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Purpose: Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions related to first-line anti- 
tuberculosis drugs in pediatric tuberculosis patients. This study aims to develop an automatic machine learning (AutoML) model for 
predicting the risk of anti-tuberculosis drug-induced liver injury (ATB-DILI) in children.
Methods: A retrospective study was performed on the clinical data and therapeutic drug monitoring (TDM) results of children 
initially treated for tuberculosis at the affiliated Changsha Central Hospital of University of South China. After the features were 
screened by univariate risk factor analysis, AutoML technology was used to establish predictive models. The area under the receiver 
operating characteristic curve (AUC) was used to evaluate model’s performance, and then the TreeShap algorithm was employed to 
interpret the variable contributions.
Results: A total of 184 children were enrolled in this study, of whom 19 (10.33%) developed ATB-DILI. Univariate analysis showed 
that seven variables were risk factors for ATB-DILI, including the plasma peak concentration (Cmax) of rifampicin, body mass index 
(BMI), alanine aminotransferase, total bilirubin, total bile acids, aspartate aminotransferase and creatinine. Among the numerous 
predictive models constructed by the “H2O” AutoML platform, the gradient boost machine (GBM) model exhibited the superior 
performance with AUCs of 0.838 and 0.784 on the training and testing sets, respectively. The TreeShap algorithm showed that Cmax of 
rifampicin and BMI were important features that affect the AutoML model’s performance.
Conclusion: The GBM model established by AutoML technology shows high predictive accuracy and interpretability for ATB-DILI 
in children. The prediction model can assist clinicians to implement timely interventions and mitigation strategies, and formulate 
personalized medication regimens, thereby minimizing potential harm to high-risk children of ATB-DILI.
Keywords: anti-tuberculosis drug-induced liver injury, children, retrospective study, automatic machine learning, gradient boost 
machine

Introduction
Tuberculosis (TB), a chronic infectious disease caused by Mycobacterium tuberculosis, is a major global public health 
challenge and has become the leading cause of death among single infectious diseases.1 The currently accepted first-line 
anti-TB drugs, including isoniazid, rifampin, pyrazinamide and ethambutol, play a central role in TB treatment and, when 
used in combination, can improve cure rates and reduce the development of drug resistance.2–4 However, anti- 
tuberculosis drug-induced liver injury (ATB-DILI) has become the most common and serious adverse effect of TB 
treatment.5 ATB-DILI can cause patients to discontinue treatment with single or combination anti-TB drugs, and 
discontinuation and rechallenge of anti-TB drugs can lead to the emergence of multidrug-resistant or even extensively 
drug-resistant strains, increasing the risk of treatment failure.6 According to the World Health Organization’s Global 
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Tuberculosis Report 2022, there were approximately 10.6 million diagnosed TB cases worldwide,7 with approximately 
11% of all TB cases in children and adolescents under the age of 15.8 Tuberculosis in children is increasingly recognized 
as an important component of the global tuberculosis burden, especially in resource-limited settings. The top five 
countries with the highest absolute burden were India, Nigeria, China, Indonesia and the Democratic Republic of 
Congo, and per capita childhood TB mortality was highest in countries in sub-Saharan Africa with high annual TB 
incidence.9 Liver and kidney function are not fully developed in children, resulting in limited ability to metabolize drugs 
and increased risk of adverse reactions.10 Given the significant impact of ATB-DILI on the treatment course and 
prognosis of pediatric TB patients, it is particularly important to identify and implement early preventive measures for 
high-risk patients.

The application of machine learning technology has shown great potential in the detection, diagnosis, prognosis and 
efficacy evaluation of diseases.6 In the process of diagnosing and treating TB, a large amount of objective and 
quantifiable data has been accumulated through routine laboratory testing, including not only basic information such 
as blood counts and liver and kidney function tests, but also pharmacogenomics and drug concentration monitoring 
data.11,12 Based on these diverse clinical data, predictive models built using machine learning techniques can quickly and 
accurately screen for high risk patients of ATB-DILI. A study using multiple logistic regression, support vector machine, 
and random forest to predict the risk of liver toxicity in patients treated with nilotinib, has demonstrated that the areas 
under the receiver operating characteristic curves (AUC) values of these machine learning models ranged from 0.61 to 
0.65.13 In addition, a nomogram prediction model established to risk of DILI based on the dataset of 1979 TB patients 
has shown that the AUC of the model in the training group, validation group I and validation group II were 0.833, 0.668 
and 0.753, respectively.14 Notably, several pieces of evidence suggest that machine learning algorithms facilitate the 
identification of different risks for children, such as pressure injuries in children undergoing living donor liver 
transplantation, chemotherapy-induced myelosuppression in children with Wilms’ tumor and tacrolimus-induced tubular 
toxicity in children with nephrotic syndrome.15–17

