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Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow
ensure proper brain function. The adult human brain represents only a small portion
of the body mass, yet about a quarter of the cardiac output is dedicated to energy
consumption by brain cells at rest. Due to a low capacity to store energy, brain health is
heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is
thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality
worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular
integrity and function, compromising brain homeostasis and leading to widespread
consequences from early-onset motor deficits to long-term cognitive decline. While
numerous lines of investigation have been undertaken to develop new pharmacological
therapies for stroke, only few advances have been made and most clinical trials have
failed. Overall, our understanding of the acute and chronic vascular responses to stroke
is insufficient, yet a better comprehension of cerebrovascular remodeling following
stroke is an essential prerequisite for developing novel therapeutic options. In this
review, we present a comprehensive update on post-stroke cerebrovascular remodeling,
an important and growing field in neuroscience, by discussing cellular and molecular
mechanisms involved, sex differences, limitations of preclinical research design and
future directions.
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GENERAL CONCEPTS

Stroke is an injury to the central nervous system (CNS) with a vascular cause, leading to high
rates of disability and representing the second leading cause of death worldwide (Mittmann
et al., 2012; Krueger et al., 2015; Mozaffarian et al., 2015). Stroke compromises cerebral blood
flow (CBF) following either blood vessel occlusion (i.e., ischemic stroke) or blood vessel rupture
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(i.e., hemorrhagic stroke), which includes intracerebral
hemorrhage (ICH) or subarachnoid hemorrhage (SAH)
(Sacco et al., 2013). Hemorrhagic strokes represent ∼20% of
cases, while ischemic lesions account for almost 80% of all strokes
(Qureshi et al., 2009; Donkor, 2018). Most stroke survivors are
left with residual impairments requiring chronic rehabilitation
therapy (Bernhardt et al., 2019; Hayward et al., 2019). Moreover,
the 30-day mortality rate of ischemic stroke has been estimated
at ∼15% in high-income countries (Gattringer et al., 2019),
which may vary depending on sex-specific factors (Arnao et al.,
2016) and economic disparities (Osypuk et al., 2017). A recent
study from the Netherlands showed that in >15,000 patients
who had a first stroke at age 18–49 in 1998–2010, cumulative
15-year mortality among 30-day survivors was 13.3 per 1,000
person-years, compared with an expected mortality of 2.4 per
1,000 person-years in the general population (Ekker et al.,
2019). In addition, brain microinfarcts (<5 mm lesions) play an
insidious role in aging and dementia, since these microscopic
strokes may accumulate over several years before manifesting as
detectable symptoms (Hakim, 2014; Ferro et al., 2019).

By limiting tissue perfusion, stroke affects both neuronal
health and vascular health (Iadecola and Anrather, 2011a,b;
Tymianski, 2011; Silasi and Murphy, 2014) with widespread
consequences. While numerous lines of investigation have aimed
to develop neuroprotective therapies for stroke (Dirnagl et al.,
2013; Willis and Hakim, 2013; Corbett et al., 2014; Meschia et al.,
2014; Ploughman et al., 2015), there were too few significant
advances. For instance, only thrombolysis with recombinant
tissue plasminogen activator rtPA (Hebert et al., 2016) or acute
endovascular treatment (Goyal et al., 2015) have led to significant
benefit for ischemic stroke (Richardson et al., 2014; Teasell
et al., 2014a,b; Gurewich, 2016). Within the first hours after
ischemic stroke, the goal is to promptly restore perfusion (Lin
and Sanossian, 2015; Prabhakaran et al., 2015), and intravenous
administration of rtPA has been the first line of intervention
for years (The National Institute of Neurological Disorders,
and Stroke rt-Pa Stroke Study Group, 1995; Gurewich, 2016).
Unfortunately, rtPA must be administered within a narrow
therapeutic window (∼4 h following stroke). Moreover, due to
safety concerns, its use is limited to 10–15% of stroke victims
(Jauch et al., 2013; Gurewich, 2016; Suzuki et al., 2016).

Maintenance of brain health is ensured by key vascular
features: (i) The safeguarding of vascular networks for efficient
perfusion; (ii) The function of the blood–brain barrier (BBB)
to preserve brain homeostasis; and (iii) The regulation of CBF
to match energy demands of brain cells (Andreone et al.,
2015). During development, neuronal and vascular network
formation share similar mechanisms of growth and maturation
(Carmeliet and Tessier-Lavigne, 2005; Gu et al., 2005; Eichmann
and Thomas, 2013). Endothelial cells (ECs) secrete factors that
modulate neurogenesis (Goldman and Chen, 2011; Delgado et al.,
2014; Licht and Keshet, 2015; Walchli et al., 2015) and neuronal
activity controls brain angiogenesis and barriergenesis (Lacoste,
2014; Biswas et al., 2020). In the mature brain, relationships
between neural and vascular cells ensure a functional matching
such that changes in neuronal activity are coupled to changes
in CBF (i.e., neurovascular coupling) (Hillman, 2014). This

involves balanced secretions of vasoconstrictor and vasodilator
molecules including, but not limited to, endothelial-derived
nitric oxide (NO), or astrocyte-derived prostaglandin E2 (PGE2)
(Attwell et al., 2010; Cauli and Hamel, 2010; Mishra et al.,
2016). The underlying structure of neurovascular coupling is the
neurovascular unit (NVU), which corresponds to a multicellular
ensemble in which ECs, neurons, pericytes, astrocytes, and
microglia orchestrate brain function (Zlokovic, 2010; Lind et al.,
2013; ElAli et al., 2014; Howarth, 2014) (Figure 1). The NVU also
constitutes the BBB which controls the efflux/influx of substances
for a controlled brain homeostasis (Daneman, 2012; Ben-Zvi
et al., 2014; Andreone et al., 2015; Profaci et al., 2020). The
structural and functional interdependence between brain cells
and blood vessels renders the brain particularly vulnerable to
declines in CBF that result from stroke.

Post-stroke NVU remodeling represents a growing field in
neuropathophysiology (Maki et al., 2013; Knowland et al., 2014;
Liu et al., 2014; Prakash and Carmichael, 2015; Munji et al., 2019).
While the mechanisms underlying ischemia-induced neuronal
plasticity are an ongoing focus in stroke research (Mostany et al.,
2010; Swayne and Wicki-Stordeur, 2012; Silasi and Murphy,
2014; Felling and Song, 2015), our understanding of acute and
chronic vascular responses to stroke is only in its infancy.
NVU remodeling is rapidly activated after stroke and occurs
at the molecular and cellular levels. Within minutes following
an ischemic insult, proangiogenic genes are upregulated and
growth factors are secreted to promote both angiogenesis and
survival of glial and neuronal cells within peri-infarct tissues
(Ergul et al., 2012; Gutierrez-Fernandez et al., 2012; Talwar
and Srivastava, 2014). These events stimulate neurogenesis,
synaptogenesis and neuronal plasticity, improving functional
outcome (Ergul et al., 2012). In addition, changes in mechanical
shear stress due to arterial occlusion result in increased flow
through pre-existing collaterals and trigger significant changes in
blood vessels (Nishijima et al., 2015). Paradoxically, endogenous
repair mechanisms also have detrimental effects on the brain
vasculature, as we will discuss in this review. Altogether,
these cellular and molecular responses to stroke contribute
to vascular and neuronal injury (Haley and Lawrence, 2016;
Nahirney et al., 2016).

Despite recent advances in significant areas of stroke
pathophysiology, certain aspects of stroke, and particularly
spatiotemporal cerebrovascular responses, require further
attention. Stroke doubles the risk for dementia (post-stroke
dementia), and approximately 30% of stroke survivors develop
cognitive dysfunction within 3 years (Allan et al., 2011; Vijayan
and Reddy, 2016). The link between stroke and dementia was also
observed in patients younger than 50 years, up to 50% of whom
exhibit cognitive deficits after a decade (Schaapsmeerders et al.,
2013). There is also mounting evidence indicating that stroke
can precipitate the likelihood of developing neurodegeneration
(Vijayan and Reddy, 2016). Vascular vulnerabilities caused by
stroke result in neurovascular uncoupling and affect the integrity
of the BBB; these changes impact proper brain functioning
and are characteristics found in the early stages of several
neurological disorders including Alzheimer’s disease. Therefore,
understanding the mechanisms involved in cerebrovascular
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FIGURE 1 | Cellular and acellular constituents of the neurovascular unit (NVU). (A) At the level of penetrating arteries, upstream capillaries, endothelial cells (ECs) are
surrounded by vascular smooth muscle cells. At this level, cerebral vessels are still surrounded by the pia. The Virchow–Robin space is located between the pia and
the glial limitans formed by the astrocytic endfeet. This perivascular space plays an important role in waste removal and in regulation of the interstitial fluid of the
brain. (B) At the level of intracerebral capillaries, the NVU is comprised of ECs, pericytes, astrocytes, microglia, and the basement membrane. Both the ECs and
surrounding pericytes are unsheathed by a common basement membrane. Pericyte processes encase most of the endothelial surface. Astrocytic endfeet completely
surround the capillary wall. Resting microglial have a ramified morphology and are in constant surveillance around brain microvessels. Gap junction channels enable
cytoplasmic continuity between astrocytic endfeet, and also exist between pericytes and ECs at peg-socket structures providing quick communication between
these cells. Specialized tight junctions between ECs prevent paracellular leakage into the brain parenchyma. (C) The NVU undergoes dramatic structural changes
following stroke, affecting cerebrovascular integrity, neuro-vascular coupling and neuronal survival within the peri-infarct territory. Figure prepared with BioRender.

Frontiers in Physiology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 948

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00948 August 11, 2020 Time: 14:34 # 4

Freitas-Andrade et al. Stroke-Induced Cerebrovasculaire Remodeling

adaptation to brain injury may have profound long-term clinical
outcomes. In this review, we present an overview of recent
advances in cerebrovascular research on stroke, and we discuss
limitations and ideas for future investigation.

EFFECTS OF STROKE ON THE
NEUROVASCULAR UNIT

Capillary brain ECs and surrounding pericytes, astrocytes,
microglia, neurons, and extracellular matrix (ECM) of the
basement membrane altogether compose the NVU. The multiple
interactions between these cellular and acellular elements are
disrupted after stroke.

Effects of Stroke on Endothelial Cells
Effects of Stroke on Endothelial Cell Structure and
Molecular Profile
The EC layer provides the CNS with an important physical,
functional, and metabolic barrier, which limits the entry of
circulating hydrophilic molecules, such as peptides and proteins
into the brain parenchyma. Gaseous molecules such as oxygen
(O2) and carbon dioxide (CO2), as well as small lipophilic
molecules less than 500 Da can diffuse freely through brain
ECs. Brain ECs are attached to each other by specialized ‘tight’
junctions (TJs) consisting of various molecular components
(Chow and Gu, 2015; Delaney and Campbell, 2017). The TJs
form the physical barrier of the BBB (Reese and Karnovsky, 1967)
and regulate permeability of the endothelial layer. TJ proteins
have also been implicated in regulation of gene expression, cell
proliferation and differentiation (Zlokovic, 2008; Sweeney et al.,
2019). Brain ECs also express gap junction proteins, such as
connexin (Cx)-37, Cx40 and Cx43 that contribute to TJ integrity
(Nagasawa et al., 2006; De Bock et al., 2011) and cell–cell
communication (Figueroa and Duling, 2009; De Bock et al.,
2014). The role of endothelial Cxs in BBB function, particularly
during aging, remains poorly explored (De Bock et al., 2014).

