is ‘substantial’ against 

the (V1gs V4gid)in model (−3 < 𝑙𝑛𝐵−1 < −1), ‘strong’ against the (V1gsi V4gd)in and (V1s V4gd)in

models (−5 < 𝑙𝑛𝐵−1 < −3) and ‘very strong’ against the (V1gs V4g)in model (𝑙𝑛𝐵−1 < −5) (Table 4,

rows 2-3). 

We repeated this comparison for models that excluded all extrinsic connections (denoted with the 

subscript ‘ne’). Here, the 𝑚𝑀𝑃 was again (V1gs V4gd)in with (𝑝(𝑚𝑛𝑒|𝑦) = 0.83). The other models with

non-trivial posterior probabilities were the same as in the last paragraph, and they had the same evidence 

relative to the 𝑚𝑀𝑃 of this comparison (Table 4, rows 4-5). 

Comparing the Bayes factors for each model in the case of included and excluded extrinsic connections 

(Table 4, columns 3 and 5 respectively) allowed some additional observations. When the models included 

repetition effects in the extrinsic connections, we observed that, compared to the 𝑚𝑀𝑃: (1) the (V1gs 
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V4gid)in and (V1gsi V4gd)in models have a slightly less negative 𝑙𝑛𝐵−1, and (2) the (V1s V4gd)in and (V1gs

V4g)in models have a slightly more negative 𝑙𝑛𝐵−1.

Furthermore, having the posterior parameters of all reduced models, we calculated the BMA of each 

repetition effect over all models within an Occam’s window (Madigan and Raftery, 1994; Penny et al., 

2010) of 𝑙𝑛𝐵−1 > −5. There were 𝑁 = 4 models within Occam’s window for both cases, i.e., including

(BMA) or excluding (BMAne) extrinsic connections (Table 4, Fig. 5C). Finally, we calculated the 

probability that a given repetition effect was included in those models (Fig. 5D). The following repetition 

effects were significant in the BMA (numbers in parentheses list mean, variance and probability of the 

BMAne if they differed from BMA) in V1: 𝛽𝑖⊸𝑠 = 0.34 ± 0.04 with 𝑝(𝛽𝑖⊸𝑠|𝑦) = 1, 𝛽𝑠⊸𝑠 = −0.16 ± 0.04 

with 𝑝(𝛽𝑠⊸𝑠|𝑦) = 1, 𝛽𝑔⊸𝑔 = 0.14 ± 0.03 with 𝑝(𝛽𝑔⊸𝑔|𝑦) = 0.75, 𝛽𝑠⊸𝑔 = 0.09 ± 0.03 with 

𝑝(𝛽𝑠⊸𝑔|𝑦) = 0.75 (0.08 ± 0.03, 0.75), 𝛽𝑖⊸𝑔 = 0.12 ± 0.05 with 𝑝(𝛽𝑖⊸𝑔|𝑦) = 0.75; in extrinsic 

connectivity: 𝛽𝑓𝑤 = 0.13 ± 0.04 with 𝑝(𝛽𝑓𝑤|𝑦) = 1 and in V4: 𝛽𝑔⊸𝑔 = −0.13 ± 0.05 with

𝑝(𝛽𝑔⊸𝑔|𝑦) = 1, 𝛽𝑠⊸𝑔 = −0.13 ± 0.04 with 𝑝(𝛽𝑠⊸𝑔|𝑦) = 1, 𝛽𝑖⊸𝑔 = −0.27 ± 0.07 with 𝑝(𝛽𝑖⊸𝑔|𝑦) = 1 

(−27 ± 0.06, 1), 𝛽𝑑⊸𝑑 = −0.25 ± 0.05 with 𝑝(𝛽𝑑⊸𝑑|𝑦) = 1 (−0.25 ± 0.06, 1). 

4. Discussion

In summary, we used DCM for CSD to model power and coherence spectra obtained from 50 V1-V4 pairs, 

25 from each of two awake macaque monkeys presented with moving grating stimuli for several hundred 

repetitions. These stimulus repetitions led to increasing gamma power and coherence, as reported 

previously (Brunet et al., 2014) and replicated in subsequent studies (Peter et al., 2021; Stauch et al., 2021), 

yet the underlying mechanisms were so far unclear.  