Automated machine learning (AutoML) is an emerging approach to machine learning that automates the development 
of more accurate models. It is efficient and user-friendly to use, allowing cross-disciplinary experts without specialist 
knowledge of artificial intelligence to benefit from advances, including clinical doctors and pharmacists.18 While few risk 
factors have been found to be associated with ATB-DILI in children,19,20 to our knowledge, no study has used machine 
learning or automated machine learning methods to identify the high-risk children of ATB-DILI, due to the relatively low 
incidence and paucity of research data on ATB-DILI studies in children.

In summary, this study aims to build an ATB-DILI risk prediction model for children specifically designed for 
children with TB by integrating advanced machine learning techniques with rich clinical data resources, which will fill 
the current gaps in ATB-DILI risk assessment tools. Through the implementation of this study, not only can provide 
clinicians with a new tool to quickly and accurately assess the risk of ATB-DILI in children, but also is expected to 
provide strong support for optimizing the treatment plan of childhood tuberculosis, improve the treatment effect, reduce 
the incidence of adverse reactions, and achieve the goal of optimizing medical resources in the region with tuberculosis 
burden.

Materials and Methods
Inclusion and Exclusion of Patients
Study population: From June 2020 to June 2024, children diagnosed with TB and aged 1–17 years were recruited from 
the affiliated Changsha Central Hospital of University of South China. All children were treated with hepatoprotective 
drugs such as bicyclol, glutathione and compound diisopropylamine dichloroacetate.

The inclusion criteria were children: (1) receiving initial treatment with anti-tuberculosis drugs; (2) being treated with 
3 to 4 first-line anti-tuberculosis drugs [isoniazid + rifampicin + pyrazinamide (or + ethambutol)] for the intensification 
period, while accepting isoniazid + rifampicin treatment for the consolidation period;10 (3) whose plasma peak 
concentrations (Cmax) of isoniazid and rifampicin (2h) were monitored for 1 week to 1 month after treatment with anti- 
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tuberculosis drugs; (4) whose biochemical indicators such as liver and kidney function were remeasured within 2 to 3 
months of intensive treatment.

The exclusion criteria were children: (1) not treated with the standard regimen of first-line antituberculosis drugs 
[isoniazid + rifampicin + pyrazinamide (or + ethambutol)]; (2) whose clinical data were incomplete; (3) who had hepatic 
dysfunction or combined viral hepatitis, steatotic liver disease, Epstein-Barr virus infection, and cytomegalovirus 
infection prior to enrollment; (4) whose isoniazid and rifampicin Cmax (2h) was assessed after the onset of drug- 
induced liver injury.

Diagnosis of DILI
The diagnosis of DILI is based on guidelines published by the Chinese Medical Association and literature.21–24 The 
criteria for the diagnosis of DILI are detailed in Table S1.

Data Collection
The baseline clinical data of the children were collected before the initial treatment with anti-TB drugs. Demographic and 
clinical data mainly included sex, age, height, weight, allergy history, tuberculosis exposure, disease diagnosis, liver 
function, kidney function, and blood routine. The Cmax of isoniazid and rifampicin (2h) was measured after the drugs had 
reached steady state and before the onset of liver injury. The Cmax of pyrazinamide was not available for most children 
and was therefore not collected in the study. Finally, information on the combination of drugs, including hepatotoxic 
drugs, proton pump inhibitors, steroids, and antibiotics, during anti-TB treatment was collected for all children.