TJ disruption is a hallmark of both ischemic and hemorrhagic
stroke and is typically associated with increased vascular
permeability and homeostatic changes in the neuronal
microenvironment. It was shown in an ischemia/reperfusion
model that BBB permeability exhibited a biphasic pattern
(permeability occurring at 3 and 72 h of reperfusion), which
was linked to changes in claudin-5, occludin and ZO-1 protein
levels (Jiao et al., 2011). More recently, Knowland et al. (2014)
used transgenic mice expressing a fusion protein of eGFP with
claudin-5 and elegantly demonstrated that TJs were stable
during the early phase of reperfusion (up to 24 h) following
30 min of transient middle cerebral artery occlusion (tMCAo),
but underwent significant remodeling and breakdown from 48
to 58 h after reperfusion (Knowland et al., 2014). This study
demonstrates the stepwise dysfunction that occurs initially
at the transcellular level followed by paracellular impairment
that accounts for BBB deficits in stroke. Furthermore, it links
caveolin-1 (cav-1) to impaired transcellular route.

Caveolae-mediated transcytosis is a major pathway for
transport across ECs and it is normally suppressed in the

healthy brain (Drab et al., 2001; Predescu et al., 2001; Schnitzer,
2001; Tuma and Hubbard, 2003; Ben-Zvi et al., 2014). Caveolae
are 50–100 nm invaginations in the plasma membrane and
are highly enriched in saturated phospholipids, sphingolipids,
ethanolamine plasmalogens and cholesterol (Andreone et al.,
2017). The formation of caveolae vesicles requires both caveolin
coat proteins and cytosolic adaptor proteins belonging to
the cavin family (Ayloo and Gu, 2019). Under physiological
conditions, major facilitator super family domain containing 2a
(MFSD2A) is selectively expressed in brain endothelium (Ben-
Zvi et al., 2014). MFSD2A acts as a lipid flippase, transporting
phospholipids, from the outer to inner plasma membrane leaflet
thus altering the plasma membrane composition in such a way
that caveolae vesicles are unable to form (Andreone et al., 2017).
Inhibition of caveolae formation and trafficking ensures BBB
integrity under normal conditions. However, caveolae-mediated
transcytosis is activated following tMCAo, and cav-1 expression
increases early following stroke or brain injury, prior to TJ
disassembly (Knowland et al., 2014). A significant correlation
between the extent of BBB disruption following brain ischemia
and cav-1 expression was recently confirmed in mice subjected
to focal cortical ischemia induced by photothrombosis (Choi
et al., 2016). In summary, ischemia/reperfusion-induced BBB
disruption in the peri-infarct region involves (i) upregulation of
caveolae-mediated endothelial transcytosis in the early phase of
reperfusion (between 0 and 12 h); (ii) major TJ remodeling in
the late phase (48–60 h) (Cipolla et al., 2004; Knowland et al.,
2014; Haley and Lawrence, 2016; Nahirney et al., 2016). The
first phase, which peaks at 6 h, leads to non-selective vesicular
transport of blood-borne molecules across ECs. The second
phase leads to breakdown of the vessel wall, exacerbating BBB
dysfunction. It remains unclear why ECs respond in two phases
and whether increased transcytosis provides a signal to the NVU.
An enticing notion would be to test whether stroke disrupts
the unique endothelial cell membrane lipid composition in such
a way that induces cav-1 dependent transcytosis. Other factors
can also be at play, for example, in a mouse model of retinal
vein occlusion, activated ECs expressed caspase-9, the caspase-
9 induced non-apoptotic endothelial dysfunction, and barrier
breakdown (Avrutsky et al., 2020). Nonetheless, BBB disruption
via increased caveolae-mediated bulk-flow fluid transcytosis
allows free mobility of toxic substances and accumulation into the
brain of plasma proteins that notably include immunoglobulins,
albumin, laminin, thrombin and ferritin, collectively leading to
neuroinflammation, neuronal death and functional impairment
(Zlokovic, 2010).

Other important endothelial players are involved in vascular
responses to stroke. Rho-associated coiled-coil kinase (ROCK),
a downstream effector of the small GTPase RhoA, is a major
regulator of endothelial function (van Nieuw Amerongen
et al., 2003; Allen et al., 2010; Mikelis et al., 2015; De Silva
et al., 2016) and is involved in the pathogenesis of vascular
diseases (Yao et al., 2010; Hartmann et al., 2015; Kajikawa
et al., 2015). ROCKs belong to the serine-threonine family
of kinases, with two isoforms (1 and 2) that play different
pathophysiological roles (Hartmann et al., 2015). Both ROCK1
and ROCK2 are expressed in ECs (Montalvo et al., 2013), and
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ROCK2 is abundantly found in the brain (Nakagawa et al.,
1996) where it plays a pivotal role in endothelial homeostasis.
ROCKs play integral roles in cell adhesion, migration and
proliferation (Riento and Ridley, 2003) and when activated
by RhoA it regulates assembly of the actin cytoskeleton and
smooth muscle cell contractility (Noma et al., 2012). In
rodent tMCAo, ischemia-reperfusion promotes RhoA/ROCK
signaling (Cui et al., 2013; Canazza et al., 2014). Pathological
RhoA/ROCK2 activation in ECs promotes the association
between endothelial NO synthase (eNOS) and cav-1 and their
translocation to membrane caveolae compartments (Zhu et al.,
2003) where eNOS is inhibited (Ju et al., 1997; Drab et al., 2001;
Ming et al., 2002), which might in turn impair permeability
(Siddiqui et al., 2011). In vivo evidence from pharmacological
studies in mice show that non-selective inhibition of ROCKs
following tMCAo exerts neurovascular protection by significantly
reducing lesion volumes and improving CBF, in an endothelium-
dependent manner (Rikitake et al., 2005; Shin et al., 2007;
Sugimoto et al., 2007; Satoh et al., 2010; Vesterinen et al.,
2013). Non-selective inhibition of ROCKs by hydroxyfasudil
also attenuates early BBB disruption following intracerebral
hemorrhage in rats (Fujii et al., 2012; Fu et al., 2014). Selective
pharmacological ROCK2 inhibition by KD025 (SLx-2119) was
recently demonstrated as efficacious and safe acutely after
tMCAo in mice (Lee et al., 2014). ROCK also directly inhibits
expression of eNOS (Nos3) by decreasing the mRNA stability
of eNOS (Noma et al., 2012). Interestingly, expression and
activity of eNOS are constitutively enhanced in brain ECs
from heterozygous ROCK2 knockout (Rock2+/−) mice that
display reduced infarct volume following tMCAo (Hiroi et al.,
2018). Accumulating in vitro evidence also shows that increased
expression and activity of ROCKs in ECs account for ischemia-
induced barrier dysfunction, for instance following oxygen-
glucose deprivation (OGD) (Allen et al., 2010; Gibson et al.,
2014; Yang et al., 2016). Pathological activation of ROCK2 also
promotes oxidative stress (Rivera et al., 2007; Soliman et al.,
2012), and pharmacological blockade of ROCKs reduces OGD-
induced hyperpermeability via inhibition of endothelial oxidative
stress (Gibson et al., 2014).

As a result of a tightly sealed BBB, brain ECs express
specialized transporter proteins on both their luminal and
abluminal surfaces. Efflux transporters, primarily localized
on the luminal surface, include ATP-binding cassette (ABC)
transporters, the multidrug resistance transporter P-glycoprotein
(Pgp) and several multidrug resistance-associated proteins
(MRPs) that work together to reduce penetration of toxic
compounds into the brain (Shen and Zhang, 2010). Among
many other transport systems, brain ECs also express the glucose
transporter-1 (GLUT1), involved in delivering glucose into the
brain (Winkler et al., 2015; Tang M. et al., 2017; Vaudano et al.,
2017). For instance, isolated bovine brain capillaries subjected to
an OGD paradigm displayed decreased Pgp and MRP expression
after 24 h of reoxygenation (Tornabene et al., 2019). Interestingly,
vitamin E α-tocotrienol was reported as protective against
tMCAo in mice through upregulation of MRP-1, resulting in an
increase in efflux of toxic oxidized glutathione (Park et al., 2011).
In this study, the authors investigated the effects of α-tocotrienol

on neuronal MRP-1, but the role of endothelial MRP-1 in the
context of ischemia/reperfusion remains to be explored.

Cerebral ECs also express a wide array of ion transporters
and channels, asymmetrically distributed between the luminal
and abluminal plasma membranes. This polarized arrangement
of channels and transporters allows ECs to participate in the
regulation of brain interstitial fluid volume and composition.
During the early hours following ischemic stroke in animal
models, edema builds up via processes involving stimulation of
EC ion transporters on the luminal side and increased secretion
of Na+, Cl−, followed by water from the blood stream into the
brain across the BBB (O’Donnell, 2014). These transporters also
represent possible targets for therapeutic intervention in stroke
(O’Donnell, 2014; Brzica et al., 2017).

As mentioned earlier, endogenous mechanisms recruited
following brain ischemia have detrimental effects on the brain
vasculature (Beck and Plate, 2009). Vascular endothelial growth
factor (VEGF) is a potent inducer of microvascular permeability
(Dvorak, 1995; Zhang et al., 2002) via rapid (within minutes)
stimulation of caveolae-mediated transcytosis (Feng et al., 1999;
Chen et al., 2002). Moreover, oxidative stress is promptly
elevated in the peri-infarct region (Carbonell and Rama, 2007;
Shi and Liu, 2007; Pradeep et al., 2012; Rodrigo et al.,
2013) and represents a major cause of vascular dysfunction
through neutralization of NO by reactive oxygen species. This
decreases NO bioavailability and inhibition of its modulatory
role in angiogenesis and vascular reactivity (Nedeljkovic et al.,
2003; Park et al., 2005; Fisher, 2008; Xu C. et al., 2016;
van Leeuwen et al., 2020). Interestingly, in patients with
acute stroke, low NO levels following stroke correlate with
outcome severity (Rashid et al., 2003). Oxidative stress also
induces vascular hyperpermeability through oxidant-induced
phosphorylation of cav-1 and increased caveolae-mediated
transcytosis in ECs in culture (Takeuchi et al., 2013). Altogether,
these mechanisms contribute to the early-onset vascular injury
observed in the peri-infarct region (Haley and Lawrence, 2016;
Nahirney et al., 2016).