The DCM was able to fit the empirical spectra well and to replicate repetition-induced changes in the 

V1 and V4 dynamics. That is, the model CSD had a spectral profile very close to the empirical CSD, 

showing clear gamma peaks in V1 and V4 power spectra and in V1-V4 coherence and GC spectra, and 

these gamma peaks showed increases from early to late epochs. The PEB estimate of the repetition effects 

over all DCMs included significant effects in intrinsic V1 and V4 connection strengths and a significant 

increase in the forward connection from V1 to V4. To further characterize the possible contributions of the 

different connection strength changes to the empirical repetition-induced changes, we performed a 

sensitivity analysis. This exhibited how the perturbation of individual connections can affect the power and 

coherence spectra of representative DCMs (we discuss the results in section 4.2).  

Then, we computed the model evidence for alternative models that could explain the data using BMR 

and compared them based on their posterior probabilities. The first test revealed that the repetition-related 

changes in the power and coherence spectra could be explained best by the models that included repetition 

effects in the strength of both V1 and V4 intrinsic connections, either in isolation or together with the 

extrinsic connections between V1 and V4. The second test examined which of all possible reduced models 

of repetition effects on the input or output gain of any subset of neuronal populations could best explain the 

repetition-related changes in the spectra. This was done while either including or excluding extrinsic 

connections, and in both cases, all models with 𝑝(𝑦|𝑚) > 0.005 were input gain models. The model with 

the highest posterior probability included repetition effects on the input gain of the V1 g and s populations 

and the V4 g and d populations. Some of the other models in Occam’s window included repetition effects 

in the i population in V4 or in V1 or excluded effects in the V1 g or V4 d population. 
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4.1 Technical considerations 

As is true for all models, our results are contingent on our choices of model and assumptions, as we have 

discussed previously (Katsanevaki et al., 2023). These choices include the following: (1) the canonical 

microcircuit model we employed strikes a balance between a simple and a biologically plausible cortical 

microcircuit, which we deemed appropriate for the given ECoG data; (2) neural mass models apply to the 

level of neuronal populations, not individual neurons; (3) the model fitting aims at finding the simplest 

explanation for both the spectra and their repetition-related modulation, which is not necessarily the same 

as the true (unknowable) explanation. 

We found different effects on the intrinsic connectivity in V1 versus V4, both qualitatively (the direction 

of changes) and quantitatively. These differences might be due to differences in the empirical data from V1 

and V4, and/or to the fact that the extrinsic connectivity between V1 and V4 was asymmetric by design. 

This could play a role in the balance of positive and negative effects between intrinsic and extrinsic 

connections. It will be a fruitful avenue for future research to include data from areas higher than V4 and 

extend the model accordingly. 

4.2 Making sense of sensitivity (in light of PEB and BMR) 

In this section, we discuss the insights that can be gained from the results of the sensitivity analysis. The 

starting point of this study was the increase in local power and inter-areal coherence induced by stimulus 

repetition, the underlying mechanisms of which we wished to understand (the previously reported increase 

in gamma frequency was not prominent in our V1-V4 site-pair selection). In principle, this was already 

achieved in Fig. 2, where we present the group-level repetition effects from 50 DCMs that could reproduce 

the data. With the sensitivity analysis in the two DCMs closest to the group-level repetition effect sizes, we 

aimed to understand whether all connections with significant group-level effects are meaningful and how 

they can bring about the empirical repetition-induced changes in gamma. 

Informed by the PEB, we focused on those connections that showed significant group-level effects. 

Starting from the ‘late’ condition of the inverted DCMs, we examined the effects that the perturbation of 

individual connections in either a positive or negative direction can have on the DCM power and coherence. 

As in the data, each perturbation changed power and coherence spectra in the same direction (and in a 

qualitatively consistent way between the two monkeys, except in the case of the V1 s self-inhibition). This 

simplified our search for connection effects that were congruent with both the PEB and sensitivity analyses. 