Factor Identification
The multi-collinearity among variables was meticulously assessed by the variance inflation factor (VIF). Univariate 
analysis was used to screen for significant variables between the DILI group and the control group (P < 0.05). We 
identified optimal cut-off points based on Youden index of the receiver operating characteristic (ROC) curve derived 
from univariate logistic analysis, and then these cut-off points were used to transform continuous variables into 
categorical variables.25 The optimal cut-off point associated with the Youden index was defined as the maximum 
value of (sensitivity + specificity −1), and it was often used as the diagnostic threshold in clinical studies.26 For instance, 
the calculation process of cut-off point of the rifampicin Cmax was display in Table S2. The variables that showed 
significant differences (P < 0.05) between the two groups were used to establish machine learning models.

Construction of Predictive Models
Compared with traditional statistical methodologies, machine learning algorithms are capable to capture multifaceted 
nonlinear relationships and complex interactions between variables, and have advantages on handling high-dimensional 
and complex data sources beyond numerical sources.18,27 AutoML, an efficient and easy-to-deploy solution, was chosen 
to develop the predictive models in this study.

All patients were randomly divided into a training set (80%) and a testing set (20%), which were used to construct the 
prediction model and validate the model’s performance, respectively.28 The AutoML technology was used to establish 
predictive models by the H2O AutoML platform.29 This platform automates the process of training and tuning a large 
selection of candidate models. The H2O AutoML platform incorporates six primary machine learning algorithms, which 
include generalized linear models (GLM), distributed random forest (DRF), gradient boosting machines (GBM), fully 
connected deep neural network (DeepLearning), eXtremely randomized trees, stacked ensemble, and XGBoost. The main 
metrics for model performance included AUC, logloss, area under the precision-recall curve (AUCPR), mean_per_clas-
s_error, root mean squared error (RMSE), and mean squared error (MSE). A “leaderboard” was generated, ranking the 
candidate models based on their performance scores obtained from 5-fold cross-validation, which facilitated the filtering 
out of the best predictive models. The 5-fold cross-validation divided the training dataset into 5 sets, iterated the training 
process on 4-folds, and validated the model on the remaining 1 set, ensuring that the model performs well on unseen data 
and minimizing the risk of overfitting and underfitting.30 Based on the model’s performance score of cross-validation, 
H2O AutoML automated the hyperparameter tuning by grid search improving the robustness of the selected model.31
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The main methods for addressing class-imbalance data at both the data level and algorithm level include random 
under-sampling, random over-sampling, loss functions, cost-sensitive learning, and threshold moving.32 The H2O 
AutoML platform allows the user to select the appropriate decision thresholds based on criteria such as max F1, max 
F2, max accuracy and max precision. Further details are available on the web at https://docs.h2o.ai/h2o/latest-stable/h2o- 
docs/index.html.

In this study, the H2O open-source package (version 3.46.0.4) was installed via Python (version 3.10.9), and then 
implemented by Jupyter Notebook.

Model Explainability
To enhance the interpretability of machine learning model, we utilized a combination of analytical tools: variable 
importance plot and variable importance heatmap for visualizing the importance of variables, and SHAP Summary 
and local interpretable model-agnostic explanations (LIME) for understanding the impact of each variable on model 
predictions. SHAP analysis can identify key features that significantly affect model predictions and assesses the extent to 
which these features contribute to overall model performance. LIME is able to show the contribution of each feature to 
the prediction for a selected example.33

Statistical Analysis
Continuous variables were analyzed using the t-test, while categorical variables were analyzed using the chi-squared (χ²) 
test or Fisher’s exact test. Statistical analyses were performed using GraphPad Prism 9 (GraphPad Software, Inc., San 
Diego, CA, USA). A p-value of less than 0.05 was considered statistically significant.

Results
Patient Characteristics and Factor Identification
The study initially enrolled a total of 426 children who were treated with anti-tuberculosis drugs at Changsha Central 
Hospital from June 2020 to June 2024 and whose Cmax of isoniazid and rifampicin had been measured. A total of 184 
children with TB were included in the study, while a total of 242 children with TB were excluded from the study. The 
excluded cases included 74 patients receiving a second-line antituberculosis regimen, including linezolid, cycloserine, 
levofloxacin, moxifloxacin, streptomycin sulfate, rifapentin, and others, 103 patients with a single hospitalization record, 
46 patients with incomplete clinical data, and 19 children under one year of age. Of the cases, 19 cases (10.33%) 
developed DILI following the administration of anti-tuberculosis therapy, including 17 cases classified as grade 1 (mild 
liver injury) and 2 cases classified as grade 2 (moderate liver injury), respectively.