Collectively, these studies reveal a high complexity at the level
of the BBB, which raises challenges but also new opportunities
for stroke therapy (Abdullahi et al., 2018; Liberale et al.,
2020). Recent publications are unmasking novel endothelial
metabolic pathways that are conserved across diseases and
species (Rohlenova et al., 2020). Interestingly, Munji et al. (2019)
recently investigated brain EC transcriptomic changes in four
different brain injury models associated with BBB disruption:
permanent MCAo (coagulation of the distal portion of the
left middle cerebral artery), experimental encephalomyelitis,
traumatic brain injury and kainate-induced seizures (Munji
et al., 2019). Remarkably, 2 days following injury onset, when
the most severe BBB dysfunction was observed, 54 common
genes were upregulated in all four injury models, and 136
genes appeared upregulated in at least three models. These
include genes that regulate leukocyte trafficking and proteolytic
cleavage of ECM. Multiple members of several gene families
were upregulated: extracellular proteases of the Serpin family
(Serpine1 and Serping1), Adams and Adamts families (Adam12,
Adam19, Adamts4, and Adamts8), collagens (Col1a1, Col1a2,
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Col3a1, Col5a1, Col5a2, and Col12a1), centromere proteins
(Cenpe and Cenpf), Igf-binding proteins (Igfbp4 and Igfbp5),
kinesins (Kif11, Kif15, and Kif20b), lysyl oxidases (lox, Loxl2,
and Lox3), sulfatases (Sulf1 and Sulf2), thrombospondins
(Thbs1 and Thbs2), and pleckstrin domain-containing genes
(Plekho1 and Plekho2). Taken together, BBB dysfunction-
induced changes in gene expression affect cell division, blood
vessel development, inflammatory response, wound healing,
leukocyte migration and focal adhesion, highlighting a role
for angiogenesis and inflammation in this response (Munji
et al., 2019). In addition, mesenchyme homeobox 1 (Meox1),
placental growth factor (pgf) and insulin-like growth factor
binding protein 4 and 5 (Igfpb4 and 5) were among the genes
associated with angiogenesis and upregulated following stroke
(Freitas-Andrade et al., 2012; Smith et al., 2018; Wu et al.,
2018; Munji et al., 2019). The authors also found that, in each
disease model, brain ECs acquired a “peripheral” (i.e., leakier)
endothelial gene expression profile. These findings highlight the
importance of transcriptomic studies that reveal novel pathways
involved in brain endothelial dysfunction and unmask common
pathways that may be significant targets for stroke therapy. Of
note, while this elegant study provides invaluable molecular
insights into BBB dysfunction, the animals used for MCAo
were all young, 2–3-month-old males (Munji et al., 2019).
Limitations related to the age of animal models are discussed
later in this review.

Effects of Stroke on Endothelial Cell Function
Endothelial cells are master regulators of neurovascular coupling
and CBF (defined as the blood volume that flows per unit
mass or volume of brain tissue per time unit) in the healthy
brain, in particular through production of vasodilatory NO
via eNOS (Yamada et al., 2000). However, other factors
produced by ECs such as, epoxyeicosatetraenoic acids (EETs),
prostacyclin as well as endothelium-derived hyperpolarizing
factor (EDHF) can also trigger vasodilation (Kisler et al.,
2017). For example, mechanical shear stress in vessel lumen
activates EC production of arachidonic acid (AA) and its
metabolic products EETs via cytochrome P450 activity, and
prostacyclin via cyclooxygenase 1 (COX1) activity. These by-
products act on the surrounding vascular smooth muscle
cells (VSMCs) and induce vasodilation (Kisler et al., 2017).
Under pathological conditions, dysregulation of eNOS activity
is involved in cardiovascular disease, vascular aging, vascular
dementia and stroke (Huang et al., 1995; Lange-Asschenfeldt
and Kojda, 2008; Sawada and Liao, 2009; Toda et al., 2009;
Toda, 2012; Zhu et al., 2016; Wang et al., 2018). eNOS is
constitutively expressed in ECs, briefly activated by increases in
intracellular calcium, and underlies agonist (e.g., acetylcholine)-
induced endothelium-dependent vasodilation. NO released by
ECs triggers relaxation of VSMCs, and a partial modulation
of eNOS is sufficient to induce large changes in CBF
(Samdani et al., 1997).

Ischemic stroke, resulting in acute loss of regional CBF,
rapidly initiates vascular remodeling via eNOS (Liu et al.,
2014; Hoffmann et al., 2015; Lapi and Colantuoni, 2015;
Prakash and Carmichael, 2015). Following MCAo in rats, while

eNOS inhibitors reduce CBF and increase infarct volume,
intra-arterial administration of NO donors increases CBF
and decreases infarct volume (Dalkara and Moskowitz, 1994;
Dawson, 1994; Iadecola, 1997). As such, eNOS activation
is considered neuroprotective (Zhu et al., 2016). The Statin
class of drugs, which upregulate eNOS, have neuroprotective
properties in experimental animal models of stroke (Vaughan
and Delanty, 1999). The upregulation of eNOS by Statins
is mediated by inhibition of small GTPase RhoA (Sawada
and Liao, 2009), reducing activation of RhoA’s downstream
effector ROCK2 (Hao et al., 2016; Tang F. C. et al., 2017).
Using pharmacological intervention to directly target eNOS
function might represent an interesting avenue to promote stroke
recovery. This is important as direct eNOS modulation may
prevent expansion of penumbral cell death, a notorious clinical
problem. The effects of eNOS enhancers on stroke recovery
have not yet been tested in animal models of stroke. AVE3085
and AVE9488 are small-molecule eNOS enhancers that are
protective in rodent models of cardiovascular disease, including
heart failure, myocardial infarction and diabetes (Bauersachs
and Widder, 2008; Fraccarollo et al., 2008; Wohlfart et al.,
2008; Frantz et al., 2009; Schafer et al., 2009; Cheang et al.,
2011). These therapeutic benefits were attributed to ameliorated
endothelial function via increased NO bioavailability and reduced
oxidative stress.

In the cerebral vasculature, direct intercellular
communication through gap junctions is instrumental, as
synchronization of VSMCs and ECs along the vessel is required
for proper vasomotor tone. Indeed, the low electrical resistance
of these channels allows for faster signaling over long distances
such as retrograde propagation of dilation to upstream arteries;
gap junctions are hence critical in conducting a hyperpolarizing,
electrical wave between ECs that modulates vascular tone
(Behringer and Segal, 2012). Gap junction communication
between the endothelium and astrocytes, as well as between ECs
and pericytes, mediate neurovascular coupling and vasomotor
control, respectively (De Bock et al., 2017; Pohl, 2020). For
example, several endothelial signaling factors that control
vasomotor function, such as prostacyclin and NO, rely on the
increase in endothelial intracellular Ca2+ concentration. Gap
junctional transfer of Ca2+ (or Ca2+ releasing compounds)
plays an important role in controlling endothelial-dependent
vasomotor function (Pohl, 2020). Under stroke conditions, this
finely tuned coupling between cells is disrupted (Bolon et al.,
2005; Yu et al., 2010). The role of endothelial gap junctions in
CBF after stroke remains to be fully elucidated.

Collateral vascular remodeling, a process known as
arteriogenesis, is initiated by fluid shear stress rather than
hypoxia (Nishijima et al., 2015). ECs lining the collateral
vasculature detect increased flow shear stress, which triggers
the expression of transient receptor potential cation channel,
subfamily V, member 4 (Trpv4) (Schierling et al., 2011).
This mechanosensitive Ca2+ channel has been shown to induce
significant collateral growth length and diameter in rats subjected
to bilateral common carotid artery occlusion. Indeed, proper
collateral vascular responses in stroke can significantly affect
stroke outcome and mortality (Kimmel et al., 2019; Nannoni
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et al., 2019). However, current understanding of collateral vessel
dynamics is not clear; interestingly, a recent study reported that
collateral vessels have distinct endothelial and smooth muscle cell
phenotypes (Zhang et al., 2019). Understanding the molecular
factors that govern collateral responses to brain injury may
illuminate new avenues for therapeutic approaches.

Effects of Stroke on Pericytes
Effects of Stroke on Pericyte Structure
Pericytes are cells located within the basement membrane
surrounding cerebral capillaries, and are in intimate contact with
ECs through gap junctional complexes, called peg-socket contacts
where the basement membrane is absent (Figure 1B). Pericytes
represent a heterogeneous cell population with differences in
morphology, location within the vascular tree and function
(Winkler et al., 2014). Pericyte subtypes include ‘mid-capillary’
pericytes in the vast majority of the capillary bed, ‘transitional’
pericytes close to VSMCs and ‘stellate’ pericytes on post-capillary
venules (Hartmann et al., 2020). Whether different pericyte
subtypes have different functions, for example regulation of
BBB permeability or control of CBF remains to be determined
(Kisler et al., 2017).

Pericytes can constrict or relax, affecting capillary diameter,
as discussed later in this review. Pericytes also promote vascular
stability (Nishioku et al., 2009; Thomas and Augustin, 2009;
Bell et al., 2010) and secrete basement membrane components
(Virgintino et al., 2007). Studies have also underscored the
importance of pericytes in modulating BBB integrity (Armulik
et al., 2010; Daneman et al., 2010). Daneman et al. (2010)
demonstrated that pericytes do not induce BBB-specific genes
in ECs, but rather inhibit the expression of genes that
promote vessel permeability. Pericytes have also been shown
to affect functional aspects of the BBB, controlling both the
structure of TJs and the rate of vesicular trafficking. Lack
of pericytes (pericyte coverage between 20 and 40%) resulted
in increased BBB permeability to water and a range of
tracers of different molecular weights via increased endothelial
transcytosis (Armulik et al., 2010). Similarly, a study using
pericyte-specific Cre line crossed with mice carrying Cre-
dependent human diphtheria toxin receptor showed that 40%
pericyte coverage resulted in circulatory failure including BBB
disruption, development of vasogenic edema and loss of CBF
(Nikolakopoulou et al., 2019).

Following stroke, pericytes play a role in BBB remodeling
and vessel stability (Su et al., 2019). Pericytes were shown
to migrate away from brain microvessels in the first 2 h
after occlusion of the internal carotid artery in cats (Gonul
et al., 2002). Following photothrombotic occlusion of superficial
cortical capillaries in mice, it was demonstrated that ischemia
resulted in rapid activation of matrix metalloproteinase-9 (MMP-
9) and plasma leakage at places where pericyte somata adjoined
the capillary wall (Underly et al., 2017). The authors postulated
that MMP-9 secreted from pericyte somata degraded underlying
TJ complexes. This process was suggested as an intermediate
step between leakage by transcytosis (transcellular leakage) and
eventual TJ degradation (paracellular leakage). An important

point raised by the authors, which would support findings
from Gonul et al. (2002), is that pericytes may use MMP-
9 to actively migrate from the endothelium to participate in
revascularization (Underly et al., 2017). In addition, activation
of PDGFR-β and Ang1/Tie2 signaling pathways are triggered by
ischemic stroke, enhancing pericyte survival as well expression
of TJ proteins in ECs, as reviewed elsewhere (ElAli et al.,
2014). Finally, the control of endothelial transcytosis by pericytes
following stroke requires further investigation. It has been
proposed that pericytes may regulate transcytosis via expression
of MFSD2A in brain ECs (Ben-Zvi et al., 2014; Keaney and
Campbell, 2015; Sweeney et al., 2016; Chow and Gu, 2017).
Importance of this cell–cell interaction in stroke remains
to be comprehended, particularly in light of a recent study
demonstrating the protective role of MFSD2A upregulation in
rodent SAH (Zhao et al., 2020).

Effects of Stroke on Pericyte Function
The role of pericyte-dependent CBF regulation at the level
of capillaries is currently debated, pericytes have the capacity
to contract or relax, affecting capillary diameter in various
physiological or pathological conditions (Hall et al., 2014; Hill
et al., 2015; Cai et al., 2018). They possess the machinery
necessary for cytoskeletal plasticity, including alpha-smooth
muscle actin (α-SMA), tropomyosin and myosin. Pericytes are
also sensitive to direct electrical stimulation or to neuronal
activity via transmitters including NO, glutamate, noradrenalin,
PGE2 or ATP (Peppiatt et al., 2006; Puro, 2007; Hall et al.,
2014), and they respond by changes in intracellular Ca2+ by
relaxation or constriction around the endothelium (Kawamura
et al., 2003, 2004). A recent study reported that genetic
ablation of pericytes in the mouse cerebral cortex correlated
with 50% reductions in CBF responses to sensory stimulation
(Kisler et al., 2020). A study by Hartmann et al. (2020)
elegantly demonstrated, using two-photon live imaging, that
optogenetic stimulation of pericytes decreased lumen diameter
and CBF, but with slower kinetics than mural cells from
upstream vascular beds.