We considered an effect congruent if (1) the effect was significant on the group level, (2) the perturbation 

of the respective connection produced changes in the gamma spectra of both representative DCMs, and 

(3) the sign of the group-level effect was the same as the direction of the perturbation that produced an

increase in gamma power and coherence. The repetition effects that satisfied these conditions were: (1) the

increase of V1 i-to-s and i-to-g inhibition, which were also the largest repetition effects in the PEB (47%

and 30.6% respectively), (2) the increase of V1-to-V4 forward excitation, (3) the decrease of V4 g self-

inhibition, (4) the increase of V4 g-to-s excitation, and (5) the increase of V4 i self-inhibition.

The sensitivity analysis was by design incomplete, in the sense that we did not consider all 50 DCMs or 

all parameter-change combinations, and somewhat counter to the very nature of a DCM, as we looked at 

the changes induced by individual connection strength modulations, whereas the DCMs and PEB integrated 

the repetition effects on all parameters simultaneously (taking into account their covariance). These 

shortcomings were inevitable since we wanted to zoom-in on specific models and their parameter 

constellations. The collective result of multiple connection modulations might look different than the mere 
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sum of individual connection modulations. This complexity might be responsible, at least partly, for any 

inconsistencies between the two monkeys and for the inconsistencies between the PEB and the sensitivity 

analysis results. For example, only some of the connection strength modulations produced spectral changes 

that were in the direction expected by the PEB results. This does not mean that they were the only ones that 

should be considered or that they did not work together with the rest of the effects found in the PEB to 

reproduce the empirical gamma increases. Another example is that d self-inhibition was significant in the 

PEB but did not seem to affect gamma power or coherence in the sensitivity analysis. This lack of gamma 

changes with the perturbation of the efferents of d was expected from the design of the microcircuit, since 

the deep excitatory population and its associated parameters were included in the model to specifically 

capture lower frequency dynamics (Bastos et al., 2015a; Bastos et al., 2012). This decision was partly 

inspired by the finding that deep layers show less gamma and more alpha/beta (Buffalo et al., 2011) and 

that inter-areal directed influences in gamma are stronger in the bottom-up direction, whereas in beta they 

are stronger in the top-down direction (Bastos et al., 2015b; Michalareas et al., 2016; van Kerkoerle et al., 

2014). 

4.3 Stimulus repetition effects for few versus many repetitions 

Two previous studies have investigated visually induced gamma for many stimulus repetitions and have 

reported strong gamma for the first presentation, rapidly decreasing gamma for the initial few (5-10) 

repetitions, and slowly increasing gamma for further repetitions (Peter et al., 2021; Stauch et al., 2021). The 

changes induced by the first presentation or the first few repetitions were not observed in the original study 

of Brunet et al. (2014) and in the task with gratings in Peter et al. (2021). What both of these latter 

experiments had in common was the presentation of grating stimuli to macaque monkeys that were highly 

overtrained on gratings. By contrast, in the task with natural images in Peter et al. (2021) and in the 

experiment of Stauch et al. (2021), the subjects had seen the stimuli a few times or for the first time 

respectively. Thus, it is possible that changes induced by the first presentation, or the first few repetitions 

vanish after extensive exposure to specific stimuli, and these changes might reflect effects of arousal. 

Arousal can be assessed through measurements of the pupil. Such measurements were performed in Stauch 

et al. (2021), and the observed pupil responses and gamma showed very similar dynamics across the first 

few stimulus presentations, suggesting that the strong gamma for the first presentation was related to arousal 

in response to a novel stimulus, and the decreasing gamma for the initial few presentations was related to 

rapidly decreasing arousal as those novel stimuli became more familiar. This is also consistent with the 

observation that the first presentation of novel natural stimuli to macaques often triggered saccades to those 

stimuli, suggesting image-triggered interest and potentially arousal, and that this effect rapidly diminished 

over the course of few repetitions (Peter et al., 2021). For the present study, we have used the dataset of 

Brunet et al. (2014). Therefore, our results are not concerned with those changes observed during the first 

presentation or the first few repetitions, but they are exclusively concerned with the increase in gamma 

induced when there are more than ten repetitions.  

