
Chapter 10
Risk of Globalization of the Disease
in Europe

Abstract Risk of dissemination of ZIKV disease is based on multiple factors,
including environmental (climate, socioeconomically, deforestation or industrial-
ization) and travel/traveller factors. Both the disease (viremic travellers) and vector
movement to mosquito-free area contributes to the introduction and establishment
of autochthonous ZIKV transmission. Mass gathering events can contribute to
magnify transmission due to close crowd life in a confined area. Also, multitudinary
events can promote the introduction of an infectious disease to a previously naïve
area when returning home. Although mathematical models estimate a low risk for
introduction of ZIKV in Europe, specific European regions (mainly Portuguese
Island of Madeira) account with suitable and efficient vector and opportune climate
conditions to harbour the disease. Clinicians should be aware to enable early
detection of autochthonous ZIKV cases. International and local guidelines can help
clinicians on how to handle suspicious cases, how to confirm the infection and how
to report suspected and confirmed cases. In case of autochthonous ZIKV detection,
public authorities should perform surveillance and provide adequate resources to
sustain enhanced mosquito control.

10.1 Factors Affecting the Risk of Spread
of Vector-Borne Disease

It is known that ZIKV is primarily transmitted in tropical and subtropical regions by
mosquitoes Aedes aegypti and Ae. albopictus bite, although other routes of infection
have been also described (see Chap. 5). But, up to date epidemic/endemic trans-
mission of ZIKV has been limited to tropical and subtropical regions, which sug-
gests that ZIKV transmitted though alternatives routes to mosquito bites is not
capable of maintaining on going transmission on their own in the absence of
tropical/subtropical Aedes spp. vectors and/or a climate hot enough for ZIKV
transmission by these species [1, 2].

To manage risks for endemic ZIKV infection in ZIKV-free countries some
aspects should be considered.
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10.1.1 Related to Environmental Factors

Climate patterns, specially temperature and rainfall trends, but probably also
changing wind patterns, have important implications on vector-borne diseases
transmission. But this influence may be significantly modified by confounding
non-climatic factors, including epidemiological, environmental, social, economic
and demographic factors implicated [3–7].

– Climate facts:

Temperature is known to modify directly vector-borne diseases in mosquito hosts.
Variations of ambient temperature considerably modify insect internal temperature,
as they are poikilotherms. Those variations greatly affect vector physiology and
expose the pathogens they carry to ambient temperature [6, 8]. In laboratory, viral
replication kinetics in mosquito-cultured cells has shown to depend on temperature,
since higher temperatures lead to a more efficient viral attachment and cell infection
[9, 10].

Several studies have also linked higher temperatures to shorter extrinsic incu-
bation period, increase of female mosquito rate and faster dissemination rates
[11–13].

Regarding precipitations and viral transmission dynamics, both increased and
decreased rainfalls can promote the dispersal of ZIKV and other arboviriasis
worldwide: although precipitations provide essential habitat for larval aquatic stage
of Aedes lifecycle, drought can also contribute, as people increase water storage in
household containers during the rainless periods, favouring larval hatcheries
[14–16].

The atmospherical phenomenon known as El Niño has been linked to warm
waves and drought in southern Africa and Southeast Asia, including Australia,
while inundate the west coast of South America and to Central Africa [16, 17]. El
Niño Southern Oscillation (ENSO) impacts on temperature conditions that caused
the largest biting rates and the shortest extrinsic incubation period in 2015, which
has favoured ZIKV outbreak in Latin America [18, 19]. The heather temperatures in
North and Eastern South America, associated to an important drought throughout
the second half of 2015 might be other of the multiple manifestations of ENSO and
climate change that could have contributed to the rapid dispersal of ZIKV outside
the native ecological niche [16, 20].

– Socioeconomic factors:

The human population is supposed to increase from 6 billion by the end of the 20th
century to around 10 billion by 2050, half of them concentrated in urban and
periurban areas [21, 22]. But the increase of human density is estimated to be
disproportional, because of a higher proportion of those people will concentrate in
cities compared with nowadays situation. Urban populations in Africa and Asia and
those in Latin America and the Caribbean are expected to increase by almost 50%
[23, 24]. This is of particular concern as rapid population growth is associated to
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poverty due to concentrations of population without the necessary infrastructure for
the safe storage and distribution of water and drainage of wastewater. In addition, as
previously mentioned, the use of inappropriate household water containers favours
an optimal habitat for larval development [25, 26].

