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Abstract

Sleeping sickness, also known as human African trypanosomiasis (HAT), is a neglected dis-

ease that impacts 70 million people living in 1.55 million km2 in sub-Saharan Africa. Since

the beginning of the 20th century, there have been multiple HAT epidemics in sub-Saharan

Africa, with the most recent epidemic in the 1990s resulting in about half a million HAT

cases reported between 1990 and 2015. Here we review the status of HAT disease at the

current time and the toolbox available for its control. We also highlight future opportunities

under development towards novel or improved interventions.

Human African trypanosomiasis (HAT) is a neglected disease that impacts 70 million people

living in 1.55 million km2 of sub-Saharan Africa [1]. Since the beginning of the 20th century,

there have been three major HAT epidemics, the most recent in the 1990s resulting in about

500,000 HAT cases reported between 1990 and present [2,3]. The disease is caused by two

distinct subspecies of the African trypanosomes transmitted by tsetse flies (Glossina spp.: Dip-

tera). In east and southern Africa, Trypanosoma brucei rhodesiense causes the acute Rhode-

siense form of the disease, while in central and west Africa. T. b. gambiense causes the chronic

Gambiense form of the disease (about 95% of all reported HAT cases). The disease normally

affects remote rural communities where people get exposed to the bite of the tsetse during

their daily outdoor activities. Unless treated, HAT disease is normally fatal. Besides HAT,

related parasites, such as T. b. brucei, T. congolense, T. vivax, T. evansi, and T. equiperdum,

cause wasting diseases in livestock, termed animal African trypanosomiasis (AAT), which

result in major economic losses in the concerned countries [4].

An ambitious campaign led by WHO, many nongovernmental organizations (NGOs), and

a public–private partnership with Sanofi-Aventis and Bayer that donated the necessary drugs

for distribution in affected countries reduced the global incidence of Gambiense HAT to

<3,000 cases in 2015. Based on the success of the control campaign, there are now plans to

eliminate Gambiense HAT as a public health problem by 2020 [5]. Gambiense HAT is gener-

ally considered to be an anthroponosis, and hence control has relied heavily on active and/or

passive case detection and treatment programs [6]. Control of Rhodesiense HAT has been
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more complex, as disease transmission involves domestic animals, which serve as reservoirs

for parasite transmission by the tsetse vector. Hence, for Rhodesiense HAT, control of the par-

asite in the domestic reservoirs, and/or reduction of tsetse vector populations, plays a key part,

with medical interventions being used only for humanitarian purposes.

Despite extensive research into the biology of the trypanosome, the toolbox for diagnostics

and treatment of sleeping sickness had remained extremely small and plagued with difficulties

[7]. However, the recent epidemic has mobilized financial resources available for basic and

applied research, which has led to new knowledge on both parasite and tsetse vector physiol-

ogy, genetics, and genomics and expanded the prospects for translational science for sustain-

able HAT control. Below, we review some of the progress made in the last decade towards

growing the toolbox for HAT elimination.

Controlling disease in the mammalian host

Achieving disease control in the mammalian host has been difficult given the lack of mamma-

lian vaccines due to a process of antigenic variation the parasite displays in its mammalian

host. Hence, accurate diagnosis of the parasite and staging of the disease are important, partic-

ularly because of the toxicity of current drugs. Although powerful molecular diagnostics have

been developed in research settings, few have yet reached the patient or national control pro-

grams [8]. For Gambiense HAT, a sensitive and specific test is available for active serological

screening by mobile teams [9]. However, when prevalence becomes low, targeted door-to-

door surveys may become an attractive alternative to mass screening [10]. It wil also become

crucial to integrate passive case detection in fixed health centers [5]. The development of indi-

vidual rapid sero-diagnostic tests (RDTs) will certainly facilitate the involvement of fixed

health centers in passive case detection, yet their diagnostic accuracy remains uncertain [11].

Screening for T. b. rhodesiense infection still relies on clinical features in the absence of sero-

logical tests available for field use. Although recent improvements have been made to parasito-

logical confirmatory tests, their sensitivity remains insufficient in Gambiense HAT [12].

Regarding treatment, the introduction of the eflornithine-nifurtimox combination therapy

(NECT) has made treatment of Gambiense HAT safer and more efficacious [13].

Reducing vector populations

While vector control is essential for Rhodesiense HAT, it has not played a major role in Gam-

biense HAT, as it was considered too expensive and difficult to deploy in the resource-poor

settings of HAT foci. However, modelling, historical investigations, and practical interven-

tions demonstrate the significant role that vector control can play in the control of Gambiense

HAT [14, 6, 15], especially given the possibility of long-term carriage of trypanosomes in both

human and animal reservoirs [16,17]. Recent models suggest vector control will be essential if

we are to reach the set target of elimination of the disease as a public health problem by 2020

[18]. Vector control can be particularly effective at times of low endemicity during which

active surveillance campaigns may be too costly to operate, and it is, so far, the only prophy-

lactic measure existing to protect people against the infectious bite of the tsetse vector. In

addition, the use of commercially-available loop-mediated isothermal amplification (LAMP)

kits as a highly sensitive tool for xenomonitoring has also been suggested to identify potential

sleeping sickness transmission sites, especially during periods of low endemicity [19].