4.4 Stimulus predictability increases bottom-up precision and gamma 

In the following paragraphs, we discuss repetition-induced changes and our findings in the context of the 

predictive coding framework. According to the predictive coding framework, the brain constitutes a 

generative model, under which sensory inputs are generated by real-world causes. This internal model is 

acquired through learning, is therefore continuously refined, and is used to infer the causes of sensory inputs 
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from the inputs themselves. The difference between the actual sensory inputs and those predicted by the 

internal model gives rise to prediction errors. Prediction errors are propagated from lower to higher cortical 

areas by means of forward projections, i.e., they constitute the bottom-up inputs. Conversely, top-down 

inputs are predictions that are formed in higher areas and are projected back to lower areas to be subtracted 

from the local bottom-up inputs. 

In predictive coding, prediction errors are weighted by their precision, a quantity that is equal to the 

inverse of their variance (Brown and Friston, 2012; Feldman and Friston, 2010; Friston and Kiebel, 2009). 

Inputs with high precision are inputs that have low variability, i.e., are more predictable. Predictability is 

linked to stimulus repetition. When a stimulus keeps repeating, its relative probability increases, i.e., its 

recurrence becomes increasingly predictable. This means that over the course of many repetitions, the 

predictability of bottom-up stimuli, and the precision of associated prediction errors, should increase 

monotonically until it plateaus. As described in the previous section, this is exactly what has been reported 

for gamma power as a function of many repetitions in all previous experiments that report such changes in 

gamma (Brunet et al., 2014; Peter et al., 2021; Stauch et al., 2021). Therefore, gamma oscillations might 

mediate increases in predictability or precision by modulating the gain of bottom-up prediction errors. 

Indeed, gamma synchronization has been related to an increased precision in neuronal signals; namely, a 

decrease in noise correlations to near-zero values in macaque V1 (Womelsdorf et al., 2012). Furthermore, 

neuronal synchronization has been proposed to increase the postsynaptic impact or gain of spikes on a 

receiving population (Bazhenov et al., 2005; Gotts, 2003; Gotts et al., 2012). Specifically, inter-areal 

neuronal synchronization in the gamma-frequency range has been related to the feedforward 

communication of bottom-up inputs (Bastos et al., 2015a; Bastos et al., 2015b; Bastos et al., 2012; Fries, 

2015; Friston et al., 2015; Michalareas et al., 2016; van Kerkoerle et al., 2014; Vezoli et al., 2021). 

Another parameter that determines the precision of bottom-up input is the spatial predictability of the 

respective sensory stimuli. In stimuli that are spatially uniform, in their color or structure, one part can be 

predicted from other parts. Intriguingly, the spatial predictability of visual stimuli is strongly related to the 

strength of the induced gamma in macaque V1. Gamma induced by a patch of grating or of uniform color 

in the RF is enhanced if the same grating or color is extended into the RF surround (Gieselmann and Thiele, 

2022, 2008; Jia and Kohn, 2011)(Peter et al., 2019). Similarly, gamma induced by a patch of a natural 

image is enhanced when the same stimulus is extended into the RF surround and when the part inside the 

RF is spatially predictable from the part outside the RF (Uran et al., 2022). 

The role of precision in weighting prediction errors within the predictive coding framework leads to a 

second prediction. That is, precision should modulate the gain of the populations that encode and transmit 

prediction errors to higher areas. Indeed, this is the effect that the DCM revealed: (1) a decrease in the self-

inhibition of the V1 s population, which projects prediction errors to higher areas, and (2) a decrease in the 

self-inhibition of the V4 g population, which receives the prediction errors from V1 and relays them to 

other V4 populations. In the model, the self-inhibitory connections control the gain of the respective 

populations, and a decrease in self-inhibition means an increase in the gain of the population. Moreover, as 

mentioned above, the self-inhibition decrease in both populations can result in an increase in local gamma 

power and inter-areal gamma coherence as shown in the sensitivity of representative DCMs from each 

monkey. Thus, these two effects that we report here are in line with the proposed role of precision and, 

more specifically gamma oscillations, within the predictive coding framework. 

A similar effect of predictability has been reported before in a DCM study (Auksztulewicz et al., 2017) 

of MEG responses in the auditory cortex to repeated sequence of tones (Barascud et al., 2016). Two factors 

that increase stimulus predictability, i.e., the repetition of regular versus random sequences and a smaller 
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versus larger number of possible tones that could be used to form a sequence, had a positive change on 

MEG responses between 8 and 128 Hz. This positive change in the responses was modelled by an increase 

in the gain of pyramidal cells in the auditory cortex and in the inferior temporal gyrus (Auksztulewicz et 

al., 2017). 