– Deforestation:

Population increase implies the transformation of forestall areas in habitable areas.
The consequent deforestation is expected to result in an increase in surface tem-
peratures of up to 2 °C, with drier conditions where the land cover is reduced,
which, again, favours the spread of vector-borne diseases as ZIKV [27, 28].

– Industrialization:

Industrial activity contributes to nearly 33% of atmospheric concentration of CO2
and 50% of methane. This cumulus of gases has been linked to an increase of
ambient temperature. Also, CO2 and methane emissions can increment plant foli-
age. These facts would impact in vector-born insects as the increase of temperatures
and density biomass would provide more favourable microclimates for insect
vectors [29, 30].

10.1.2 Related to the Travels and Travellers

The increasing numbers of people travelling worldwide is the result of a more
economical mass transport and liberalization of international trade. International
travellers (9.9 million in 2015) flying from Brazilian airports (ZIKV-affected area)
to North America, Europe and Asia represents 65, 27 and 5%, respectively [31, 32].
These data exemplify the magnitude of the problem.

There are a number of different situations related to international movement of
people and materials that directly impact on the distribution and incidence of
vector-borne diseases. Travellers can either be a carrier of pathogens into new
environments or accidentally translocate vectors in transport vehicles. People can
also trigger further outbreaks if they become infected by vector-borne diseases
during the travel and return to their non-endemic country while they are still vir-
aemic, thereby increasing the risk of spreading to areas where suitable mosquito
vectors already exist [32, 33].

However, it should not be forgotten that other routes of ZIKV infection than
mosquito-bite have been reported (see Chap. 5), so the spread of ZIKV via viremic
travellers to areas without the Aedes mosquitoes is equally of concern.

To asses the acquisition risk for the disease, it´s important to identify the type of
stay of travellers in endemic areas for ZIKV, because it will also entail a different
risk of transmission once the traveller returns to his/her country of origin: many
travellers may go to holiday resorts or other locations where the risk of infection is
dramatically lower compared to that of the resident population. In that sense,
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immigrants returning home to visit their family (also known as VFR o “visiting
friends and relatives”) represent a high risk group for mosquito exposure [34, 35].

An increased risk of introduction and establishment of autochthonous ZIKV
transmission has been linked with viremic travellers returning from a ZIKV
endemic country traveling by air transportation and with the commercial transport
of mosquito larvae by trucks, ships or aircraft. Although rapid identification of
subclinical and/or viremic patients is nearly impossible, a special emphasis should
be placed on fumigation at ports and border crossing points and use of larvicides
and insecticides must be highlight [36–38].

10.1.3 Introduction of Mosquito Vector-Born
in Naive Areas

A modification in the geographical distribution of mosquitos has an important
impact on the exposure of naive hosts to that disease. The introduction of an exotic
vector or pathogen in an area where it did not previously exist, requires the exis-
tence of certain factors that assess whether the pathogen or vector is able to persist
in that new environment or not, and how susceptible the local population to the
disease is [4, 39, 40].

When a vector moves to another location and changes the suitability of the
environment, it can modify the development, survival, and reproductive rates of
vectors and pathogens, affecting the intensity of disease transmission and exposure
of the population to that disease.

On the other hand, sensitivity and susceptibility to vector-born diseases by
population is influenced both by genetic or acquired immune developed in response
to previous exposure. In the specific case of ZIKV, naive, non-immune population
are especially susceptible to epidemics of acute disease, and that is one of the
reasons why this disease has spread so rapidly [4, 41].

For more accurate information about mosquito dynamics, see Chap. 4.

10.2 Risk Due to Mass Gathering Events

The World Health Organization (WHO) defines a mass gathering as ‘‘an organized
or unplanned event where the number of people attending is sufficient to strain the
planning and response resources of the community, state or nation hosting the
event” [1, 2]. Mass gathering events meets theoretical ideal conditions for the
transmission of infections between people from remote and widespread geo-
graphical locations, with potentially different immune responses.

