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1  | INTRODUC TION

A major objective associated with community assemblages is to ex‐
plain how different species can coexist in a particular habitat given 
that all organisms require essentially the similar resources. For a long 
time, the hypothesis that there is a trade‐off between competitive 
and dispersal abilities in a given species has been considered to be 
an important mechanism underlying species coexistence (Levins 

& Culver, 1971; MacArthur & Wilson, 1967; Muller‐Landau, 2010; 
Rees, 1995; Tilman, 1994) and affecting species spatial distribu‐
tions in heterogeneous environments (Amarasekare, 2003; Laroche, 
Jarne, Perrot, & Massol, 2016). This hypothesis assumes that species 
differ in their abilities to disperse to new habitats and to compete in 
the same habitat (Kneitel & Chase, 2004). Therefore, coexistence is 
achieved through the small number of competition‐oriented species 
in finite habitats because of their lack of dispersal ability, thus leaving 

 

Received:	18	April	2018  |  Revised:	19	October	2018  |  Accepted:	4	December	2018
DOI:	10.1002/ece3.4856

O R I G I N A L  R E S E A R C H

The competition–dispersal trade-off exists in forbs but not in 
graminoids: A case study from multispecies alpine grassland 
communities

Xiaolong Zhou1,2  | Chengzhi Li1,2 | Honglin Li3  | Qingdong Shi1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Institute	of	Arid	Ecology	and	
Environment,	Xinjiang	University,	Urumqi,	
China
2Key	Laboratory	of	Oasis	Ecology	Ministry	
Education,	Xinjiang	University,	Urumqi,	
China
3State	Key	Laboratory	of	Plateau	Ecology	
and	Agriculture,	Qinghai	University,	Xinjiang,	
China

Correspondence
Xiaolong	Zhou,	Institute	of	Arid	Ecology	and	
Environment,	Xinjiang	University,	Urumqi,	
China.
Email:	zhouxl13@lzu.edu.cn

Funding information
the Scientific Research Startup Foundation 
for	Doctors	of	Xinjiang	University,	Grant/
Award	Number:	Grant	No.BS160260;	
National Natural Science Foundation of 
China,	Grant/Award	Number:	Grant	No.	
31700355

Abstract
Much theoretical evidence has demonstrated that a trade‐off between competitive 
and dispersal ability plays an important role in facilitating species coexistence. 
However, experimental evidence from natural communities is still rare. Here, we 
tested the competition–dispersal trade‐off hypothesis in an alpine grassland in the 
Tianshan	Mountains,	Xinjiang,	China,	by	quantifying	competitive	and	dispersal	ability	
using a combination of 4 plant traits (seed mass, ramet mass, height, and dispersal 
mode).	Our	results	show	that	the	competition–dispersal	trade‐off	exists	in	the	alpine	
grassland community and that this pattern was primarily demonstrated by forbs. The 
results suggest that most forb species are constrained to be either good competitors 
or good dispersers but not both, while there was no significant trade‐off between 
competitive and dispersal ability for most graminoids. This might occur because 
graminoids undergo clonal reproduction, which allows them to find more benign mi‐
croenvironments, forage for nutrients across a large area and store resources in 
clonal structures, and they are thus not strictly limited by the particular resources at 
our	study	site.	To	the	best	of	our	knowledge,	this	is	the	first	time	the	CD	trade‐off	has	
been tested for plants across the whole life cycle in a natural multispecies plant com‐
munity, and more comprehensive studies are still needed to explore the underlying 
mechanisms	 and	 the	 linkage	 between	 the	 CD	 trade‐off	 and	 community	
composition.
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space and resources for those dispersing‐oriented species (Leishman 
& Murray, 2001; Levine & Rees, 2002; Limberger & Wickham, 2011; 
Rees, 1995).

The	 competition–dispersal	 (hereafter	 CD)	 trade‐off	 has	 been	
demonstrated in many theoretical studies (Calcagno, Mouquet, 
Jarne,	 &	 David,	 2006;	 Figueiredo	 &	 Connolly,	 2012;	 Orrock	 &	
Watling,	 2010).	 Initially,	 the	 modeling	 approaches	 of	 Levins	 and	
Culver (1971) and Tilman (1994) demonstrated that two or many 
species, respectively, can coexist under the assumption that 
a trade‐off exists between competitive and dispersal ability. 
Subsequent models were developed in an attempt to relax the re‐
strictive assumptions, such as instantaneous competitive exclusion 
(Holmes & Wilson, 1998; Pacala & Rees, 1998) and fully asymmetric 
competition (Calcagno et al., 2006; Levine & Rees, 2002), or add 
demographic	stochasticity	(Orrock	&	Watling,	2010)	and	asymmet‐
ric dispersal (Figueiredo & Connolly, 2012). Although the results 
among models have not yet been completely reconciled, it is clear 
that	CD	trade‐offs	are	likely	to	play	an	important	role	in	determin‐
ing species coexistence.