The reactivity of pericytes is affected by stroke. Both
physiological hypoxia and short-term hypoxia after stroke
induce pericyte relaxation, a process modulated by PDGF-
β, ATP, NO, and oxygen (Arimura et al., 2012; Cai et al.,
2017). However, sustained hypoxic-ischemic damage leads
to constriction and death of pericytes. Fernandez-Klett
et al. (2013) reported that pericytes are rapidly lost 24 h
after cerebral ischemia in both experimental (1-h tMCAo)
and human stroke. In vivo, pericyte constriction/injury
following ischemia-reperfusion was attributed to increased
oxidative stress (Shojaee et al., 1999; Yemisci et al., 2009).
OGD-induced ischemia in rat cerebellar slices triggered
capillary constriction by pericytes followed by pericyte death,
similarly 90 min of tMCAo in rats led to increased pericyte
death in the lesioned hemisphere (Hall et al., 2014). Loss
of pericytes also have profound effects on neurotrophic-
dependent neuronal survival. This was demonstrated by
genetic ablation of pericytes resulting in loss of pleiotrophin
(PTN) expression; PTN is a pericyte-secreted growth factor
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and loss of this factor contributed to neuronal death in
this study (Nikolakopoulou et al., 2019). Hence, pericytes
can play a detrimental role in ischemia-reperfusion injury
and thus represent a promising therapeutic target, as
reviewed elsewhere (Cai et al., 2017; Su et al., 2019;
Uemura et al., 2020).

Effects of Stroke on Astrocytes
Effects of Stroke on Astrocyte Structure
Located between synapses and capillaries, astrocytes extend
processes that physically link neighboring neurons with their
surrounding blood vessels (Figure 1), allowing them to sense
changes in the neuronal microenvironment and adjust the
microvasculature accordingly (Attwell et al., 2010; Gordon
et al., 2011; He et al., 2012). Several lines of evidence have
implicated astrocytes in promoting and modulating the BBB
identity of brain ECs (Abbott et al., 2006; Al Ahmad et al.,
2011). In brief, perivascular astrocytes increase the tightness of
TJs (Lee et al., 2003), promote the expression and localization
of endothelial transporters (McAllister et al., 2001) and induce
the expression of enzymes associated with the metabolic
endothelial barrier (Abbott et al., 2006). Astrocytes are critical
to neuronal survival and repair, a large part of this function
being mediated through gap junction proteins that connect
astrocyte networks into a cooperative functional syncytium (De
Bock et al., 2017; Laird et al., 2017; Freitas-Andrade et al., 2019;
Freitas-Andrade et al., 2020).

Generally, astrocytes are more resistant to hypoxic conditions
than other CNS cells (Anderson and Nedergaard, 2003; Chen
and Swanson, 2003). However, they are highly vulnerable
to the coupling of acidosis and hypoxia during cerebral
ischemia (Bondarenko and Chesler, 2001). In cell culture
and in vivo, differences in sensitivity to hypoxia have been
reported between different populations of astrocytes from
different parts of the brain (Zhao and Flavin, 2000; Lukaszevicz
et al., 2002; Shannon et al., 2007). Indeed, astrocytes differ
between various regions of gray matter, or within a single
brain region (Molofsky et al., 2012; Tsai et al., 2012; Clavreul
et al., 2019; Batiuk et al., 2020). Astrocytes express gap
junction proteins (Belliveau and Naus, 1994), neurotransmitter
receptors, transporters (Zhou and Kimelberg, 2001; Matthias
et al., 2003) and ion channels (Verkhratsky and Steinhauser,
2000). These specific molecular characteristics allow astrocytes
to fulfill a range of homeostatic functions. However, this
molecular diversity may bestow, to some astrocyte subtypes,
vulnerabilities to stroke. One can also postulate that astrocytes
are regulated by different cell types. For example, in a
recent study, rats were subjected to global cerebral ischemia,
performed by cardiac arrest of 10 min duration, then allowed
to survive 2 years post-ischemia. After the 2 years, the
authors found that in the hippocampal CA1 and CA3, and
in the motor cortex, co-activation of both microglia and
astrocytes was significant; however, in the resistant brain areas
(that is, the dentate gyrus, sensory cortex, striatum, and
dorso-lateral nucleus of the thalamus), significant activation
was observed for astrocytes only (Radenovic et al., 2020).

Similarly, in mice subjected to permanent MCAo, pericytes
within the infarct area produced trophic factors activating
astrocytes, thereby enhancing peri-infarct astrogliosis (Shibahara
et al., 2020). This interplay between astrocyte and microglial
and/or pericytes following ischemia remains elusive. Emerging
technologies such as single-cell RNA sequencing, coupled with
quantitative transcriptional genome-profiling, could molecularly
define astrocytic subtypes and unmask mechanisms that affect
astrocyte sensitivity to stroke.

In pathological conditions such as stroke, astrocyte survival
has been correlated with neuronal survival (Chen and Swanson,
2003). Astrocytes secrete neurotrophic factors and, along with
perivascular stromal cells, minimize damage to neighboring
cells through formation of a glial scar (Krum et al., 2008;
Fernandez-Klett et al., 2013). However, the glial scar can
also be detrimental to functional recovery, by acting as a
barrier to neuronal regeneration (Beck et al., 2008). Under
ischemic conditions, astrocytes also secrete pro-angiogenic
factors that promote the growth of new capillaries toward
the infarcted tissue (Chow et al., 2001). Following brain
injury, astrocytes upregulate glial fibrillary acidic protein
(GFAP), an intermediate filament involved in astrocyte
activation (Li et al., 2008). Interestingly, mice exposed to 1
hr of tMCAo coupled with a novel live imaging approach,
Cordeau et al. (2008) reported that GFAP upregulation
following ischemic brain injury may not have the same
functional significance in male versus female mice (Cordeau
et al., 2008). The authors showed that chronic estrogen
deprivation (40 days after ovariectomy) resulted in a significant
increase in GFAP upregulation in astrocytes after 24–72 h
after reperfusion, compared with mice that were subjected
to only 14 days of estrogen deprivation. However, the
extent to which sexually dimorphic mechanisms affect
astrocytic responses to stroke requires further investigation
(Roy-O’Reilly and McCullough, 2018).

Effects of Stroke on Astrocyte Function
Astrocytes play important roles in homeostatic control of
arterial blood pressure and CBF (Marina et al., 2020). Astrocytes
are intimately associated with tens of thousands of synapses
through highly ramified branches (Fields et al., 2015) and
modulate CBF in response to synaptic activity (Anderson
and Nedergaard, 2003). Astrocytes express metabotropic
glutamate receptors (mGluRs) and sense glutamate release
from synaptic clefts, and activation of mGluRs induces an
increase in intracellular Ca2+ concentration spreading to
the astrocytic endfeet (Zonta et al., 2003). These increases in
Ca2+ concentration induce release of vasoactive factors from
astrocytic endfeet and are dependent on the metabolic state of
the neuronal microenvironment (Mulligan and MacVicar, 2004;
Gordon et al., 2008).

Following stroke, profound functional changes occur at the
level of astrocytes, which significantly affects neurovascular
coupling. At the cellular level, post-stroke astrogliosis is
noticeable around brain vessels (McConnell et al., 2019). At
the molecular level, intracellular factors in astrocytes affect
their ability to respond to neurometabolic needs. For instance,
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Howarth et al. (2017) demonstrated a novel mechanism
of CBF regulation involving astrocytes and dependent on
glutathione, a factor that is substantially reduced after stroke.
When glutathione levels are reduced in conditions such as
stroke, Ca2+-evoked release of PGE2 by astrocytic endfeet was
decreased and vasodilation inhibited, an effect dependent of
microsomal prostaglandin E synthase-1, downstream of COX-1
(Howarth et al., 2017).

A critical factor contributing to decreased CBF following
stroke and implicating astrocytes are injury depolarizations, also
known as Cortical Spreading Depressions or CSDs (Takano et al.,
2007; Attwell et al., 2010). CSDs are slowly propagating waves
of neuronal and glial depolarization (Lauritzen et al., 2011;
Ayata and Lauritzen, 2015) that spontaneously occur within
minutes after ischemic stroke and originate from the peri-infarct
region (Dreier, 2011; Lauritzen et al., 2011; Kao et al., 2014;
Lauritzen and Strong, 2016; Kirov et al., 2020). CSDs impair
recovery in rodent stroke models (Risher et al., 2010; von
Bornstadt et al., 2015) and correlate with clinical deterioration
in stroke patients (Nakamura et al., 2010; Lauritzen and Strong,
2016). In the rat cerebral cortex, CSDs were shown to increase
the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE)
which is generated in astrocytes from arachidonic acid, and
known to induce constriction of VSMCs (Attwell et al., 2010;
Fordsmann et al., 2013). It was postulated that 20-HETE secreted
by astrocytes could have a significant impact on vascular function
during stroke (Attwell et al., 2010). Astrocytic gap junctions have
also been implicated in propagating CSDs and brain damage
(Martinez and Saez, 2000; Rovegno and Saez, 2018).

Collectively, these studies show that cellular and molecular
mechanisms normally associated with astrocytic regulation of
CBF are hijacked following stroke. Dissection and understanding
of these mechanisms represent another critical avenue for
stroke research.

Effects of Stroke on Microglia
Microglia play critical roles in both innate and adaptive
immune responses in the CNS. They vigilantly monitor their
microenvironment and perform homeostatic functions that are
necessary for proper brain homeostasis (Nimmerjahn et al.,
2005; Wake et al., 2009). Microglia are also involved in brain
development, playing important roles in synaptic pruning,
modulation of neurogenesis and myelination, as reviewed
elsewhere (Tremblay et al., 2011; Wu et al., 2015; Hammond
et al., 2018). A recent study using single cell transcriptomics
discovered that mouse microglia are far more diverse than
originally thought, comprising distinct subpopulations with
unique molecular signatures (Hammond et al., 2019). While
microglial ablation in the mature mouse brain does not
affect BBB function (Parkhurst et al., 2013; Haruwaka et al.,
2019), microglia can modulate BBB integrity in opposite ways
during inflammation.

Following ischemic or hemorrhagic stroke, microglia
dynamically transition into a reactive state (Eldahshan et al.,
2019; Rawlinson et al., 2020). The initial leakage of blood
serum components such as fibrinogen induces local activation
of microglia. Microglia are finely tuned to sense any small

disturbance in the BBB (Hines et al., 2009; Petersen et al.,
2018), and their recruitment to blood vessels occurs within 6 h
of reperfusion with significant accumulation in perilesional
tissue. After 24 h of reperfusion, microglia fully enwrap small
blood vessels in the peri-infarct region (Jolivel et al., 2015).
Individual perivascular microglia displayed intracellular vesicles
containing CD31-positive inclusions, suggesting phagocytosis
of brain ECs, which was correlated with BBB breakdown as
shown by the extravasation of Evans blue from perfused vessels.
At 72 h post-MCAo, blood vessel degradation was complete
and remaining vascular debris were cleared by microglia and
invading immune cells (Jolivel et al., 2015). Following stroke,
reactive microglia also secrete MMP-9 and MMP-3, proteases
that can break down the basement membrane surrounding
brain–blood vessels and exacerbate BBB leakage (Yenari et al.,
2010), as discussed below.