Pilgrimage, sports events, outdoor shows, musical festivals, political or cultural
events and other celebrations that congregate crowds in a confined area increases
the risk of a range of infectious diseases [3–7]. Travellers to these crowded events
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cannot only introduce an infectious disease to a previously naïve area, but can also
magnify transmission at the people meeting and further propagate transmission after
their return home. This statement has been fulfilled on multiple occasions, as was
the case of the transmission of 2009 H1N1 pandemic afterward a large Easter
holiday gathering in Iztapalapa, Mexico [6, 8]. Similarly, crowded congregation of
population has been associated to the spreading of the Great Pandemic in 1918 and
the Asian Flu Pandemic in 1957, creating a global disease outbreak [9, 10].

The paradigm of mass gathering event at risk is the annual Islamic pilgrimage to
Mecca and Medina in Saudi Arabia (Hajj), which congregates approximately three
million Muslim pilgrims arriving from different parts of the world to Mecca. The
outbreak of meningitis in 2000–2001 after the Hajj demonstrates the importance of
this type of mass events in the transmission of infectious diseases [11–13]. Other
example that shows the possibility of dissemination of infectious diseases during a
mass gathering event was the congregation in Taizé, Germany, for Christian pil-
grimage in 2006, that was followed by primary measles cases identified among
unvaccinated persons [14–16].

On the other hand, there are examples in which concentrations of people are not
followed by an amplifying of a pre-existing disease: the outbreak of Middle East
Respiratory Syndrome coronavirus (MERS-CoV) was at its peak in 2013 just when
pilgrimage to Saudi Arabia was started. No cases of this respiratory infection
disease were identified during Hajj and Umrah (a minor pilgrimage) during this
year, even though some cases were identified during the following years [16, 17].
So probably other different factors must also be present to provide a favourable
environment for the dissemination of infectious diseases.

Because of ZIKV outbreak in Brazil and its risk of dissemination, all the alarms
were focused on the Olympic games of 2016, held in Rio. Previously, health
authorities in Brazil were aware of other vector-borne risk and had already cele-
brated multiple mass gathering events with no evidence of significant international
spread. As an example, during the 2014 FIFA Football World Cup in Brazil,
mathematical models estimated 33 cases of DENV (range 3–59 cases) among
foreign tourists, of nearly 600,000 of expected visitors [18, 19]. So far, only 3 cases
of DENV were reported associated to this sport event [16, 20]. It’s postulated that
the low numbers of cases finally diagnosed of DENV were the result of a year with
an unusually low incidence in Brazil, probably due to a severe drought in 2014,
reducing the number of expected cases in visitors. Also, the typical lower tem-
peratures of the months in which the event was held (June and July), contributed to
this small amount of cases [21, 22].

Predictions of the risk of acquiring ZIKV during Olympic and Paralympic
Games in Rio 2016 were initially difficult to asses. The lack of knowledge of real
incidence of the disease, due mainly because of asymptomatic cases were not
reported, made accurate estimations difficult to weigh. Based on forecast of between
500,000 and 1,500,000 ZIKV infections (both symptomatic and asymptomatic)
[23, 24] the calculated risk during the period of the celebration (between August
and September) ranged from 9 � 10−6 to 3 � 10−5, which represents a risk 15
times lower than that of DENV for that period [25, 26].
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Likewise, other mathematical models predicted travel-associated ZIKV risk in
visitors to Olympic games in 2016, anticipating between 6 and 80 cases of both
asymptomatic and symptomatic cases of total ZIKV infections among travellers
attending the Olympics, with between 1 and 16 of them expected to be symptomatic
[27, 28].

But by the end of Rio Olympic Games, no cases of ZIKV infection involving
spectators, athletes or anyone associated with the Olympics were achieved [29, 30].
The lack of cases associated to this mass gathering event was probably because
visitors’ exposure level to mosquitos was lower than that of residents (i.e. adequate
use of repellents, mosquito net). Also, tourist were likely to confine their stays to
areas close to the Olympic Stadium and other mainly touristic, which were previ-
ously fumigated and free of mosquito and larvae, avoiding areas on the outskirts of
the city, where mosquito density was higher [31, 32].

Other multitudinous event in Brazil is its annual Carnival. During the previous
festivities of Carnival 2016 held in February, more than 1 million of visitors stayed
at Rio de Janeiro, which represents twice the number expected for the Olympic
Games. At that time, risk of ZIKV was highest, as cases reported were at their peak
and most of activities were outdoors, increasing the exposure of visitors to
mosquitoes. The resulting risk calculated for ZIKV infection for tourists was 36 per
million tourists [32, 33]. But after Carnival celebration in 2016, there was no a
significant increase of diagnosis over the following months [34, 35].