Despite	 recent	 developments	 in	 theoretical	 studies,	 empiri‐
cal	evidence	for	the	CD	trade‐off	has	 led	to	conflicting	results	 for	
both animal and plant species. For animals, documented evidence 
has	been	obtained	in	studies	of	birds	(Rodríguez,	Jansson,	&	Andrén,	
2007), laboratory cultures of aquatic microfauna (Cadotte, 2006, 
2007), an acacia‐ant guild (Stanton, Palmer, & Young, 2002), and ar‐
tificial	microcosms	of	bruchid	beetles	(Hunt	&	Bonsall,	2009)	but	not	
in studies of benthic ciliates (Limberger & Wickham, 2011), insect 
herbivores (Harrison, Thomas, & Lewinsohn, 1995), or parasitoids 
(Amarasekare,	2000).	For	plants,	most	evidence	of	a	CD	trade‐off	
was	obtained	from	indirect	tests	of	the	trade‐off	between	seed	size	
and seed number (hereafter SS trade‐off), which indicates that spe‐
cies with small seeds are more fecund than species with larger seeds 
(Coomes	&	Grubb,	2003;	 Jakobsson	&	Eriksson,	2000;	McEuen	&	
Curran, 2004; Turnbull, Rees, & Crawley, 1999) and can disperse 
over greater distances (Clark, Macklin, & Wood, 1998; Tamme et al., 
2013),	while	a	large	seed	size	is	positively	associated	with	seedling	
survival	(Coomes	&	Grubb,	2003;	Walters	&	Reich,	2000;	Westoby,	
Leishman, Lord, Poorter, & Schoen, 1996) and higher competi‐
tive	ability	 in	 the	 recruitment	phase	 (Gomes	et	al.,	2018;	Moles	&	
Westoby, 2004) but a smaller dispersal distance. So far, the only 
direct	 evidence	 for	 a	CD	 trade‐off	 in	 plants	was	 from	 a	 study	 on	
Asteraceae in an artificial community in which a trade‐off was found 
between dispersal ability at the offspring level and competitive abil‐
ity	in	the	recruitment	phase	(Jakobsson	&	Eriksson,	2003).

The	lack	of	experimental	evidence	for	a	CD	trade‐off	may	be	
observed largely because the direct measurement of competitive 
and dispersal ability is a “logistical nightmare” for most organisms 
(Amarasekare,	 2003;	 Goldberg	 &	 Landa,	 1991).	 Therefore,	 em‐
pirical studies have used numerous proxies for competitive and 
dispersal ability (Kneitel & Chase, 2004; Limberger & Wickham, 
2011),	 and	 most	 have	 focused	 on	 the	 SS	 trade‐off.	 In	 fact,	 the	
trade‐off	between	seed	number	and	seed	size	occurs	within	 the	
reproductive phase, but the trade‐off between competitive and 

dispersal ability actually occurs over the whole life history (e.g., 
allocation to reproduction vs. growth; Kneitel & Chase, 2004; 
Leishman, 2001). So far, to the best of our knowledge, there has 
been	no	study	testing	the	CD	trade‐off	at	the	life‐history	level	in	
natural	multispecies	plant	communities.	 In	this	study,	we	quanti‐
fied the competitive and dispersal abilities of different plant spe‐
cies	using	plant	traits	as	proxies.	The	hypothesis	of	a	CD	trade‐off	
was tested using multispecies natural plant communities in a tem‐
perate alpine grassland. Specifically, two related questions were 
addressed:	(a)	Does	a	CD	trade‐off	exist	in	alpine	grassland	com‐
munities? and (b) What are the potential mechanisms underlying 
this pattern?