All 24 variables, including demographic, clinical characteristics, and medication information are listed in Table 1. The 
VIF for all variables was less than 10, indicating an acceptable level of multi-collinearity. The sole continuous variable 
that showed a statistically significant correlation with DILI was the Cmax of rifampicin. Therefore, following the 
conversion of the continuous variable into categorical variable using the Youden’s index, it was demonstrated that 
aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bile acids, creatinine, body mass index (BMI), 
total bilirubin and the Cmax of rifampicin were significantly associated with ATB-DILI (P < 0.05). The Cmax of isoniazid 
(P = 0.0508) and diagnosis of tuberculous meningitis (P = 0.0528) were identified as potential factors influencing the 
development of ATB-DILI. However, other variables, including sex, age, allergy history, etiology, co-medication 
information, blood routine and renal function data, were not found to be significantly different between the DILI and No- 
DILI groups. That is, categorical variables including BMI, total bilirubin, AST, ALT, total bile acids, creatinine, and Cmax 

of rifampicin were used to build the machine learning model in the study.

Development and Validation of Predictive Model
Numerous machine learning models were automatically constructed utilizing the H2O AutoML platform. Thereafter, the 
performances of these models were rigorously evaluated and systematically ranked based on the outcomes of cross- 
validation. The top 20 candidate models with details of their scores are shown in Table 2.
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We discovered that the top 3 machine learning models on the leaderboard are all GBM models. These models possess 
higher AUC scores and lower logloss values, indicating superior performance in classification accuracy and probabilistic 
prediction quality, respectively. Among these machine learning models, the optimal GBM model (Model_ID: 
GBM_lr_annealing_selection_AutoML_1_20240904_124545_select_model) has the highest AUC score. This model 
was selected for systematic evaluation and in-depth analysis as it particularly excelled in terming of balance between 
error rate and prediction accuracy. The AUC, AUCPR, logloss, and mean per-class error for the optimal GBM model on 
both the training set and testing set are displayed in Table 3. The optimal GBM model showed an AUC of 0.838 for the 

Table 1 Comparison of the Characteristics of Patients Using Univariate Analysis

Characteristics Total (n = 184) No-DILI (n = 165) DILI (n =19) P-value

Age (years), median (IQR) 12 (6–15) 12 (6–15) 12 (5–15) 0.6910

Age ≥ 6 years#, n (%) 147 (79.89) 134 (81.21) 13 (68.42) 0.2248a

Sex (male/female) 94/90 83/83 11/8 0.5307b

BMI, median (IQR) 16.85 (15.09–18.77) 16.96 (15.23–18.82) 16.05 (14.61–18.28) 0.2124

BMI ≥ 15.06#, n (%) 139 (75.54) 129 (78.18) 10 (52.63) 0.0224a

History of drug allergy 30 (16.22) 29 (17.58) 1 (5.26) 0.3208a

Pathogeny (Essential/Secondary) 50/134 43/122 7/12 0.3171b

Tuberculous meningitis, n (%) 9 (4.86) 6 (3.64) 3 (15.79) 0.0528

Albumin (g/L), median (IQR) 40 (37–42) 40 (37–42) 40 (35–44) 0.6795

Albumin ≥ 29 g/L#, n (%) 182 (98.38) 163 (98.79) 19 (100.00) NA

Total bilirubin (μmol/L), 
median (IQR)

8.90 (6.23–12.58) 8.94 (6.31–12.48) 7.70 (5.53–13.07) 0.7307

Total bilirubin ≥ 21.2 μmol/L#, n (%) 9 (4.89) 5 (3.03) 4 (21.05) 0.0075a

Direct bilirubin (μmol/L), 
median (IQR)

4.23 (2.90–5.92) 4.20 (2.92–5.90) 4.50 (2.00–6.68) 0.9829

Direct bilirubin ≥ 6.68 μmol/L#, 
n (%)