2017 carnival represents a new opportunity for ZIKV of spread. Although a
decline in cases of Zika infection has been reported in Brazil, tourists and visitors
are still posed to risk of ZIKV infection.

10.3 Specific Risk of Globalization in Europe

In Europe, multiple imported cases of ZIKV have been previously reported
[36–38]. This is of particular concern, as Aedes vectors are known to be present, as
previously described (Chap. 4). Therefore, returning ZIKV-viremic travellers to
European countries may become a source of local transmission in the presence of
this suitable vector. Previously, Aedes mosquito was implicated in local transmis-
sion of CHiKV and DENV in Mediterranean countries [4, 39, 40]. The species have
also been responsible for outbreaks of yellow fever in Italy in 1804 [4, 41]. The
existence of previous autochthonous arboviriasis transmitted by the same vector,
make the infection by ZIKV also feasible in Western Europe at least seasonally,
when competent vector species are present. The arrival of summer in North
Hemisphere is linked to a peak in mosquito Aedes population and a most efficient
viral replication, so from June to September climatic influence could also favour the
establishment of ZIKV disease in Europe [42].

Different mathematical models have assessed the risk of ZIKV arrival, estab-
lishment, and autochthonous in Europe. Estimations of imported cases of ZIKV
have been made based on published estimations of 500,000–1,500,000 infections in
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Brazil (both asymptomatic and symptomatic) during 2015 [23]. Models predicts
between 508 and 1.778 imported cases, particularly in France, Portugal, and Italy.
Of these, approximately 20% would likely be symptomatic so it´s expected between
116 and 355 symptomatic ZIKV infections into all European countries in 2016 [38].

Once ZIKV arrives, a competent vector must be present to maintain the disease.
The competence of European Aedes mosquitoes (both Ae. aegypti and Ae.
albopictus) as an efficient vector for the currently circulating Asian genotype of
ZIKV has also been assessed. Despite the fact that Ae. albopictus plays a central
role in the transmission of other arboviruses in Europe, it’s suggested that this
mosquito is not good enough to maintain local transmission of ZIKV compared to
CHIKV and maybe, DENV [43], concluding that there is low risk for ZIKV
expansion in most parts of Europe, with the possible exception of the warmest
regions bordering the Mediterranean coastline, and specially Madeira. In this
specific autonomous region of Portugal two main factors are present: the presence
of Ae. Aegypti (which is considered the most competent vector for ZIKV), intro-
duced in 2005 [44] and the close contact with Brazil, with whom it maintains active
commercial exchanges and people shares the same language [43].

Although the amount of travellers arriving from the Americas to Madeira is low
compared to other cities in continental Europe, the presence of Ae. Aegypty, an
extended season associated to high vectorial activity and the hazardous outbreak of
DENV fever in 2012 [45], stress the potential for autochthonous transmission of
ZIKV in that Portuguese location [42].

Other factor that must be considered is the numbers of travellers returning to
Europe from areas in the Americas with known ZIKV activity during the period of
higher vectorial capacity. It is estimated than between 475,000 and 715,000 trav-
ellers will arrive from endemic areas for ZIKV to the main central European capitals
from May to October, of the total of population at risk of nearly 800 million central
Europeans. In July and August, (when temperatures and vectorial capacity in
Europe are peaking), 15,7% of this population might reside in areas with known
occurrences of Ae. albopictus (i.e. 241 million of centre Europeans). European
countries with a large percentage of their population living in areas where basic
reproduction number (Ro) is over 1 in August include Albania (83% of population
at risk), Italy (78%), Croatia (44%), France (20%), Greece (25%), Montenegro
(39%), Slovenia (28%) and Spain (19%) [42], so health authorities of those specific
locations should be aware of current risk.

Other mosquito species as Culex, which is present in central Europe that are
able to transmit other arboviruses, has proved not to have vector competence for
ZIKV [46].

Taking all these facts under consideration and adding that the average temper-
atures of s of most areas of Europe the possibility of large outbreaks of ZIKV in
most areas of Europe, at least for the immediate future, seems to be irrelevant.