Following ICH, blood invading the brain parenchyma induces
a rapid inflammatory response from microglia. Activated
microglia develop into an M1-like phenotype resulting in
production of pro-inflammatory cytokines such as [interleukin
(IL)-1β, IL-6, IL-12, IL-23, tumor necrosis factor alpha (TNF-
α)], chemokines, redox molecules (NADPH oxidase, phagocyte
oxidase, inducible NO synthase), costimulatory proteins (CD40),
and major histocompatibility complex II (MHC-II) (Zhang et al.,
2017). In the acute phase of ICH, both in the clinical and
experimental rodent models, proinflammatory factors are present
in the brain starting 3 h after ICH and peaking at 3 days. Due
to their proinflammatory phenotype, M1 microglia are linked to
short-term brain damage. Within 1 week, a M1-to-M2 microglial
phenotypic switch occurs (Lan et al., 2017). M2-like microglia are
associated with anti-inflammatory and phagocytic functions and
assist in the clearance of the haematoma. Microglia can also be
activated by IL4/IL3 to the M2 polarization state, which produces
anti-inflammatory mediators IL-10, transforming growth factor
beta (TGFβ), and glucocorticoids (Zhang et al., 2017). Several
factors have been implicated in inducing microglial polarization
including, nuclear factor-κB (NF-κB), signal transducer and
activator of transcription (STAT1–STAT6), high mobility group
protein B1 (HMGB1) as well as PGE2 (Lan et al., 2017). Finally,
studies have shown that age, environmental factors and sex
differences can influence microglial responses and polarization
to injury (Crain et al., 2013; Bisht et al., 2016; Lan et al.,
2017). Taken together, this shows that various conditions may
have a profound impact on the responsiveness of microglia
following stroke.

Effects of Stroke on Perivascular
Macrophages
Although different from microglia, the function of brain
perivascular macrophages (PVMs) are of growing interest
in stroke research. PVMs are myeloid cells located in the
perivascular space surrounding cerebral blood vessels (Faraco
et al., 2017). In the healthy brain, PVMs contribute to BBB
integrity and help regulate infiltration of large molecules into
the brain through scavenger activity (Mendes-Jorge et al., 2009).
PVMs have largely been implicated in their role as scavengers in
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the context of Alzheimer’s disease and CNS infection, however,
there is increasing evidence for their role in the regulation
of CBF, vascular function and stroke pathogenesis. Depletion
of PVM has been shown to prevent changes in vascular
structure associated with chronic hypertension (Pires et al., 2013).
Additionally, PVMs were shown to promote BBB degradation
through ROS production in a mouse model of hypertension,
which could be reversed by depleting PVMs, effectively
reducing oxidative stress, improving CBF dysfunction, restoring
neurovascular coupling, and rescuing cognitive impairment
(Faraco et al., 2016). In post-mortem tissues, cells positive for
the PVM marker CD163 were found accumulated in brains
with ischemic, but not hemorrhagic, lesions (Holfelder et al.,
2011). Furthermore, CD163-positive cells isolated from rats
following 1-h tMCAo followed by 16-h reperfusion showed
upregulation of the HIF-1 pathway, as well as of genes encoding
the ECM and leukocyte chemoattractants (Pedragosa et al.,
2018). Depletion of PVMs reduced granulocyte infiltration, BBB
permeability and VEGF expression (Pedragosa et al., 2018).
Because VEGF promotes migration of cells to participate in
angiogenesis, it is possible upregulation of HIF-1 and VEGF
by PVMs is pathological in the acute phase following ischemic
stroke. It has been hypothesized that activation of PVMs in
cerebrovascular pathologies may initially be protective through
their phagocytic activity, but may in turn be detrimental with
repeated long-term activation (Koizumi et al., 2019). Further
research is required to fully elucidate the role of PVMs in the
context of stroke.

Effects of Stroke on the Basement
Membrane
The basement membrane forms a three-dimensional protein
network composed of laminins, collagen, nidogen and heparan
sulfate proteoglycans (HSPGs) that mutually support interactions
between ECs, pericytes and astrocytes (Figure 1) (Thomsen et al.,
2017). The basement membrane functions as a second barrier,
limiting movement between the blood and the brain. At the NVU,
ECs, astrocytes and pericytes synthesize and deposit different
laminin isoforms in the basement membrane, which have been
shown to modulate BBB function (Gautam et al., 2016, 2019).
Penetrating arteries and parenchymal arterioles are surrounded
by a basement membrane composed of two distinct entities:
the basement membrane produced by the endothelium, and
the parenchymal membrane located between vascular smooth
muscle cells (VSMCs) and astrocytes, produced by pial cells
and astrocytic endfeet. Pericytes also contribute to basement
membrane formation by producing and secreting ECM proteins
(Yao, 2019).

Several lines of evidence suggest that integrin matrix adhesion
receptors expressed by ECs and astrocytes exhibit dynamic
cellular influences (Milner et al., 2008; McCarty, 2020). In
addition, matrix adhesion by endothelial β1-integrin receptors
affect claudin-5 expression and regulate BBB permeability (Osada
et al., 2011). Interestingly, studies have also indicated the
importance of the basement membrane in cerebrospinal fluid
regulation (Morris et al., 2016; Albargothy et al., 2018; Howe
et al., 2019). Impaired basement membrane integrity is a
significant contributor to neuronal loss after stroke.

The ECM of the basement membrane plays a role in limiting
the transmigration of erythrocytes during hemorrhage, and
of leukocytes during inflammation. Following ischemic stroke,
MMPs produced by activated ECs and pericytes degrade the
basement membrane (Thomsen et al., 2017; Kang and Yao,
2020). Other proteinases, including plasminogen activators,
heparinases and cathepsins also contribute to ECM degradation.
The proteolytic breakdown of ECM proteins such as laminin-5
or type IV collagen exposes cryptic epitopes that promote EC
and pericyte migration (Hangai et al., 2002). A recent study
highlighted the complex molecular cascades and plethora of
genes induced by stroke that are in relation to ECM and NVU
integrity (Aleithe et al., 2019). Aging is also an important factor
in basement membrane integrity after stroke. TGF-β signaling
in hypoxic astrocytes induces basement membrane fibrosis and
chronically impairs perivascular CSF distribution, specifically
in aged animals after permanent MCAo (Howe et al., 2019),
providing a new mechanism by which brain injury can lead to
prolonged functional impairment in the elderly.

Interestingly, disruption of astrocyte-derived laminin
expression resulted in spontaneous hemorrhagic stroke in
deep brain regions (basal ganglia), which are similarly affected
in human patients. Chen et al. (2013) generated conditional
knockout mice in which astrocytes do not express laminin γ1
chain, an essential subunit of most laminins (Durbeej, 2010).
Lack of astrocyte-derived laminin γ1 resulted in impaired VSMC
differentiation and decreased levels of contractile proteins in
VSMCs around small arteries and arterioles (diameter 8–20 µm),
but only in the striatum. The authors observed that while
mutant astrocytes throughout the brain did not produce laminin,
hemorrhaging occurred only in the basal ganglia. In the normal
brain, penetrating arteries and arterioles are surrounded by
a basement membrane composed of two distinct entities: the
basement membrane produced by the endothelium and the
parenchymal membrane. As arteries branch into small arteries,
and small arteries ramify into arterioles, the contribution of the
pia meninges decrease. At the capillary level, there are no pia
meninges, and the basement membrane between the astrocytic
endfeet and VSMC become very thin, at some points along the
capillary endfeet directly contact VSMCs or ECs (Yao, 2019).
It was postulated that, due to the close relationship between
astrocytes and VSMCs in the striatal vasculature, the lack of
astrocyte-derived laminins had a direct effect on the underlying
VSMCs within this brain region (Chen et al., 2013). In contrast,
this close relationship between astrocytes and VSMCs was not
observed in the cerebral cortex. The phenotype presented by the
transgenic animals appears similar to abnormalities found in
human hypertensive hemorrhagic patients in the striatum (Chen
et al., 2013). More recently, Gautam et al. (2020) demonstrated
in mutant mice lacking mural cell-derived laminin that the
latter attenuates BBB damage in ICH via decreasing caveolin-1
and transcytosis.

Following 6 h of tMCAo, basement membrane degradation
was observed 10 min after reperfusion, and basement membrane
loss was detected as early as 1–3 h after ischemia (Yao, 2019).
In a non-human primate study after middle cerebral artery
occlusion/reperfusion both MMP-2 and -9 are significantly
upregulated and digest ECM proteins of the basement
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membrane, affecting BBB integrity (Heo et al., 1999). A possible
harmful consequence of MMP-9 activation during acute stroke
treatment is that rtPA can leak out of the vessel through the
permeable BBB and substantially further enhance MMP-9 levels,
resulting in hemorrhage (Tsuji et al., 2005; Yao, 2019).

Cathepsin B and L proteases are enhanced soon after stroke
onset and degrade heparan sulfate proteoglycans (HSPGs)
(Becker et al., 2015). Reduction of HSPG has a dramatic
effect on the BBB, as the HSPG Agrin is known to stabilize
adherens junctions in mouse brain ECs (Steiner et al., 2014).
While proteases activated during stroke may have detrimental
effects during initial stages, they also play an important role in
angiogenesis and vascular remodeling (Thomsen et al., 2017).
MMPs are integral players in angiogenesis, breaking down
ECM proteins to facilitate endothelial tip cell and pericyte
migration. It has also been demonstrated that degraded fragments
of the HSPG Perlecan reduce neuronal death and infarct
volume, as well as enhance angiogenesis (Lee et al., 2011;
Bix et al., 2013).

Targeting MMPs has some potential therapeutic benefits
(Chaturvedi and Kaczmarek, 2014). Minocycline is a lipophilic
tetracycline and was shown to inhibit MMP-9 activity and
expression in rats subjected to 3 h of tMCAo (Machado
et al., 2006). In this study, minocycline was administered after
the stroke and given at a clinically relevant concentration
(intra-peritoneal minocycline 45 mg/kg). Although, the authors
did not show whether minocycline reduced infarct damage,
minocycline later appeared neuroprotective in several models
of brain injury (Naderi et al., 2020) with demonstrated efficacy
in acute stroke patients (Malhotra et al., 2018). Moreover,
as mentioned previously, MMP-9 has been associated with
hemorrhagic transformation in the setting of tPA therapy (Aoki
et al., 2002). MMP-9 is associated with BBB breakdown and
subsequent vasogenic edema, and an MMP-9 polymorphism was
shown to confer susceptibility to ischemic stroke in a Chinese
population (Jiang et al., 2020). HIBISCUS-STROKE is a cohort
study including acute ischemic stroke patients with large vessel
occlusion treated with mechanical thrombectomy following
admission magnetic resonance imaging (MRI) (Mechtouff et al.,
2020). In this study, MMP-9 levels were assessed to determine
whether it correlated with infarct growth and hemorrhagic
transformation. The study showed that MMP-9 levels measured
6 h after admission predicted infarct growth and hemorrhagic
transformation (Mechtouff et al., 2020).