In addition to the aforementioned self-inhibition decreases, we observed an increase in inhibitory 

connection strengths within the V1 microcircuit, i.e., from the i to the g and s populations, from the s to the 

g population and in the self-inhibition of g. The strength of inhibitory connections might be increased by 

an increase in the gamma-band synchronization of the respective neurons, and this has indeed been reported 

as an effect of stimulus repetition for putative inhibitory (narrow-spiking) cells in V4 (Brunet et al., 2014). 

An increase in inhibitory connection strengths with repetition was also proposed later by Peter et al. (2021) 

and Stauch et al. (2021): it would need to target specifically the more weakly-driven principal cells, 

eventually inhibiting them from firing within a gamma cycle. Our mesoscopic-level model is not able to 

differentiate between strongly and weakly driven excitatory populations. Therefore, an obvious extension 

of the current model will include both strongly and weakly driven excitatory populations. Ideally, strongly 

and weakly driven excitatory neurons would then also be experimentally identified and recorded. The same 

holds for their laminar position, which would allow to use the laminar experimental data to explicitly 

constrain the model populations of the corresponding layers. 
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Figure 1. Dynamic causal modelling of repetition-induced changes in the power of V1 and V4 LFP power and V1-V4 

coherence spectra. (A) The animal performed a selective attention task (Bastos et al., 2015b). In short, the monkey 

held its gaze at the fixation dot in the center of the screen, while attending to one of two gratings that appeared at 

equal eccentricities (illustration not to scale). In the current analysis, epochs were pooled over the two attentional 

conditions, so that the attentional aspect of the task is irrelevant. (B) V1 (bottom) and V4 (top) power change relative 

to pre-stimulus baseline, and V1-V4 coherence (middle), averaged over all visually driven sites or site pairs, 

respectively, and all sessions of monkey P. The epochs of each session were split into 8 equally sized non-overlapping 

bins according to their order within the session, and power or coherence spectra were calculated per bin. Modified 

with permission from Brunet et al. (2014). (C) Schematic illustration of the V1-V4 DCM that was inverted to fit the 

empirical CSDs, showing the pattern of intrinsic (within-area) and extrinsic (between-area) connectivity. The change 

of the DCM CSDs from early to late epochs is modeled by a vector of repetition effects that multiply the vector of all 

intrinsic and extrinsic connection strengths. The four extrinsic connections are illustrated by two bifurcating arrows, 

and on each of the two a single repetition effect is applied. 
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Table 1. Prior distribution mean and variance of all DCM model parameters. 