Imported cases of Zika virus have been documented in Europe and are expected
to continue, not only because the high proportion of travellers arriving from the
most affected regions to Europe. Sexual transmission of Zika has been also reported
in European citizens without a previous travel to endemic region [47, 48].
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There are documented precedents of containing an arbovirus disease outbreak in
Europe. In 2014, after an outbreak of CHiKV in Montpellier, a successful inte-
grated prevention and response programme was performed. Although the absence
of immediate mosquito control treatment near the primary case’s residence (because
the vector was initially not identified) and a lack of awareness of this disease among
health professionals facilitated the spread of the infection up to 12 cases. However,
there was a quick response following the alert. Subsequently after the detection of
the cases, French authorities focused on epidemiological and Entomological
investigations and stressed vector control treatments, which played a part in prompt
containing the outbreak [49].

EU countries must be prepared for this new threat. This requires capability to
detect and diagnose cases early, perform systematic and regular surveillance, and
adapt resources to sustain enhanced mosquito control. Clinicians should be aware to
enable early detection of ZIKV cases and there must be sufficient and validated
laboratory capacity for virus detection, virus identification and serological testing.
International and local guidelines can help clinicians on how to handle suspicious
cases, how to confirm the infection and how to report suspected and confirmed
cases. In case of autochthonous ZIKV detection, public authorities should perform
surveillance and provide adequate resources to sustain enhanced mosquito control.
Also, information should be promptly circulated to all health professionals, public
health services and other sectors. Failure to do so could lead to the possibility of
spreading more extensively, resulting in greater costs for vector control and health
care for infected people [50].

References

1. World Health Organization: Communicable disease alert and response for mass gatherings.
http://www.who.int/csr/Mass_gatherings2.pdf (2008). Accessed 1 Feb 2017

2. Ogden NH, Fazil A, Safronetz D, Drebot MA, Wallace J, Rees EE et al (2017) Risk of
travel-related cases of Zika virus infection is predicted by transmission intensity in
outbreak-affected countries. Parasites & Vectors. 10(1):41

3. Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G et al (2012)
Global perspectives for prevention of infectious diseases associated with mass gatherings.
Lancet Infect Dis. 12(1):66–74

4. Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin
Microbiol Rev 17(1):136–173

5. McCloskey B, Dar O, Zumla A, Heymann DL (2014) Emerging infectious diseases and
pandemic potential: status quo and reducing risk of global spread. Lancet Infect Dis.
14(10):1001–1010

6. Parham PE, Waldock J, Christophides GK, Hemming D, Agusto F, Evans KJ, et al Climate,
environmental and socio-economic change: weighing up the balance in vector-borne disease
transmission. Philos Trans R Soc Lond B Biol Sci 370(1665):pii: 20130551

7. Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne
zoonotic diseases. Lancet 380(9857):1946–1955

90 10 Risk of Globalization of the Disease in Europe

http://www.who.int/csr/Mass_gatherings2.pdf


8. Zepeda HM, Perea-Araujo L, Zarate-Segura PB, Vázquez-Pérez JA, Miliar-García A,
Garibay-Orijel C et al (2010) Identification of influenza A pandemic (H1N1) 2009 variants
during the first 2009 influenza outbreak in Mexico City. J Clin Virol 48(1):36–39

9. U.S. Department of Health and Human Services: HHS Pandemic Influenza Plan (2005)
https://www.cdc.gov/flu/pdf/professionals/hhspandemicinfluenzaplan.pdf. Accessed 5 Mar
2017

10. Vancini R, Wang G, Ferreira D, Hernandez R, Brown DT (2013) Alphavirus genome delivery
occurs directly at the plasma membrane in a time- and temperature-dependent process. J Virol
87(8):4352–4359

11. Wilder-Smith A, Goh KT, Barkham T, Paton NI (2003) Hajj-associated outbreak strain of
Neisseria meningitidis serogroup W135: estimates of the attack rate in a defined population
and the risk of invasive disease developing in carriers. Clin Infect Dis 36(6):679–683

12. Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmissionç: evidnce and
implications. Environ Health Perspect. 121 (11–12):1264–72

13. Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP (2010) Larval
environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera:
Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis 10(3):241–247