30 (16.30) 25 (15.15) 5 (26.32) 0.2037a

Alanine aminotransferase (U/L), median (IQR) 10 (7–14) 10 (7–14) 13 (7–17) 0.4340

Alanine aminotransferase ≥ 13 U/L#, n (%) 59 (32.07) 49 (29.70) 10 (52.63) 0.0425b

Aspartate aminotransferase (U/L), median (IQR) 22 (17–27) 22 (17–27) 23 (19–37) 0.2968

Aspartate aminotransferase ≥ 19 U/L#, n (%) 126 (68.48) 109 (66.06) 17 (89.47) 0.0375b

Total biliary acid (μmol/L), 
median (IQR)

5.20 (3.10–8.07) 5.20 (3.16–7.94) 4.70 (2.60–11.10) 0.9865

Total biliary acid ≥ 19.32 μmol/L#, n (%) 12 (6.52) 8 (4.85) 4 (21.05) 0.0238a

Creatinine (μmol/L), median (IQR) 37.5 (28.0–48.0) 38.0 (28.0–48.0) 34.0 (28.0–51.0) 0.9829

Creatinine ≥ 61 μmol/L#, n (%) 14 (7.61) 10 (6.06) 4 (21.05) 0.0419a

Urea nitrogen (mmol/L), median (IQR) 3.75 (3.09–4.47) 3.75 (3.07–4.62) 3.66 (3.11–4.24) 0.7580

Urea nitrogen ≥ 4.69 mmol/L#, n (%) 41 (22.28) 39 (23.64) 2 (10.53) 0.2532a

White blood cell (109/L), 
median (IQR)

6.73 (5.68–8.73) 6.72 (5.59–8.71) 6.73 (5.76–9.42) 0.5264

White blood cell ≥ 5.70*109/L#, 
n (%)

137 (74.46) 120 (72.73) 17 (89.47) 0.1644a

Red blood cell (109/L), 
median (IQR)

4.51 (4.20–4.80) 4.51 (4.19–4.81) 4.51 (4.23–4.76) 0.8558

Red blood cell ≥ 4.50*109/L#, n (%) 100 (54.35) 88 (53.33) 12 (63.16) 0.4156b

Hemoglobin (g/L), median (IQR) 122 (112–134) 122 (112–133) 128 (111–136) 0.4138

Hemoglobin ≥ 121 g/L#, n (%) 99 (53.80) 85 (51.52) 14 (73.68) 0.0664b

Blood platelet (109/L), median (IQR) 332.5 (272.8–394.0) 332.0 (275.5–393.0) 350.0 (259.0–418.0) 0.8153

Blood platelet ≥ 413*109/L#, n (%) 38 (20.65) 32 (19.39) 6 (31.58) 0.2339a

Combination with hepatotoxic drugs, n (%) 75 (40.76) 69 (41.82) 6 (31.59) 0.3897b

Combination with proton pump inhibitor, n (%) 3 (1.63) 2 (1.21) 1 (5.26) 0.2803a

Combination with steroids, n (%) 1 (0.54) 1 (0.61) 0 (0.00) NA

Combination with antibiotics, n (%) 111 (60.33) 101 (61.21) 10 (52.63) 0.4691b

Cmax of isoniazid (μg/mL), median (IQR) 6.17 (4.45–8.58) 6.09 (4.33–8.45) 7.24 (5.18–11.05) 0.1344

Cmax of isoniazid ≥ 8.29 μg/mL#, n (%) 52 (28.26) 43 (26.06) 9 (47.37) 0.0508b

Cmax of rifampicin (μg/mL), median (IQR) 8.22 (5.88–11.43) 8.10 (5.84–10.81) 9.96 (6.46–15.04) 0.0280

Cmax of rifampicin ≥ 13.48 μg/mL#, n (%) 26 (14.13) 17 (10.30) 9 (47.37) 0.0002a

Notes: #, the cut-off value determined by the Youden index; a, Fisher’s exact test; b, Chi-squared test. 
Abbreviations: IQR, interquartile range; Cmax, plasma peak concentration.
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training set (Figure 1A) and 0.784 for the test set (Figure 1B). In this model, at the decision threshold corresponding to 
max F2, the accuracy, sensitivity, and specificity were 0.844, 0.733, and 0.856, respectively.