2  | MATERIAL S AND METHODS

2.1 | Study site

The	 study	 was	 conducted	 in	 Bayanbulak	 alpine	 grassland	
(42°18′N–43°34′N,	82°27′E–86°17′E),	 located	in	Hejing	County	in	
the	 Bayingolin	Mongol	 Autonomous	 Prefecture	 of	 Xinjiang	Uygur	
Autonomous	Region	(referred	to	as	Xinjiang),	China.	This	grassland	
is in the southern Tianshan Mountains basin, with a mean altitude of 
2,500 m, and covers a total area of approximately 23,000 km2. This 
region	 is	 the	 largest	 stock‐raising	 base	 in	 Xinjiang	 and	 one	 of	 the	
most extensive, highly productive pasturelands in China and is also 
regarded	as	one	of	the	biodiversity	hotspots	in	central	Asia	(Zhang	et	
al.,	2002).	The	mean	annual	temperature	in	the	study	area	is	−4.8°C,	
ranging	from	−27.4°C	in	January	to	11.2°C	in	July.	The	mean	annual	
precipitation is 265.7 mm, with most (approximately 78.1%) falling 
during the growing season (from May to August; Li et al., 2015).

2.2 | Experimental design

From	August	 to	October	 in	2017,	15	 sites	were	 regularly	 sampled	
along a 98‐km‐length transect (Figure 1). All sampling sites were lo‐
cated near the main roads in this area because the pasturelands were 
fenced by iron wire fencing. To prevent the roads from disturbing 
sampling, all sampling sites were established at least 1 km from the 
roads.

2.3 | Plant traits

In	this	study,	47	common	species	(Supporting	Information	Appendix	
S1) were chosen to determine four plant traits: seed mass, ramet dry 
mass, height, and dispersal mode. Three plant traits were measured 
in the field (seed mass, ramet dry mass, and height), and dispersal 
mode was obtained from the literature. The methods of plant trait 
measurement	followed	Pérez‐Harguindeguy	et	al.	(2013).

2.3.1 | Seed mass

Approximately 500 mature seeds were collected for each species 
from at least 15 different individuals at the study site. The collected 
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seeds were then air dried, and three subsamples (100 seeds per sub‐
sample) were weighed for each species to measure the seed mass 
(g/100	seeds).

2.3.2 | Ramet dry mass and height

For each species, nine undamaged ramets (equivalent to tillers in 
graminoids and rosettes or root branches in forbs) were randomly 
collected. The ramet height (cm) was measured from the base to the 
highest point of the plant. The aboveground parts (stem and leaves) 
of the measured ramets were then clipped, oven dried at 75°C, and 
weighed with an accuracy of 10−4 g in the laboratory.

2.3.3 | Life form

In	the	method	used	by	Tamme	et	al.	(2013),	the	life	forms	were	di‐
vided	 into	 three	groups:	 trees,	 shrubs,	 and	herbs.	 In	our	 study,	 all	
species were herbs.

2.3.4 | Dispersal mode

The dispersal modes of the studied species were divided into four 
groups in accordance with the morphological features of the seeds: 
wind dispersal without special mechanisms (i.e., the seeds do not 
have any special structures to enhance dispersal and are usually dis‐
persed by abiotic factors), wind dispersal with special mechanisms 
(e.g.,	plumes,	wings),	animal	dispersal	(endo‐,	epi‐,	and	synzoochory	
by vertebrates, including humans), and ballistic dispersal (Tamme et 
al., 2013).

2.4 | Assessment of competitive ability and 
dispersal ability

We chose the ramet dry mass as a proxy for the competitive ability of 
a	species	in	our	study,	in	accordance	with	previous	studies	(Gaudet	
&	Keddy,	1988;	Mahmoud	&	Grime,	1976;	Saeki,	Tuda,	&	Crowley,	
2014). The reason for choosing ramet mass as a proxy for competi‐
tive ability in our study was that (a) all species were herbs, (b) the 
aboveground parts of the studied species were almost completely 
removed	 by	 regular	 grazing	 during	 the	 long	winter,	 and	 therefore	
ramet dry mass could represent the amounts of resources a species 
obtained during the growing season, and (c) our previous study also 
suggested that larger species have advantages in competition, being 
more abundant than smaller species in alpine pastures (Supporting 
Information	Appendix	S2).

Many studies have documented that dispersal ability is strongly 
related to some plant traits (Thomson, Moles, Auld, & Kingsford, 
2011;	Vittoz	&	Engler,	2007;	Willson,	1993).	For	example,	Tamme	et	
al. (2013) constructed five models based on cross‐validation tech‐
niques and global datasets to measure the predictive power of simple 
plant traits in estimating the maximum dispersal distance of plants. 
In	this	study,	we	used	the	dispeRsal()	function	(argument	model	=	2)	
provided by Tamme et al. (2013) to quantify dispersal ability based 
on four traits (seed mass, plant height, life form, and dispersal mode).