14. Pfaff G, Lohr D, Santibanez S, Mankertz A, van Treeck U, Schonberger K et al (2010)
Spotlight on measles 2010: measles outbreak among travellers returning from a mass
gathering, Germany, September to October 2010. Euro Surveill 15(50)

15. Pontes RJ, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A (2000) Vector densities
that potentiate dengue outbreaks in a Brazilian city. Am J Trop Med Hyg 62(3):378–383

16. Paz S, Semenza JC (2016) El Niño and climate change: contributing factors in the dispersal of
Zika virus in the Americas? Lancet 387(10020):745

17. Gautret P, Charrel R, Benkouiten S, Belhouchat K, Nougairede A, Drali T et al (2014) Lack
of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj.
Emerg Infect Dis 20(4):728–730

18. Massad E, Burattini MN, Ximenes R, Amaku M, Wilder-Smith A (2014) Dengue outlook for
the World Cup in Brazil. Lancet Infect Dis 14(7):552–553

19. Caminade C, Turner J, Metelmann S, Hesson JC, Blagrove MSC, Solomon T et al (2017)
Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño
2015. Proc Natl Acad Sci USA 114(1):119–124

20. Aguiar M, Rocha F, Pessanha JEM, Mateus L, Stollenwerk N (2015) Carnival or football,
is there a real risk for acquiring dengue fever in Brazil during holidays seasons? Sci Rep
16(5):8462

21. Ximenes R, Amaku M, Lopez LF, Coutinho FAB, Burattini MN, Greenhalgh D et al (2016)
The risk of dengue for non-immune foreign visitors to the 2016 summer olympic games in
Rio de Janeiro, Brazil. BMC Infect Dis 29(16):186

22. Gerland P, Raftery AE, ev ikova H, Li N, Gu D, Spoorenberg T et al (2014) World population
stabilization unlikely this century. Science 346(6206):234–7

23. European Centre for Disease Prevention and Control: Rapid risk assessment: Zika virus
disease epidemic potential association with microcephaly and Guillain-Barre syndrome
(2016). http://ecdc.europa.eu/en/publications/Publications/rapid-risk-assessment-zika-october-
2016.pdf. Accessed 5 Mar 2017

24. WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation: Global water
supply and sanitation assessment 2000 report. http://www.who.int/water_sanitation_health/
monitoring/jmp2000.pdf (2000). Accessed 18 Feb 2017

25. Massad E, Coutinho FAB, Wilder-Smith A (2016) Is Zika a substantial risk for visitors to the
Rio de Janeiro Olympic Games? Lancet 388(10039):25

26. Hashim JH, Hashim Z (2016) Climate change, extreme weather events, and human health
implications in the Asia pacific region. Asia Pac J Public Health 28(2 Suppl):8S–14S

References 91

https://www.cdc.gov/flu/pdf/professionals/hhspandemicinfluenzaplan.pdf
http://ecdc.europa.eu/en/publications/Publications/rapid-risk-assessment-zika-october-2016.pdf
http://ecdc.europa.eu/en/publications/Publications/rapid-risk-assessment-zika-october-2016.pdf
http://www.who.int/water_sanitation_health/monitoring/jmp2000.pdf
http://www.who.int/water_sanitation_health/monitoring/jmp2000.pdf


27. Lewnard JA, Gonsalves G, Ko AI (2016) Low risk of international Zika virus spread due to
the 2016 olympics in Brazil. Ann Intern Med 165(4):286

28. Snyder PK (2010) The influence of tropical deforestation on the Northern hemisphere climate
by atmospheric teleconnections. Earth Interact. 14(4):1–34

29. World Health Organization: Emergencies Zika situation report. http://www.who.int/
emergencies/zika-virus/situation-report/25-august-2016/en (2016). Accessed 1 Mar 2017

30. Ramírez JA, Finnerty B (1996) CO2 and temperature effects on evapotranspiration and
irrigated agriculture. J Irrig Drain 122(3):155–163

31. Villela DAM, Bastos LS, DE Carvalho LM, Cruz OG, Gomes MFC, Durovni B et al (2017)
Zika in Rio de Janeiro: assessment of basic reproduction number and comparison with dengue
outbreaks. Epidemiol Infect 1–9

32. Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Kulkarni MA et al (2016)
Anticipating the international spread of Zika virus from Brazil. Lancet 387(10016):335–336