Parameter Mean Variance SPM12 function 

VL hyperparameters 12 1
64⁄ spm_dcm_csd.m 

Neuronal model 

Intrinsic time 

constants 
𝜏𝑔 , 𝜏𝑠 , 𝜏𝑖 , 𝜏𝑑 2, 2, 16, 18 1

64⁄ , 1
64⁄ , 1

64⁄ , 1
64⁄

spm_fx_cmc.m, 

spm_cmc_priors.m 

Intrinsic connection 

strength 

𝛾𝑔⊸𝑔, 𝛾𝑔→𝑠 , 𝛾𝑔→𝑖 800, 800, 800 1
32⁄ , 1

32⁄ , 1
32⁄

𝛾𝑠⊸𝑠 , 𝛾𝑠⊸𝑔, 𝛾𝑠→𝑖 800, 800, 400 1
32⁄ , 1

32⁄ , 1
32⁄

𝛾𝑖⊸𝑖 , 𝛾𝑖⊸𝑔, 𝛾𝑖⊸𝑠 , 𝛾𝑖⊸𝑑 800, 1600, 800, 400 1
32⁄ , 1

32⁄ , 1
32⁄ , 1

32⁄  

𝛾𝑑⊸𝑑 , 𝛾𝑑→𝑖 400, 400 1
32⁄ , 1

32⁄

Extrinsic connection 

strength (forward) 
𝛼𝑠→𝑔

𝑓𝑤 , 𝛼𝑠→𝑑
𝑓𝑤

200, 25 1
16⁄ , 1

16⁄

Extrinsic connection 

strength (backward) 
𝛼𝑑⊸𝑠

𝑏𝑤 , 𝛼𝑑⊸𝑖
𝑏𝑤 100, 50 1

16⁄ , 1
16⁄

Sigmoid gain 𝜆 1 1
32⁄

Delays 𝛿 0 1
64⁄ spm_cmc_priors.m 

Repetition effects 𝛽 0 1
8⁄ spm_dcm_neural_priors.m 

Observation model 

Gain 𝐿 1 64 
spm_L_priors.m 

Contribution to signal 𝐽𝑔, 𝐽𝑠, 𝐽𝑖 , 𝐽𝑑 0, 1, 0, 0 0, 0, 0, 0 

Neuronal fluctuations a 0 1
128⁄

spm_ssr_priors.m 

Non-specific noise 𝑏 0 1
128⁄

Channel-specific 

noise 
𝑐 0 1

128⁄

Neuronal innovations 𝑑 0 1
128⁄

Whitening coefficients 𝑤 0 1
128⁄
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𝑩 𝒍𝒏𝑩−𝟏 Evidence against 𝒎 

1 𝑡𝑜 3 −1 𝑡𝑜 0 Not worth more than a bare mention 

3 𝑡𝑜 20 −3 𝑡𝑜 − 1 Substantial 

20 𝑡𝑜 150 −5 𝑡𝑜 − 3 Strong 

> 150 < −5 Very strong 

Table 2. Interpretation of Bayes factors. Slightly modified from Kass and Raftery (1995) to show 𝑙𝑛𝐵−1 values instead 

of corresponding 2𝑙𝑛𝐵 values. Here, 𝐵 is the Bayes factor in favor of the 𝑚𝑀𝑃 (model with the highest posterior 

probability) in a given comparison against another model 𝑚, which can be interpreted as a posterior odds ratio or 

‘how many times more likely is the 𝑚𝑀𝑃 compared to model 𝑚’. Therefore, the last column also refers to the 

evidence in favor of the 𝑚𝑀𝑃 against model 𝑚. Finally, 𝑙𝑛𝐵−1 is essentially the free energy difference between the

𝑚𝑀𝑃 and another model 𝑚. 
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Figure 2. The V1-V4 DCM can reproduce the data features. (A) Empirical (circles) and predicted (lines) spectra of V1 

power (bottom), V1-V4 coherence and GC (middle) and V4 power (top), averaged over all V1-V4 site pairs and DCMs 

of monkey P. The empirical CSD spectra were averaged over 100 early epochs (purple; first epochs in each recording 

session after discarding the first 10 epochs) and 100 late epochs (yellow; last epochs in each session), respectively. 

(B) Group-level PEB posterior logarithmic estimates and 95% credible intervals (orange lines) of the repetition effects

on intrinsic V1 (bottom), extrinsic (middle) and intrinsic V4 (top) connection strengths. If a credible interval does not

cross the zero line, the effect is significant in the sense that there is strong evidence for it (Kass and Raftery, 1995). 

(C) Schematic illustration of the significant positive (magenta) and negative (teal) repetition effects from panel (B).

The ratio of each colored line width to the width of the grey lines is equal to the ratio of ‘late’ to ‘early’ connection

strength for that connection.
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Figure 3 Sensitivity of V1 power (left), coherence (middle) and V4 power (right) spectra to small perturbations of the 

strength of individual connections in a representative DCM of monkey P. Grey lines correspond to the single DCM 

spectra in the ‘late’ condition; there is no perturbation of the connection strength apart from the repetition effect. 

Each row shows the change of the power and coherence spectra induced by the perturbation of an individual 

connection strength (connection label on the left side). The perturbation consists of adding a constant ranging from 

−0.1 (teal) to +0.1 (magenta) in steps of 0.025 to the repetition effect of the connection (the total value is applied 

as an exponent to a multiplier of the connection strength). Note that this sensitivity analysis generates combinations 

of parameters that are not constrained by the data spectra.  
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Figure 4. Comparison between the 8 alternative models that allow any combination of the 3 sets of V1 intrinsic, 

extrinsic and V4 intrinsic repetition effects. (A) Schematic illustration of the full, reduced and null models. 