Model Interpretation
As shown in Figure 2A, the variables are ranked by their relative importance within the optimal GBM model. The Cmax 

of rifampicin emerges as the pivotal variable, followed by BMI, total bilirubin, creatinine, ALT, total bile acid, and AST. 
Furthermore, a variable importance heatmap was utilized to visualize the significance of variables across multiple models 
(Figure 2B). The Cmax of rifampicin was identified as the most crucial feature across multiple GBM, XRT, and GLM 
models. Additionally, BMI and ALT were recognized as the secondarily significant variables within certain GBM models.

The TreeSHAP algorithm, a specialized version of SHAP designed for tree-based machine learning models, was 
employed to elucidate the model predictions.34 The SHAP summary plot, generated by the optimal GBM, is illustrated in 
Figure 3A. The feature ranking of the SHAP plot showed that the Cmax of rifampicin, BMI, and ALT were the top three 
features associated with the development of ATB-DILI in children. In addition, creatinine, AST, total bilirubin, and total 
bile acid were also correlated with the development of ATB-DILI. In the study, the input variables for machine learning 
are binary variables, with “1” corresponding to greater than or equal to the cut-off point and “0” corresponding to less 
than the cut-off point. We found that Cmax of rifampicin ≥13.8 μg/mL corresponded to red points with positive SHAP 
values, indicating that children with higher Cmax of rifampicin were more susceptible to ATB-DILI. Similarly, we found 

Table 2 The Leaderboard of Machine Learning Models Ranked by Cross-Validated Performance

Model_id AUC logloss AUCPR mean_per_ 
class_error

rmse mse

GBM_lr_annealing_selection_AutoML_1_20240904_124545_select_model 0.776 0.286 0.306 0.308 0.286 0.082

GBM_grid_1_AutoML_1_20240904_124545_model_18 0.773 0.287 0.304 0.308 0.287 0.082

GBM_grid_1_AutoML_1_20240904_124545_model_15 0.762 0.285 0.315 0.327 0.284 0.081
StackedEnsemble_BestOfFamily_4_AutoML_1_20240904_124545 0.761 0.395 0.228 0.275 0.319 0.101

DeepLearning_grid_1_AutoML_1_20240904_124545_model_8 0.754 0.342 0.229 0.334 0.308 0.095

GLM_1_AutoML_1_20240904_124545 0.754 0.290 0.360 0.242 0.286 0.082
GBM_grid_1_AutoML_1_20240904_124545_model_7 0.740 0.287 0.415 0.345 0.281 0.079

GBM_grid_1_AutoML_1_20240904_124545_model_12 0.721 0.303 0.271 0.348 0.287 0.083
StackedEnsemble_BestOfFamily_3_AutoML_1_20240904_124545 0.715 0.318 0.214 0.252 0.303 0.092

GBM_grid_1_AutoML_1_20240904_124545_model_9 0.713 0.298 0.317 0.312 0.287 0.082

GBM_grid_1_AutoML_1_20240904_124545_model_2 0.713 0.294 0.293 0.323 0.283 0.080
GBM_grid_1_AutoML_1_20240904_124545_model_10 0.710 0.299 0.342 0.308 0.288 0.083

StackedEnsemble_AllModels_3_AutoML_1_20240904_124545 0.710 0.316 0.182 0.317 0.303 0.092

GBM_grid_1_AutoML_1_20240904_124545_model_22 0.706 0.299 0.256 0.316 0.291 0.084
StackedEnsemble_BestOfFamily_1_AutoML_1_20240904_124545 0.702 0.318 0.254 0.330 0.300 0.090

GBM_grid_1_AutoML_1_20240904_124545_model_21 0.696 0.319 0.249 0.356 0.298 0.089

GBM_grid_1_AutoML_1_20240904_124545_model_3 0.694 0.310 0.259 0.298 0.294 0.087
GBM_2_AutoML_1_20240904_124545 0.694 0.302 0.285 0.316 0.287 0.082

XRT_1_AutoML_1_20240904_124545 0.691 0.352 0.264 0.408 0.312 0.097

StackedEnsemble_AllModels_4_AutoML_1_20240904_124545 0.688 0.311 0.195 0.310 0.298 0.089

Abbreviations: AUC, area under the curve; logloss, logarithmic loss; AUCPR, area under the curve for precision–recall; mean_per_class_error, mean per-class error; 
rmse, root mean squared error; mse, mean squared error; GBM, gradient boost machine; GLM, generalized linear models; XRT, extremely randomized trees.