2.5 | Data analysis

All species in our study were divided into two functional groups: 
graminoids and forbs. First, the dispersal ability ranks were 

F I G U R E  1   The location of our study area and the distribution of the sampling sites along the transect
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quantified using the dispeRsal() function provided by Tamme et al. 
(2013). Meanwhile, we ranked the mean values of the ramet dry 
mass to obtain the competitive ability ranks for our target species. 
In	our	study,	we	used	the	rank	data	to	represent	the	dispersal	and	
competitive ability of each species rather than the raw data because 
rank data are more suitable for the analysis and plotting.

Next, we used simple linear regression to test the relationships 
between the ranks of the competitive and dispersal ability of all spe‐
cies, graminoids and forbs. Then, a phylogenetic tree of the stud‐
ied species was built using Phylomatic and Phylocom based on the 
published	phylogenetic	supertree	of	angiosperm	families	and	APG	
III	(Webb,	Ackerly,	&	Kembel,	2008;	Webb	&	Donoghue,	2005),	and	
a	 phylogenetically	 independent	 contrasts	 (PICs)	 analysis	 was	 per‐
formed to test the potential effects of the phylogenetic relation‐
ships among these species on the correlations between competitive 
and dispersal ability (Felsenstein, 1985; Webb, Ackerly, McPeek, & 
Donoghue,	2002).

Lastly, we counted the number of species undergo clonal repro‐
duction and nonclonal reproduction in graminoids and forbs, respec‐
tively. The ratio of clonal reproduction species in graminoids and 
forbs was also calculated.

All	 statistical	 analyses	 were	 performed	 in	 R	 (R	 Development	
Core	Team,	2013),	and	the	PICs	were	analyzed	using	the	multi2di()	
and	pic()	functions	in	the	R	packages	ape	and	ade4	(Dray	&	Dufour,	
2007; Paradis, Claude, & Strimmer, 2004).

3  | RESULTS

Significant negative relationships between competitive ability and 
dispersal ability for all species (R2	=	0.1023,	 p	=	0.0284,	 Table	 1,	
Figure 2) and for the forbs (R2	=	0.4027,	p	=	0.0002,	Table	1,	Figure	2)	
were	 found	 in	 our	 study.	 But	 in	 graminoids,	 this	 relationship	was	
not	significant	(Table	1,	Figure	2).	In	addition,	the	statistical	signifi‐
cance	of	these	relationships	did	not	change	after	the	PICs	analysis	
(Table	1).	See	Supporting	Information	Appendix	S1	for	details	on	the	
species list, plant traits (ramet dry mass (g), height (cm), seed mass 
(g/100	seeds),	and	dispersal	mode),	competitive	ability	and	dispersal	
ability ranks.

In	total,	18	graminoid	species	and	29	forb	species	that	have	sex‐
ual	reproduction	were	included	in	our	study.	In	graminoids,	17	spe‐
cies	(94.44%)	also	undergo	clonal	reproduction	in	their	life	history.	In	
contrast, only one species (Vicia tenuifolia) undergo clonal reproduc‐
tion in 29 forb species (Table 2).

4  | DISCUSSION

Our	 results	 showed	 that	 the	CD	trade‐off	existed	 for	 species	 in	
the alpine grassland community but that there was a difference 
between the functional groups of graminoids and forbs. A signifi‐
cant trade‐off between competitive ability and dispersal ability 
was found for the forbs but not for the graminoids. This result 
might have occurred because of different resource capture and 
allocation strategies between the forb species and graminoid 
species.

Many previous studies have documented the trade‐offs be‐
tween competitive and dispersal ability due to resource con‐
straints during the life history of organisms (Leishman, 2001; 
Limberger & Wickham, 2011). For instance, when water, nutrients, 
and light are strictly limited, some species might allocate more 
resources to competitive ability to compete for limited resources 
(Barradas,	 Caswell,	 &	 Cohen,	 1996;	 Tilman,	 1988);	 in	 contrast,	
other species might allocate more resources to dispersal ability to 
increase	the	probability	of	colonizing	new	patches	 (Baker,	1972).	
The significantly negative relationship between competitive abil‐
ity and dispersal ability in forbs suggests that those species are 

Functional group

Simple regression Simple regression after PICs

Slope R2 p Slope R2 p

All species −0.30 0.1023 0.0284 −0.01 0.11 0.0235

Graminoids 0.35 0.1183 0.1622 0.1770 0.0253 0.5709

Forbs −0.60 0.4027 0.0002 −0.62 0.4884 0.0001

Significant results (p < 0.05) are in bold.