(B) Posterior model probabilities for all models shown in (A).  
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Model 𝒑(𝒎|𝒚) 𝒍𝒏𝑩−𝟏 

V1-ext-V4 (full) 0.74 0 

V1-V4 (3) 0.26 -0.45

Table 3. Posterior model probabilities and Bayes Factors in favor of each model against the 𝑚𝑀𝑃 for the two models 

with 𝑝(𝑚|𝑦) > 0.005. 
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Figure 5. Comparison between all alternative models of population input and output gain in V1 and/or V4. 

(A) Illustration of some input-gain (top) and output-gain (bottom) models. To test whether repetition modulated the

input gain of a population, repetition effects of all afferent connections to that population were allowed. We tested

all combinations of the 8 populations. Similarly, to test whether repetition modulated the output gain of a

population, we allowed repetition effects in all efferent connections of the population. The comparison was between

all input-gain models, all output-gain models, a full model where repetition effects were allowed in all connections,

and a null model without any repetition effects. (B) Schematic illustration of model (V1gs V4gd)in, which was the

𝑚𝑀𝑃 amongst all input and output gain models. Colors signify connections with significant positive (magenta) and

negative (teal) repetition effects. The ratio of each colored line width to the width of the grey lines is equal to the

ratio of ‘late’ to ‘early’ connection strength for that connection. (C) BMA (left) and probability (right) of repetition

effects over all models within an Occam’s window of 5.
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Model 𝒑(𝒎|𝒚) 𝒍𝒏𝑩−𝟏 𝒑(𝒎𝒏𝒆|𝒚) 𝒍𝒏𝑩𝒏𝒆
−𝟏

(V1gs V4gd)in 0.810 0.00 0.826 0.00 

(V1gs V4gid)in 0.152 -1.68 0.135 -1.81

(V1gsi V4gd)in 0.008 -4.56 0.008 -4.60

(V1s V4gd)in 0.006 -4.96 0.008 -4.67

(V1gs V4g)in 0.005 -5.07 0.005 -5.03

Table 4. Posterior model probabilities and logarithmic Bayes Factors in favor of each model against the 𝑚𝑀𝑃, for the 

best models of population input or output gain, when extrinsic connections are included (𝑚) or excluded (𝑚𝑛𝑒) from 

the models. All models with 𝑝(𝑚|𝑦), 𝑝(𝑚𝑛𝑒|𝑦) > 0.005 are shown in descending probability order. 
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Figure S1. (A) Empirical (circles) and predicted (lines) spectra of V1 power (bottom), V1-to-V4 GC, V1-V4 coherence 

and V4 power (top) of 5 randomly selected V1-V4 pairs of monkey K. Grey text indicates the bipolar site label to 

show sites that are presented multiple times. (B) Same as above, but for 5 randomly selected pairs from monkey P. 

For one pair from monkey P, the GC calculation did not converge and is therefore omitted. 
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Figure S2. Empirical (circles) and predicted (lines) spectra of V1 power (bottom), V1-V4 coherence and GC (middle) 

and V4 power (top) averaged over all V1-V4 site pairs and DCMs of monkey K. Conventions as in Fig. 2A. 

Katsanevaki et al. Repetition effects on V1 and V4 microcircuits explain gamma increase Page 38 of 40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627165doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627165
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 25 50 75 100
0

.2

.4

V1 power

0 25 50 75 100
0

.1

.2

V4 power

0 25 50 75 100
0

.2

.4

V1-V4 coherence
V

4
V

1
ex

tri
ns

ic

V1
→

V4
s→

i
i⊸

i
g⊸

g
s⊸

g
i⊸

g
d⊸

d
g⊸

g
i⊸

g
i⊸

s
s⊸

s
g →

s

Frequency (Hz)

+.10

+.05

0

-.10

-.05

C
on

ne
ct

io
n 

st
re

ng
th

 m
od

ul
at

io
n

70 80
.25

.30

.35

70 80
.05

.10

.15

70 80
.25

.30

.35

Katsanevaki et al. Repetition effects on V1 and V4 microcircuits explain gamma increase Page 39 of 40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627165doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627165
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3. Sensitivity of V1 power (left), coherence (middle) and V4 power (right) spectra to small perturbations of 

the strength of individual connections in a representative DCM of monkey K. Conventions as in Fig. 3. 
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