For vector reduction efforts, the use of Sterile Insect Technique continent-wide has been

suggested by the African Union, following the success of the eradication program in Zanzi-

bar [20]. However, the feasibility of the application of this method continent-wide has come

into question given the diversity of species that can transmit the parasite, its high cost, and
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dependence on major infrastructure such as large insectaries, irradiation facilities, and air-

planes [21]. It has been possible to modify the existing insecticide-treated targets to produce

a more cost-efficient and sustainable vector control method for use in HAT foci. Tiny tar-

gets consisting of a small square of blue cloth flanked by a similar-sized piece of black net-

ting have been shown to be efficacious and more cost-effective than traps or large targets

typically used in control campaigns for the Gambiense vector species [14, 22]. To monitor

the efficacy and sustained impact of tsetse control interventions, sensitive serological tools

are being developed using tsetse-saliva–based biomarkers [11, 23]. A major advancement

that has fueled research into the fundamental aspects of tsetse and trypanosome transmis-

sion biology has been the completion of the genome sequence of G. morsitans morsitans
[24] and five additional vector species [41]. This information has been mined to understand

the olfactory [25, 26], symbiotic [27], and reproductive [28] physiologies of tsetse, with the

goal of identifying targets suitable for population reduction efforts. Knowledge on olfactory

physiology can be harnessed to enhance the efficacy of traps and targets by identifying novel

attractants, while the obligate dependence of tsetse on their endosymbionts provides a weak

link in this vector’s ability to reproduce, both providing ideal targets for new vector control

methods.

In addition, there has been growing knowledge on the population genetics of tsetse vectors

in disease-endemic areas in Africa. This new information can help identify natural barriers to

fly dispersal and routes and hence can provide important information for field control pro-

grams that aim to reduce vector densities through traditional tools, such as traps/targets, Ster-

ile Insect Technique, or aerial sprays [29, 30].

One fundamental reason vector control methods are highly effective in tsetse is the already

low reproductive capacity this insect has due to its viviparous reproductive physiology. The

molecular and biochemical aspects of tsetse’s viviparity and its dependence on the obligate

symbiont Wigglesworthia-provided products are being unraveled. This fundamental knowl-

edge provides many new targets for interference with tsetse fecundity to reduce tsetse popula-

tions [28].

Controlling the parasite in the tsetse vector

The increased knowledge of tsetse and trypanosome genomics has also expanded knowledge

on the molecular aspects of host–parasite interactions with several practical implications. It

has been shown that an important bottleneck for parasite transmission occurs early in the

infection process in the tsetse’s midgut, characterized by a tug-of-war between trypanosome

immune modulatory activities and the tsetse’s antiparasitic immune responses [31, 32]. The

molecular details of the complex host–parasite interactions that eventually enable the try-

panosomes to colonize the flies [33, 34], followed by modulation of the fly saliva immuno-

modulatory components by parasites, and the impact of this modification on trypanosome

transmission dynamics in the host bite site favoring parasite transmission are all being unrav-

eled and provide novel points of interference for the parasite’s transmission [35, 23]. One

approach whereby the parasite infection can be eliminated from tsetse populations involves

the ability to engineer refractoriness in tsetse [36, 37]. Towards that end, one commensal

symbiont of tsetse present in the midgut, Sodalis, has been identified, and a genetic modifica-

tion system has been developed [38]. Candidate antitrypanosomal molecules have also been

identified and expressed in Sodalis to reduce trypanosome infections as a novel approach [39,

40]. Many of these early-stage fundamental discoveries have been achieved as a consequence

of the applications of–omics technologies to the field of tsetse and trypanosomes and have

opened up the feasibility of novel targets for new innovative approaches.
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Highlights

1. The Gambiense HAT epidemics that ravaged sub-Saharan Africa in the 1990s have been

controlled, leading the way to an elimination phase. The elimination of Rhodesiense HAT

poses challenges because of the vast animal reservoirs.

2. Simplification, standardization, and proper test evaluation of diagnostic tools in the target

setting should be an important focus for future development to maintain low endemicity

and to monitor disease prevalence in the post elimination phase.

3. A safe and oral drug that cures both disease stages and both disease forms is needed.

4. Control strategies will progressively shift from active case detection by mobile teams

towards passive case detection by fixed health centers.

5. The capacity built towards HAT diagnosis and treatment should be preserved at times of

low endemicity and post elimination.

6. Application of vector control alongside medical interventions will be needed to achieve the

targets within the set time frame.

7. The molecular targets discovered through parasite and tsetse genomics/genetics studies

form the pipeline for new drugs, potential antitsetse-based vaccines, and fly inhibitory com-

pounds, which should be explored as novel biological control methods.

8. The time has come for donors, private companies, and all stakeholders to commit to the

elimination of HAT, in order to avoid resurgence as seen in the past.
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