33. Burattini MN, Coutinho FAB, Lopez LF, Ximenes R, Quam M, Wilder-Smith A et al (2016)
Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic
Games in Rio de Janeiro. Brazil Epidemiol Infect 144(9):1904–1906

34. WHO Publication. World Health Organization: Situation report on Zika virs Infection. http://
apps.who.int/iris/bitstream/10665/251905/1/zikasitrep8Dec2016-eng.pdf. (2016). Accessed 1
Mar 2017

35. Lindholm DA, Myers T, Widjaja S, Grant EM, Telu K, Lalani T, et al. Mosquito exposure
and chikungunya and dengue infection among travelers during the chikungunya outbreak in
the Americas. Am J Trop Med Hyg 16–0635

36. Díaz-Menéndez M, de la Calle-Prieto F, Montero D, et al. Initial experience with imported
Zika virus infection in Spain (2016). Enferm Infecc Microbiol Clin. pii: S0213-005X(16)
30257-9

37. Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L, Schneider ADB
et al (2016) Zika virus: medical countermeasure development challenges. PLoS Negl Trop
Dis 10(3):e0004530

38. Massad E, Tan S-H, Khan K, Wilder-Smith A (2017) Estimated Zika virus importations to
Europe by travellers from Brazil. Glob Health Action 9(1):31669

39. Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, Grandadam M et al (2013) High
efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the
Southeast of France. PLoS ONE 8(3):e59716

40. Rezza G (2014) Dengue and chikungunya: long-distance spread and outbreaks in naïve areas.
Pathogens and Global Health 108(8):349–355

41. Sabbatani S, Fiorino S (2007) Yellow fever. Infez Med 15(2):129–141
42. Rocklöv J, Quam MB, Sudre B, German M, Kraemer MUG, Brady O et al (2016) Assessing

seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe.
EBIOM 9:250–256

43. Jupille H, Seixas G, Mousson L, Sousa CA, Failloux A-B (2016) Zika virus, a new threat for
Europe? PLoS Negl Trop Dis 10(8):e0004901

44. Seixas G, Salgueiro P, Silva AC, Campos M, Spenassatto C, Reyes-Lugo M et al (2013)
Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue
vector. Mem Inst Oswaldo Cruz 108:3–10

45. Wilder-Smith A, Quam M, Sessions O, Rocklov J, Liu-Helmersson J, Franco L et al (2014)
The 2012 dengue outbreak in Madeira: exploring the origins. Euro Surveill 19(8):20718

46. Heitmann A, Jansen S, Lühken R, Leggewie M, Badusche M, Pluskota B et al (2017)
Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveill 22
(2):30437

47. Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, Fiorentini C et al (2016) An
autochthonous case of Zika due to possible sexual transmission, Florence, Italy, 2014. Euro
Surveill 21(8):30148

92 10 Risk of Globalization of the Disease in Europe

http://www.who.int/emergencies/zika-virus/situation-report/25-august-2016/en
http://www.who.int/emergencies/zika-virus/situation-report/25-august-2016/en
http://apps.who.int/iris/bitstream/10665/251905/1/zikasitrep8Dec2016-eng.pdf
http://apps.who.int/iris/bitstream/10665/251905/1/zikasitrep8Dec2016-eng.pdf


48. Arsuaga M, Bujalance SG, Díaz-Menéndez M, Vázquez A, Arribas JR (2016) Probable
sexual transmission of Zika virus from a vasectomised man. Lancet Infect Dis 16(10):1107

49. Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L’Ambert G, Cochet A et al (2015)
Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill 20
(17):pii: 21108

50. European Centre for Disease Prevention and Control: Preparing for Zika in the EU (2016)
http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/Pages/preparedness.
aspx. Accessed 19 Feb 2016

References 93

http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/Pages/preparedness.aspx
http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/Pages/preparedness.aspx

	10 Risk of Globalization of the Disease in Europe
	Abstract
	10.1 Factors Affecting the Risk of Spread of Vector-Borne Disease
	10.1.1 Related to Environmental Factors
	10.1.2 Related to the Travels and Travellers
	10.1.3 Introduction of Mosquito Vector-Born in Naive Areas

	10.2 Risk Due to Mass Gathering Events
	10.3 Specific Risk of Globalization in Europe
	References