Table 3 The Classification Performance of Optimal GBM Model

AUC AUCPR Logloss Mean Per-Class Error

Training set 0.838 0.476 0.252 0.252
Testing set 0.784 0.635 0.264 0.250

Abbreviations: AUC, area under the curve; logloss, logarithmic loss; AUCPR, area 
under the curve for precision–recall; mean_per_class_error, mean per-class error.
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that most red dots corresponding to BMI ≥ 15.06 had negative SHAP values, suggesting that children with higher BMI 
values were less likely to develop ATB-DILI.

The LIME plot was shown in Figure 3B, which can illustrate the specific impact of each variable on the prediction of 
anti-tuberculosis DILI for a given patient. For example, for the pediatric patient (No. 35), who was predicted to develop 
ATB-DILI, the local explanation graph confirmed the critical role of BMI and Cmax of rifampicin as predictive factors. 
Variables such as creatinine, total bile acids, and total bilirubin had lower SHAP values, indicating a lesser impact on the 
risk prediction for this patient.

Discussion
ATB-DILI is the leading cause of treatment interruption in tuberculosis patients. Predicting patients at high-risk for ATB- 
DILI enables clinicians to proactively adjust medication protocols and promptly institute preventive measures. In this 
study, the AutoML was executed to identify the optimal model for predicting ATB-DILI. To our knowledge, this is the 
first time that a machine learning model has been applied to the prediction of ATB-DILI in children.

The results of univariate analysis revealed that Cmax of rifampicin, BMI, total bilirubin, ALT, AST, total bile acids and 
creatinine were significant risk factors for ATB-DILI in children. These important predictors were utilized in the 
construction of the machine learning models. Our findings revealed that Cmax of rifampicin ≥ 13.48 μg/mL was positively 
associated with the risk of ATB-DILI. However, a study reported a cut-off value of 12.50 μg/mL for rifampicin-induced 
hepatotoxicity in adults.35 A pharmacokinetics and safety/tolerability study demonstrated that children who experienced 
DILI had higher AUC0-24 and Cmax levels of rifampicin on day 10 compared to children without DILI.36 The mechanism 
of rifampicin-induced liver injury may involve triggering endoplasmic reticulum stress through various pathways, such as 
the accumulation of bile acids and the generation of toxic drug metabolites by cytochrome p450 enzymes, processes 
regulated by the pregnane X receptor.37 We found that BMI ≥ 15.06 was negatively associated with ATB-DILI risk in 
children. Previous report showed that the malnourished children have a higher risk of ATB-DILI,38 which may be 
attributed to reduced clearance rates of xenobiotics.39 A study proposed that BMI < 18.5 is an independent risk factor for 
ATB-DILI in children, with 2.3-fold higher incidence than in normal children.10 However, another study found that 
nutritional status was not associated with ATB-DILI in children,19 which may be attributed to the fact that the study only 
included children in the intensification period. In this study, creatinine ≥ 61 μmol/L was positively associated with the 

Figure 1 ROC curves for the training set and the testing set of the optimal GBM model. (A) Training set, (B) Testing set.
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Figure 2 The variable importance plot and variable importance heatmap. (A) Importance score of variables in optimal GBM model, (B) Variable importance across multiple 
models.

Figure 3 The SHAP Explanation of optimal GBM model in the training set. (A) SHAP summary plot, (B) The local explanation of SHAP.
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risk of DILI. The decline in renal function may lead to increased drug concentration in the liver, potentially increasing the 
risk of hepatotoxicity.40,41 Baseline total bilirubin, total bile acids, ALT and AST are all critical indicators of liver 
function. Several studies have confirmed that higher levels of these markers are significant risk factors for the 
development of ATB-DILI.14,42–44 Elevated levels of these markers might indicate underlying hepatic metabolic 
disturbances, that predispose patients to ATB-DILI upon initiation of anti-tuberculosis treatment.