In summary, sudden and sustained interruption of blood
flow to the brain induces dynamic highly complex cellular and
molecular responses in the NVU (Figure 1C and Table 1).
While the disruption at the NVU is catastrophic, the mechanisms
triggered by ischemia or hemorrhage are set in motion in order
to restore homeostatic balance. Increased BBB permeability and
basement membrane breakdown due to secretion of MMPs
by ECs, pericytes and astrocytes facilitate cell migration and
vascular remodeling. Fibrinogen and other blood components
leaking into the parenchyma activates microglia and promote
phagocytosis of cellular debris. Secreted factors by these cells
as well as components of the basement membrane induces
angiogenesis and capillary network formation after stroke.

Regulation of Angiogenesis Following
Stroke
Lessons From Developmental Biology
To gain further insight into angiogenesis in the injured/ischemic
adult brain, it is critical to understand developmental
angiogenesis, given that developmental processes are re-
activated following stroke (Lee et al., 2004; Gonzenbach and
Schwab, 2008; Milner et al., 2008).

Stroke triggers a complex set of cellular and molecular
responses that evolve from minutes to days. Energy supply
and ionic balance are immediately compromised in the
ischemic core, leading to rapid neuronal demise. Directly
surrounding the infarct core, the peri-infarct region (also
referred to as “ischemic penumbra”) is a territory that still
receives limited perfusion by collateral blood vessels. Due
to the inadequate blood supply, this peri-infarct region is
functionally silent, yet potentially salvageable (del Zoppo
et al., 2011). In the early 1990’s, a post-mortem study on
human brains demonstrated that stroke activates angiogenesis
mostly in the peri-infarct region, and a higher blood vessel
count correlated with longer survival time (Krupinski
et al., 1994). Subsequent human studies demonstrated a
correlation between improved stroke outcome and levels
of circulating pro-angiogenic factors (Lee et al., 2010;
Navarro-Sobrino et al., 2011).

During early development, brain vascularization is mediated
through ingression of blood vessels in the presumptive cerebral
cortex from a superficial vascular plexus, with hypoxia and
genetic programs as driving forces. Blood vessels within the brain
then sprout and expand into vast highly connected networks
and remodel into a complex vascular tree characterized by an
arterial and venous hierarchy (Carmeliet and Tessier-Lavigne,
2005; Tata et al., 2015). As brain tissue expands and oxygen
diffusion from neighboring capillaries is insufficient, a mild
hypoxia promotes activation of hypoxia-inducible transcription
factors (HIFs). HIFs are heterodimeric proteins consisting of
a constitutive subunit HIF-1β as well as either a HIF-1α or
HIF-2α subunit. HIF-1α and -2α subunits are rapidly degraded
in normoxia, which is initiated by the hydroxylation of two
conserved prolyl residues in the HIF-α subunits (Tomita et al.,
2003). When cellular oxygen concentration is reduced, HIF-
1α and -2α protein levels increase dramatically. More than
1,000 genes are directly transactivated by HIFs in response to
hypoxia (Semenza, 2014; Rattner et al., 2019). HIFs induce the
expression of angiogenic genes that act both on the nascent
cerebrovascular system, as well as developing neurons. The
intimate relationship between the vasculature and neurons is
established early during development. For example, signaling
factors associated with axonal guidance (Netrins, Semaphorins,
and Ephrins) as well as angiogenic factors (VEGFs) are
common signals orchestrating the regulation of both vessels
and neuronal development (Gu et al., 2005; Oh and Gu, 2013).
Detailed reviews about neuro-vascular development can be
consulted (Tam and Watts, 2010; Eichmann and Thomas, 2013;
Andreone et al., 2015; He et al., 2018; Paredes et al., 2018;
Coelho-Santos and Shih, 2020).
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TABLE 1 | Major features (non-exhaustive list) of structural and functional remodeling of the neurovascular unit following stroke.

Selected references

Structural NVU Remodeling

Ischemic Stroke – Reparative angiogenesis primarily in the peri-infarct.
– Biphasic BBB breakdown:

(1) Increased caveolae-mediated transcytosis.
(2) Tight junction breakdown.

– Secretion of MMPs by pericytes, ECs, and microglia promotes
degradation of the basement membrane and TJ disruption, leading,
to increased BBB permeability and edema.

– Secreted MMPs also facilitate angiogenesis and vascular
remodeling by promoting EC and pericyte migration.

– Basement membrane fibrosis induced by TGF-β.
– Astrocytes contribute to glial scar formation which is both beneficial

and detrimental to nearby cells.
– Astrocytes upregulate GFAP soon after stroke and secrete

neurotrophic and proangiogenic factors.
– Pericytes secrete trophic factors that contribute to astrogliosis.
– Leakage of blood-borne factors into brain parenchyma results in

rapid microglia activation that enwrap and phagocytose ECs in the
peri-infarct region.

Chow et al., 2001; Hangai et al., 2002; Beck et al., 2008; Krum
et al., 2008; Yu et al., 2010; Yenari et al., 2010; Jiao et al., 2011;
Ben-Zvi et al., 2014; ElAli et al., 2014; Knowland et al., 2014; Jolivel
et al., 2015; Choi et al., 2016; Nahirney et al., 2016; Thomsen
et al., 2017; Underly et al., 2017; Eldahshan et al., 2019; Howe
et al., 2019; Munji et al., 2019; Yao, 2019; Shibahara et al., 2020.

Hemorrhagic stroke – ECs proliferate around hematoma following ICH.
– BBB breakdown and tight junction disruption.
– Blood in parenchyma results in rapid microglia activation to a

pro-inflammatory phenotype, which eventually polarize to an
anti-inflammatory phenotype.

– Mutations in genes that encode basement membrane proteins are
associated with ICH.

– Loss of astrocyte-derived basement membrane proteins is
associated with hemorrhagic stroke in deep brain regions.

– MMP-9 implicated in hemorrhagic transformation following
treatment for ischemic stroke.

– VEGF can also increase BBB permeability, which may help
peripheral macrophages infiltrate into the brain.

Manoonkitiwongsa et al., 2001; Gould et al., 2006; Chen et al.,
2013; Fu et al., 2014; Lan et al., 2017; Zhang et al., 2017; Gautam
et al., 2020; Mechtouff et al., 2020.

Functional NVU Remodeling

Ischemic stroke – Acute loss of CBF initiates vascular remodeling via eNOS.
– Acute hypoxia induces pericyte relaxation, however, sustained

hypoxia leads to pericyte constriction and death.
– Functional changes in astrocytes significantly affect NVC.
– Decrease in glutathione impairs astrocytic regulation of CBF.
– Astrocytes implicated in propagating CSD and VSMC constriction

contributing to decreased CBF.
– Cell death of perivascular neurons exacerbates brain damage and

leads to neurovascular uncoupling.
– Hypoxia activates and stabilizes HIFs, upregulating VEGF signaling

and promoting angiogenesis.
– Angiogenic response provides a scaffold for neuronal regeneration,

mediated by neural precursor cells.

Marti et al., 2000; Attwell et al., 2010; Arimura et al., 2012;
Fernandez-Klett et al., 2013; Hall et al., 2014; O’Donnell, 2014;
Hoffmann et al., 2015; Reeson et al., 2015; Howarth et al., 2017;
Cai et al., 2018; Rovegno and Saez, 2018; McConnell et al., 2019;
Tornabene et al., 2019.

Hemorrhagic stroke – VEGF and its receptors upregulated persistently.
– Increased VEGF increases vessel density and improves stroke

outcome.
– Beneficial effects of VEGF mediated through aquaporin-4.
– Morphology of newly formed vessels resemble that of the

developing brain.

Josko, 2003; Tang et al., 2007; Chu et al., 2013; Sugimoto and
Chung, 2020.

Selected references are displayed. BBB, blood–brain barrier; TJ: tight junction; MMPs, matrix metalloproteinases; EC, endothelial cell; ICH, intracerebral hemorrhage;
NVC, neurovascular coupling; NVU, neurovascular unit; CBF, cerebral blood flow; CSD, cortical spreading depression; VSMC, vascular smooth muscle cell; HIF, hypoxia-
inducible transcription factors; VEGF, vascular endothelial growth factor.

Angiogenesis After Ischemic Stroke
Similar to the developing brain, low O2 levels increase the
stability and activity of HIFs in vulnerable cells of the peri-
infarct region, triggering angiogenesis from non-affected tissue
and pial vessels. New vessels grow through the hypoxic micro-
environment of the penumbra into the core of the infarct (Marti
et al., 2000). Post-stroke HIF activation induces the expression

of several angiogenic and inflammatory factors including VEGF.
Serum VEGF is significantly increased in ischemic stroke
patients (Dassan et al., 2012; Paczkowska et al., 2013), in
whom highest VEGF expression occurs 7 days post-stroke, and
remains significantly elevated 14 days after stroke (Slevin et al.,
2000; Matsuo et al., 2013). VEGF and its receptors (VEGFR-
1 and -2) play a central role in initiating CNS angiogenesis,
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stimulating endothelial cell survival, proliferation and migration.
In permanent MCAo mouse model, VEGF expression was
detected within the first 24 h after occlusion in hypoxic peri-
infarct tissues and in the pia above the infarcted area. Within
the same brain regions, VEGFR-1 and subsequently VEGFR-2
were increased 48 h after MCAo (Marti et al., 2000). After 48
and 72 h of ischemia, a dramatic increase in proliferating ECs
was measured within the peri-infarct area as well as the pial
surface. The authors reported that VEGFRs were induced mainly
in ECs, but that VEGFR-2 was also detected in hippocampal
neurons in both the ipsilateral and contralateral hemispheres,
suggesting that the VEGF/VEGFR pathway could be associated
with neuroprotection. Other studies using either permanent or
transient MCAo showed similar spatio-temporal dynamics in
VEGF/VEGFR expression (Plate et al., 1999; Beck et al., 2002).
Taken together, these studies indicate that ischemia is a significant
driving force of angiogenesis during the initial stages of stroke
and is mediated by VEGF and its receptors.

While VEGFR-1 is involved in attenuating the effects of
VEGF (Kearney et al., 2002; Meyer et al., 2006) and modulating
inflammatory responses (Cardenas-Rivera et al., 2019), VEGFR-
2 activation, induces intracellular pathways associated with EC
activation and neuroprotection. VEGFR-2-PI3K-Akt signaling
pathway was linked to neuronal survival and reduced infarct
size in mice subjected to 90 min of tMCAo (Kilic et al., 2006).
However, it was also shown that VEGFR-2 mediated PI3K-
Akt signaling induced BBB permeability (Kilic et al., 2006).
While the benefits of VEGF-dependent activation of VEGFR-
2 have been demonstrated, the detrimental effects on vascular
permeability are also well known (Zhang et al., 2002; Reeson
et al., 2015; Geiseler and Morland, 2018). Due to these contrasting
effects, the use of VEGF as a therapeutic strategy in stroke has
been challenging.

In addition, a role for ADAMTS13 in reparative angiogenesis
after ischemic stroke was recently discovered in vivo. Normally
after vascular injury, von Willebrand factor is secreted as
hyperactive ultralarge multimers that are rapidly cleaved by
ADAMTS13 into less reactive fragments (Crawley et al., 2011).
Following permanent MCAo, Adamts13−/− mice displayed
reduced neovascularization, reduced brain capillary perfusion, as
well as accelerated BBB breakdown (Xu et al., 2017).