TA B L E  1   The results of simple 
regression and simple regression based on 
PICs	(phylogenetically	independent	
contrasts) between competitive ability 
and dispersal ability

F I G U R E  2   Relationship between the competitive ability ranks 
and dispersal ability ranks among plant species. R2 and p values 
were estimated from simple linear regression. (All: all species; F: 
forbs;	G:	graminoids.)
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constrained to be either good competitors or good dispersers but 
not both. This implies that there might be resource constraints for 
forbs	 at	 our	 study	 site.	 Indeed,	 studies	 have	 suggested	 that	 the	
constrained resources in alpine plant communities could include 
low temperatures and limiting nutrients, such as nitrogen and 
phosphorus	 (Billings	&	Mooney,	1968;	Ren	et	al.,	2010;	Zhang	&	
Welker,	1996;	Zhou	et	al.,	2017).	However,	more	comprehensive	
studies are needed to distinguish the important roles of those re‐
sources	in	determining	the	patterns	of	CD	trade‐offs.

In	contrast	to	forbs,	the	relationship	between	competitive	and	
dispersal ability in graminoid species was not significant at our 
study	site,	suggesting	that	the	CD	trade‐off	might	not	exist	in	those	
species. A probable explanation is that graminoid species may not 
be restrictedly constrained by resources, largely because, unlike 
forbs, which are strongly restricted to sexual reproduction, 94.44% 
the graminoid species undergo both sexual and clonal reproduction 
at our study site. The ability to undergo clonal reproduction allows 
graminoid species to find more benign microenvironments, for‐
age for nutrients across a large area, transport acquired resources 
among different clone parts and store resources in clonal structures 
(Evans	&	Cain,	1995;	Klimešová,	Martínková,	&	Ottaviani,	2018;	Van	
groenendael,	1997).	In	fact,	the	average	ramet	mass	of	graminoids	
(2.69 ± 1.83 g) is slightly greater than that of forbs (1.69 ± 2.2 g; but 
not	significantly	so)	at	our	study	site.	In	a	previous	study,	Venable	
(1992)	emphasized	 the	 importance	of	 individual	 size	 in	CD	 trade‐
offs.	 In	accordance	with	his	model,	our	results	showed	that	a	null	
correlation between competition and dispersal ability might some‐
times	occur	in	graminoid	species	due	to	variation	in	individual	size	
(ramet	 mass).	 Interestingly,	 we	 observed	 that	 some	 large‐sized	
graminoids	 are	 superior	 competitors	 but	 not	 inferior	 colonizers,	
such as Leymus secalinus, Festuca gigantea, and Festuca ovina.

In	 this	 study,	 we	 revealed	 that	 the	 CD	 trade‐off	 depends	 on	
plant traits that are closely related to competitive or dispersal ability. 
Indeed,	 previous	 studies	have	 suggested	 that	 relationships	 among	
species’ traits related to species’ competitive and dispersal ability 
play an important role in determining the absence or presence of 
a	CD	trade‐off	(Pastore	et	al.,	2014;	Suding,	Goldberg,	&	Hartman,	
2003).	Moreover,	the	CD	trade‐off	could	be	highly	likely	under	the	
conditions of resource constraints, which result in negative cor‐
relations between plant traits (Limberger & Wickham, 2011). For 
example, the trade‐offs between biomass allocation to roots and 
reproduction in plant species could be finally translated into a trade‐
off between the ability to compete for soil nutrients and the ability 
to	colonize	abandoned	fields	(Tilman	&	Wedin,	1991).	Overall,	in	our	
study, competitive ability and dispersal ability are both determined 

by	 the	 same	 trait	 but	 in	 an	 opposing	way	 (e.g.,	 a	 large	 ramet	 size	
is related to large seeds and high competitive ability, while large 
seeds	 lead	 to	 low	 dispersal	 ability),	 leading	 to	 the	 CD	 trade‐off.	
Furthermore,	 the	PICs	analysis	 indicated	 that	 the	phylogenetic	ef‐
fect did not change the observed relationships in our study, suggest‐
ing	that	the	CD	trade‐off	relationship	could	be	weakly	influenced	by	
the phylogenetic relatedness among species.

5  | CONCLUSION

In	a	natural	alpine	grassland	community,	we	quantified	the	competi‐
tive and dispersal abilities of different species based on 4 plant func‐
tional	traits.	We	found	that	the	CD	trade‐off	existed	in	forb	species	
but not in graminoid species, perhaps because graminoid species 
undergo clonal reproduction and are thus not strictly limited by re‐
source	 availability.	 In	 the	 future,	more	 comprehensive	 studies	 are	
needed to detect the effects of limiting environmental factors on 
the	patterns	of	CD	trade‐offs	and	link	them	to	community	assembly	
and species coexistence.
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