Currently, several studies have employed machine learning models to predict DILI. At the molecular level, a study 
combined transcriptomic profiles of human cell lines with a deep neural network model to predict DILI, which achieved 
an AUC of 0.802 and 0.798 for training and an independent validation set, respectively.45 In the clinical stage, a time- 
series deep learning model to predict the risk of DILI in patients taking angiotensin receptor blockers, that demonstrated 
excellent classification performance for telmisartan, losartan and irbesartan, achieving AUCs of 0.93, 0.92 and 0.90, 
respectively.46 Another study proposed a decision tree model for predicting the risk of carbapenem-induced liver injury. 
The model suggested that doripenem might pose a higher risk in patients with ALT > 22 IU/L and albumin-bilirubin 
score > −1.87.47 In our study, the prediction models for ATB-DILI were developed using AutoML technology. The 
optimal model, selected through 5-fold cross-validation, demonstrated excellent predictive performance, achieving an 
AUC of 0.838 and 0.734 on the training set and testing set, respectively. Therefore, the risk of ATB-DILI in children can 
be accurately predicted by an optimal GBM model, enabling clinicians to develop personalized treatment regimens for 
these patients that significantly reduce the probability of ATB-DILI occurrence. In addition, the AutoML technology 
employed in this study is more accessible to experts from non-machine learning fields to facilitate the development of 
high-quality machine learning models. Furthermore, the AutoML technology employed in this study is more accessible to 
experts from non-machine learning fields to facilitate the development of high-quality machine learning models.

At present, the Tuberculosis Branch of the Chinese Medical Association has formulated guidelines for the diagnosis 
and treatment of ATB-DILI. The diagnostic criteria mainly involve comprehensive medical history collection, liver 
biochemical tests, and routine abdominal imaging should be performed for ATB-DILI patients, as well as liver 
histopathological examination.48 Nevertheless, our predictive model established by clinical data and TDM test data 
can timely and accurately identify high-risk children of ATB-DILI. This will change the clinical management pattern 
from passive to active, benefiting pediatricians and children. This proactive approach allows healthcare professionals to 
implement timely interventions and mitigation strategies, thereby minimizing potential harm to high-risk children with 
ATB-DILI, such as reducing the physiological burden and discomfort compared to invasive detection methods. In 
addition, the high-risk children of ATB-DILI can be identified by the machine learning model so that tuberculosis- 
endemic and resource-limited regions can optimize the allocation of medical resources and reduce their medical burden, 
improve the healthcare of high-risk children of ATB-DILI, and promote the establishment of a sustainable medical 
security system.

This study had a few limitations. Firstly, the data utilized to construct the machine learning model were sourced 
exclusively from a single medical center. Secondly, although the plasma concentrations of isoniazid and rifampicin were 
covered, medication information on the plasma concentration of pyrazinamide was missing because this testing program 
was not performed in our hospital at the early stage. In future research, we will collaborate with multiple centers to obtain 
external validation data to ensure the model’s generalization ability. Additionally, the pyrazinamide and genetic data will 
be incorporated to enhance the predictive performance of the machine learning model.

Conclusions
This study is the first application of AutoML technology on predicting the risk of ATB-DILI in children. Based on seven 
key features, a series of predictive models were constructed using AutoML technology. Among these models, the GBM 
model significantly outperformed others in predicting ATB-DILI, showing superior performance with AUCs of 0.838 and 
0.784 on the training and testing sets respectively. The predictive model can provide early warning signals before ATB- 
DILI occurs and generate interpretable information, which could potentially be developed into a professional application 
to help clinicians adjust the medication plan in time and potentially reduce the likelihood of ATB-DILI in children. In 
addition, this study will facilitate the optimization of medical resource allocation and alleviate the medical burden in 
tuberculosis-endemic and resource-limited areas, and it provides new perspectives and methodological guidance for the 
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study of other adverse effects of anti-tuberculosis drugs. Due to the single-center nature of this study, data sources are 
limited. In future research, genomics information will be integrated to enhance model performance, and the case will be 
expanded through multi-center collaboration.
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