Angiogenesis After Hemorrhagic Stroke
The two types of hemorrhagic stroke are: intracerebral
hemorrhage (ICH), defined as bleeding into the brain
parenchyma, and subarachnoid hemorrhage (SAH) caused
by bleeding into the cerebrospinal fluid (CSF)-containing sulci,
fissures and cisterns (Smith and Eskey, 2011). There are marked
differences in neurological cascade of events between ischemic
and hemorrhagic strokes (Qureshi et al., 2009). However, both
hemorrhagic and ischemic strokes share common angiogenic
mechanisms. Tang et al. (2007) demonstrated that angiogenesis
in rat brains subjected to collagenase-induced ICH was similar
to those observed following ischemic stroke. Seven days after
collagenase injection into the right globus pallidus, enlarged
and thin-walled microvessels appeared along the border of the
hematoma and continued to grow into the core, and then spread
all over the clot by 21 days. Endothelial cell proliferation was

also observed around the hematoma 2 days after collagenase
injection and peaked from 7 to 14 days. Within the same time
frame, VEGF as well as VEGFR-1 and -2 mRNA were detected
as early as 2 days after ICH; mRNA levels peaked at 21 days
and persisted for at least 28 days post-ICH (Tang et al., 2007).
Interestingly, the authors noted that newly formed microvessels
displayed an enlarged and thin-walled morphology, reminiscent
of those found in the developing brain. Similarly, angiogenesis
was observed in rats subjected to a SAH stroke paradigm, and
expression of VEGF was induced by hypoxia resulting from
vasospasm (Josko, 2003). Similar to ischemic stroke, CSD also
occurs in hemorrhagic stroke (Sugimoto and Chung, 2020).
Subsequent ICH studies suggested that angiogenesis may have
therapeutic benefits (Lei et al., 2013; Pan et al., 2018). For
instance, treatment with EGb761, a Ginkgo biloba extract,
increased microvessel density and promoted neuroprotection
in mice subjected to ICH induced by collagenase injection (Pan
et al., 2018). EGb761 treatment enhanced VEGF expression,
while inhibition of this VEGF expression negatively affected
stroke outcome (Pan et al., 2018). Similarly, the effects of VEGF
inhibition on collagenase-induced ICH in rats was demonstrated
through pharmacological inhibition of high-mobility group
box 1 protein (HMGB1), a member of the damage-associated-
molecular-pattern (DAMP) family of proteins. Inhibition
of HMGB1 resulted in reduced levels of VEGF and nerve
growth factor (NGF), and reduced recovery of neurological
function following ICH (Lei et al., 2013). Beneficial effects
of VEGF on brain edema following ICH were also reported
(Chu et al., 2013). In this particular study, ICH was induced by
microinjecting autologous whole blood into the right striatum
of transgenic aquaporin-4 (AQP4) Wild-Type (AQP4+/+) and
knockout (AQP4−/−) mice. One day after injury, recombinant
human VEGF injected intracerebroventricularly induced AQP4
expression in the striatum of AQP4+/+ mice 1 day after VEGF
injection, and peaked at 3 days. AQP4 was still present 7 days
post-injection and concentrated in glial endfeet surrounding the
hematoma (Chu et al., 2013). While AQP4+/+ mice injected
with VEGF showed reduced neurological deficits and decreased
brain edema following ICH at 1, 3, and 7 days post-treatment,
AQP4−/− ICH mice did not benefit from VEGF injection.
Moreover, this study demonstrated that VEGF did not affect BBB
permeability after ICH. In view of these studies, VEGF may have
therapeutic potential for ICH.

Reparative Angiogenesis as Support for Post-stroke
Neurogenesis
A key role for angiogenic responses to ischemic injury is
to provide a scaffold for neuronal regeneration. Proper cell–
cell communication within vascular niches of neurogenesis is
crucial for regenerative mechanisms in the adult brain. Close
reciprocal relationships between brain ECs and neural progenitor
cells (NPCs) regulate neurogenesis in both the developing and
adult brain (Goldman and Chen, 2011; Licht and Keshet, 2015;
Segarra et al., 2015, 2018; Tata and Ruhrberg, 2018). NPCs
secrete proangiogenic factors that promote brain vascularization,
and brain ECs instruct NPCs to proliferate, differentiate, or
remain quiescent through release of angiocrine messengers
including NO, BDNF, stromal-derived factor 1, or angiopoietin
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1 (Ohab et al., 2006; Goldman and Chen, 2011). Stroke triggers a
regenerative response in the peri-infarct region, adjacent to the
core area of cell death. A focal cortical stroke in mice induced a
strong neurogenic response with induction of GFAP-expressing
NPCs in the subventricular zone, followed by migration of
neuroblasts along existing and newly formed vascular beds
toward the peri-infarct cortex (Ohab et al., 2006; Ohab and
Carmichael, 2008). Following this important discovery that
angiogenesis and neurogenesis are causally linked in the post-
stroke niche, several studies have investigated these complex
structural and molecular neuro-vascular interactions, as recently
reviewed elsewhere (Fujioka et al., 2019; Hatakeyama et al.,
2020). Overall, this supports the idea that enhancing post-stroke
angiogenesis might represent a valuable strategy to promote
post-stroke functional recovery.

In summary, angiogenesis is a multistep process involving
basement membrane breakdown, cell proliferation and
migration, capillary morphogenesis, vascular maturation
and vascular pruning and cellular apoptosis. Similar angiogenic
mechanisms are triggered in both ischemic and hemorrhagic
brain injury. Many of these mechanisms are also critical during
brain development and are similarly induced by ischemia.
Importantly, formation of new capillaries, through angiogenic
processes, provide a scaffold for neuronal stem cell recruitment
both during brain injury and CNS development.

SEX DIFFERENCES IN
CEREBROVASCULAR OUTCOMES
OF STROKE

Sex differences in brain morphology, function and disease are
eliciting growing interest, but very little is known about the
cellular and molecular underpinnings of sex differences in
vascular outcomes of stroke. Biological sex markedly influences
CBF as well as the prevalence and progression of cardiovascular
diseases, including stroke (Krause et al., 2006; Cosgrove et al.,
2007; Hofer et al., 2007; Cowan et al., 2017). It is well recognized
that stroke differentially affects women and men. Although men
have a higher incidence of stroke compared to age-matched
pre-menopausal women, epidemiological studies show that most
women have strokes when they are post-menopausal, resulting
in increased stroke severity, worse psychological outcomes,
and higher rates of disability (Persky et al., 2010; Turtzo and
McCullough, 2010; Barker-Collo et al., 2015; Ahnstedt et al., 2016;
Madsen et al., 2019; Wang et al., 2019). Despite this, the effects of
sex hormones on cerebrovascular regulation in the healthy and
ischemic brain have yet to be fully comprehended.

The concept of sex differences in neuro-vascular research
was not well appreciated until recently. A common finding is
an increased baseline CBF in women versus men (Cosgrove
et al., 2007; Ghisleni et al., 2015). Women also display greater
perfusion during cognitive tasks (Gur et al., 1982; Esposito
et al., 1996), and better autoregulation of CBF as they age
(Deegan et al., 2011). Yet, the underlying causes of these sex
differences are unknown. Sex differences in CBF are due in part
to the combined modulation by steroid hormones. Estradiol,
testosterone and dehydroepiandrosterone sulfate are modulators

of brain perfusion (Ghisleni et al., 2015). Testosterone mainly
exerts vasoconstrictive effects, and its supplementation decreases
CBF in post-menopausal women. 17β-estradiol (E2) is the most
abundant and potent estrogen in mammals. Binding of E2 to its
receptor ERα increases NO production through upregulation of
eNOS (Miyazaki-Akita et al., 2007), as well as via decreasing the
concentration of NO-scavenging superoxide anion (Novella et al.,
2012). eNOS is modulated by ERα activation via: (1) typical ERα

signaling with nuclear translocation of intracellular receptors,
leading to increased eNOS gene (Nos3) expression, or (2) the
lesser-studied stimulation of membrane-bound ERα leading to
phosphatidylinositol-3-kinase pathway stimulation and eNOS
activation (Novella et al., 2012). Signaling through these pathways
results in increased bioavailability of NO, a potent relaxant of
VSMCs and therefore vasodilator (Chen et al., 2008; Moncada
and Higgs, 1993).

Lower incidence rates of stroke in pre-menopausal women
has been linked to a protective effect of estrogens (Turtzo
and McCullough, 2010), and after menopause rates of stroke
dramatically increase (Lisabeth and Bushnell, 2012; Xu J. et al.,
2016). As women have a longer life expectancy, they account for
60% of stroke events when incidence rates are adjusted for age
(Reeves et al., 2008). Following menopause, estrogen production
by the ovaries decreases by >50%. This has supported the theory
that estrogens are protective in CVD, which has been attributed
in part to the ability of estrogens to enhance NO production via
stimulation of eNOS (Krause et al., 2006; Nevzati et al., 2015).

Protective roles of estrogens have been reported in a variety
of animal models of cerebral ischemia. Numerous studies show
that estrogen treatment or activation of estrogen receptors
reduces lesion size in these animal models (Yang et al., 2000;
McCullough et al., 2001; Selvaraj et al., 2018; Xiao et al.,
2018) while removing endogenous estrogen through ovariectomy
(Ovx) worsens their outcomes (Alkayed et al., 1998; Fukuda
et al., 2000). Furthermore, female rats that undergo tMCAo
during the proestrus phase of their estrous cycle (i.e., highest
estradiol levels) have smaller infarcts than females in other phases
of the cycle (Liao et al., 2001). Estrogen supplementation of
Ovx rodents prior to stroke has also been found to preserve
BBB integrity by reducing EC death and preventing the loss
of TJ proteins (Liu et al., 2005; Shin et al., 2016). In vitro,
estradiol protects the endothelium by reducing mitochondrial
reactive oxygen species (ROS) production following ischemic
injury (Razmara et al., 2008; Guo et al., 2010). These
protective mechanisms may contribute to preserving not only
neuronal health, but also vascular health, during and following
cerebral ischemia.

Overall, there are very few mechanistic investigations on
disparities between sexes in post-stroke CBF outcome. Ovx rats
displayed significantly lower CBF following tMCAo compared
to intact females. Upon estrogen supplementation, CBF in Ovx
rats could be rescued 1 day post-stroke (Yang et al., 2000).
Long-term estrogen treatment increases eNOS expression in
cerebral blood vessels from male and female rats (McNeill
et al., 1999), suggesting that NO may play a protective
role through vasorelaxation. In contrast, males treated with
estrogen immediately following tMCAo had increased CBF up
to 10 min following stroke, but not past 90 min (McCullough
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et al., 2001), but not past 90 min, suggesting that modulation
of hormones might not be a viable therapeutic option.
Additionally, following photothrombotic distal MCAo, female
rats showed quicker vascular remodeling of occluded and
peripheral vessels compared to males (Yang et al., 2019). Only
one study has shown that CBF values of females are higher
following stroke compared to males and Ovx females, and
the mechanism behind this difference has yet to be elucidated
(Alkayed et al., 1998).

Despite the promising effects of estrogens in rodent stroke
models, hormone therapy containing either combined estrogen
and progesterone, or estrogen alone, increases the risk of
ischemic stroke by 40–50% in healthy postmenopausal women
(Wassertheil-Smoller et al., 2003; Hendrix et al., 2006; Hale
and Shufelt, 2015). In this case, the stroke is most often
thrombotic, which is attributed to decreased plasma levels
of endogenous circulating anticoagulants in response to high
estrogen levels (Mendelsohn and Karas, 1999). There is also
the timing hypothesis for hormone therapy, which suggests that
treatment with exogenous estrogens and progesterone causes
more harm when EC viability is already compromised, as is
often the case in aging women (Lisabeth and Bushnell, 2012).
Additionally, hormone replacement therapy using estrogens
can increase the risk of ovarian and breast cancer (Brown
et al., 2018). For these reasons, hormone replacement therapy
to reduce stroke risk in post-menopausal women is not
recommended. Therefore, it is critical to better understand how
sex hormones regulate vascular function in order to refine
future therapies. Switching to novel targets might represent
safer options, but further preclinical research is warranted.
Known eNOS enhancers (e.g., AVE3085 and AVE9488) that
have been beneficial for peripheral cardiovascular disease (CVD)
in animal studies might prove particularly efficient in post-
menopausal women.

In summary, although existing literature on sex differences
in stroke severity and mortality are somewhat contradictory,
women suffer from worse functional outcomes and have high
levels of long-term disability. Animal models do not entirely
reflect what is observed in the clinic and estrogen therapy,
while beneficial in rodent experiments, failed to translate
into the clinical setting. Many factors may influence sex-
specific responses to stroke including epigenetics, immune
responsiveness, inflammation and chromosomal contributions.
This area of research has been largely overlooked, and given the
significant impact stroke has in women it is imperative that more
research is conducted.

CONCLUDING REMARKS

Limitations of Preclinical Stroke
Research
The majority of preclinical work on cerebrovascular stroke
outcomes has been performed in anesthetized healthy rodents,
often using solely males. Moreover, two important limitations
of preclinical studies on sex differences in stroke have been
(i) the use of young animals and (ii) the misconception that

Ovx (i.e., model of reduced steroid influence) mimics human
menopause. Aging is a key risk factor for stroke, together with
several comorbidities such as hypertension and atherosclerosis
that develop with age. The use of young healthy male rodent
models, not reflective of the human condition, is a contributing
factor to the failure to translate drugs into the clinic. While these
concerns are addressable by using rodent cohorts that better
mimic the human population most often affected by stroke,
there are inherent problems that must be accounted for in
preclinical stroke models.

Experimental MCAo is the most commonly used animal
model of ischemic stroke, which consists of either permanent
(without reperfusion) or transient (with reperfusion) occlusion
of the middle cerebral artery (MCA). While reproducible, MCAo
has important translational limitations. As typically used, MCAo
creates large infarcts equivalent to malignant human brain
infarction (Carmichael, 2005). Furthermore, permanent and
complete occlusion of the MCA does not accurately represent
human ischemic stroke, and the transient model that allows
for quick reperfusion is more representative of global ischemia
conditions rather than a focal ischemic stroke (Sommer, 2017).
While MCAo has a similar inflammatory profile as seen in
humans and is useful to assess neuroprotection, as it allows for
sensitive measures of neuronal death, it is not recommended for
stroke recovery studies that rely on behavioral outcomes (Corbett
et al., 2017; McCabe et al., 2018). However, it has recently been
suggested that the MCAo model may be useful for mimicking the
conditions associated with endovascular treatment of ischemic
stroke (Sommer, 2017).

Accordingly, it is preferable to create focal ischemia using
the photothrombotic (PT) or endothelin-1 (ET-1) stroke models,
which are both highly recommended by recent international
consensus panels (Tennant and Jones, 2009; Roome et al., 2014;
Corbett et al., 2017). Stereotaxic injection of the peptide ET-
1, a potent vasoconstrictor, restricts blood flow to the region.
This is followed by reperfusion when the effects of ET-1 wear
off after several hours (Biernaskie et al., 2001). The reperfusion
creates an ischemic penumbra (Weinstein et al., 2004; Gauberti
et al., 2016), largely absent in PT stroke, corresponding to a
region where neurons remain at risk but are salvageable (Heiss,
2012; Wetterling et al., 2016). PT strokes are induced by cortical
photoactivation of a light-sensitive dye that is administered
peripherally, resulting in singlet oxygen production, endothelial
damage, platelet activation and aggregation, causing permanent
occlusion of vessels in the irradiated region of the brain
(Uzdensky, 2018). ET-1 and PT stroke models precisely target
cortical regions relevant to cerebrovascular and behavioral
recovery, are reproducible, and more closely mimic the size
(on a proportional basis) of human strokes, with or without
reperfusion. There is minimal edema associated with the ET-1
model (Schirrmacher et al., 2016) and lack of BBB disruption
(Hughes et al., 2003), while PT stroke is associated with
simultaneous cytotoxic edema due to cell death and vasogenic
edema due to BBB disruption (Chen et al., 2007). This varies
from the primarily cytotoxic edema seen initially in human
stroke which is later followed by vasogenic edema (Provenzale
et al., 2003). Furthermore, PT stroke corresponds with a strong

Frontiers in Physiology | www.frontiersin.org 15 August 2020 | Volume 11 | Article 948

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00948 August 11, 2020 Time: 14:34 # 16

Freitas-Andrade et al. Stroke-Induced Cerebrovasculaire Remodeling

immunogenic response characterized by increased infiltration of
circulating leukocytes, as well as high levels of ROS and pro-
inflammatory cytokines (Cotrina et al., 2017). Both PT and ET-1
are reproducible, convenient, and minimally invasive, however,
they must be used accordingly regarding these considereations.

Perhaps the most accurate representation of ischemic stroke
as seen in humans is the thromboembolic model of embolic
stroke, whereby spontaneous or thrombin-induced clots of
heterologous or autologous blood are injected into a cerebral
artery. Alternatively, thrombin can be directly injected into the
MCA or internal carotid artery to induce vascular occlusion.
This accurately represents vascular occlusion most often seen
in humans; however, the thrombi are mainly composed of
polymerized fibrin, and therefore differ from thrombi in
human patients that contain large amounts of both thrombin
and erythrocytes (Duffy et al., 2019). Nevertheless, use of
thrombolytic agents in this stroke model has the potential
to mimic reperfusion following treatment that current stroke
models do not as accurately represent (Fluri et al., 2015).
Additionally, variability in clot size and stability results in
variable infarct size and location. While thromboembolic stroke
provides an accurate clinical representation of stroke in terms
of edema, BBB breakdown, and inflammatory response, the
inherent variability of the model requires large sample sizes to
overcome this (Sommer, 2017).

In addition, the choice of anesthetic regimen is crucial when
performing stroke surgery in rodents, as it can strongly influence
CBF and stroke outcome, and may contribute to translational
failure (O’Collins et al., 2006). For instance, isoflurane is a potent
vasodilator with neuroprotective effects (Tsuda, 2010; Gaidhani
et al., 2017; Jiang et al., 2017; Lu et al., 2017) via modulation of
eNOS activity (Kehl et al., 2002; Krolikowski et al., 2006), which
strongly confounds results. Ketamine/Xylazine (K/X) anesthesia
affects baseline CBF to a lesser extent, but has also been shown
to modulate eNOS (Chen et al., 2005). To circumvent these
methodological obstacles, one should compare stroke outcomes
in anesthetized versus awake mice when possible.

Overall, there is an urgent need to carefully refine
experimental designs to prevent translational failure. In depth
comparisons of the advantages and disadvantages of currently
used stroke models and their applications in different areas of
research has been reviewed elsewhere (Fluri et al., 2015; Sommer,
2017). Choosing the appropriate stroke model is essential to
provide meaningful data and avoid translational failure.

What the Future Holds for
Cerebrovascular Stroke Research
Unfortunately, stroke research has suffered many setbacks,
primarily due to a number of potential therapeutic candidates
that have not delivered the expected benefits. As such, industry
investment in the field dwindled owing to the perception of
stroke research as a high-risk/low reward investment. Most
negative results stemmed from failure of scientists to apply the
information supplied by animal models to clinical trials. One
compelling example, N-methyl-D-aspartate (NMDA) antagonists
were only found to be neuroprotective when given to rats up
to 90 min after blood vessel occlusion. However, in clinical

trials patients were not given these drugs until 6 h later
(Green and Shuaib, 2006). Despite these setbacks, researchers
are continuously developing new methods and refining models,
as well as investigating novel avenues of research that hold
significant promise in improving stroke outcome (Silasi et al.,
2015; Gouveia et al., 2017; Kannangara et al., 2018; Freitas-
Andrade et al., 2019; Hill et al., 2020; Mendonca et al., 2020;
Rayasam et al., 2020; Zhang et al., 2020). A greater appreciation
for the role of physical rehabilitation and insight into the
molecular mechanisms at play has led to a significant impact on
the quality of life after stroke (Fang et al., 2019; McDonald et al.,
2019; Sun and Zehr, 2019).

Novel molecules and new approaches focused on
manipulating the cerebral vasculature to mitigate the effects
of stroke are ongoing (Stanimirovic et al., 2018; Kanazawa
et al., 2019). For example, Salvinorin A (derived from the
ethnomedical plant Salvia divinorum), a selective kappa opioid
receptor (KOR) agonist (Butelman and Kreek, 2015), has been
shown to reduce cerebral vasospasm and alleviate brain injury
after SAH via increasing expression of eNOS, and decreasing
ET-1 concentration and AQP-4 protein expression (Sun et al.,
2018). A recent study also showed that this drug can protect
EC mitochondrial function following stroke (Dong et al., 2019).
Remarkably, cutting-edge techniques, such as, single-cell RNA
sequencing are unmasking the inner workings of ECs at an
unprecedented level (Vanlandewijck et al., 2018; Munji et al.,
2019; Kalucka et al., 2020; Kirst et al., 2020; Rohlenova et al.,
2020). Finally, rigorous guidelines for effective translational
research have been proposed, including the use of rodent models
that are more representative of human strokes integrating
comorbidities (Lapchak et al., 2013; Reeson et al., 2015). Given
that the incidence of stroke increases with vascular diseases,
animal models that incorporate comorbidities are critical in
stroke research. A clinical study demonstrated that patients
with chronic cerebral small vessel disease were associated with
poor recruitment of collaterals in large vessel occlusion stroke
(Lin et al., 2020). Another comorbidity, hypertension, is a
modifiable risk factor for stroke. Hypertension is prevalent
in the stroke population and is an important comorbidity to
investigate (Cipolla et al., 2018). Hypertension promotes stroke
through increased shear stress, endothelial cell dysfunction
and large artery stiffness that transmits pulsatile flow to the
microcirculation in the brain. Indeed, dysfunctional angiogenesis
may occur in diabetic and/or hypertensive elderly patients in the
recovering penumbra following stroke (Ergul et al., 2012).

While exciting new developments are in the pipeline, several
lines of investigation indicate a significant impact lifestyle
has on vascular health (Hakim, 2014, 2019) and particularly
on brain angiogenesis and stroke outcome (Schmidt et al.,
2013). A short interval of exercise prior to stroke was shown
to improve functional outcomes by enhancing angiogenesis
(Pianta et al., 2019). A possible mechanism of action was
demonstrated to result from exercise-induced increase in VEGF
expression via the lactate receptor HCAR1 in the brain
(Morland et al., 2017). However, other mechanisms including
growth factors or eNOS-dependent pathways have been reported
(Geiseler and Morland, 2018).
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Therefore, the scientific community must emphasize the
importance of lifestyle in reducing the burden of stroke; we
have the knowledge and responsibility to urge implementation of
more extensive public health awareness and strategies to promote
healthy vascular aging.
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