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Abstract

According to life history theory, natural selection has shaped trade-offs for allocating energy

among growth, reproduction and maintenance to maximize individual fitness. In social mam-

mals body size and dominance rank are two key variables believed to influence female

reproductive success. However, few studies have examined these variables together, par-

ticularly in long-lived species. Previous studies found that female dominance rank correlates

with reproductive success in mountain gorillas (Gorilla beringei beringei), which is surprising

given they have weak dominance relationships and experience seemingly low levels of feed-

ing competition. It is not currently known whether this relationship is primarily driven by a

positive correlation between rank and body size. We used the non-invasive parallel laser

method to measure two body size variables (back breadth and body length) of 34 wild adult

female mountain gorillas, together with long-term dominance and demography data to

investigate the interrelationships among body size, dominance rank and two measures of

female reproductive success (inter-birth interval N = 29 and infant mortality N = 64). Using

linear mixed models, we found no support for body size to be significantly correlated with

dominance rank or female reproductive success. Higher-ranking females had significantly

shorter inter-birth intervals than lower-ranking ones, but dominance rank was not signifi-

cantly correlated with infant mortality. Our results suggest that female dominance rank is pri-

marily determined by factors other than linear body dimensions and that high rank provides

benefits even in species with weak dominance relationships and abundant year-round food

resources. Future studies should focus on the mechanisms behind heterogeneity in female

body size in relation to trade-offs in allocating energy to growth, maintenance and lifetime

reproductive success.
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Introduction

Reproductive success is contingent on the appropriate allocation of energy among growth,

reproduction and maintenance [1,2]. Due to the high energetic demands of gestation and lac-

tation, this energetic trade-off is particularly critical in female mammals [3]. Female reproduc-

tive success can also be influenced by body size, body mass, body condition and health [4–7].

Furthermore, in group-living mammals, female reproductive success may be correlated with

dominance rank and the strength of social bonds [5,8–12]. However, because of the difficulties

in measuring body size in wild mammals, surprisingly few studies have examined the relation-

ship between body size and dominance rank or correlated these variables to reproductive suc-

cess [6,13].

According to life history theory large body size is predicted to be associated with costs and

benefits. Allocating energy to attain and maintain large body size is associated with delays in

reproduction, as energy allocated into one fitness-enhancing function cannot be concurrently

invested into another [1,2,14]. Moreover, larger females have greater absolute metabolic needs

than smaller ones, which can lead to increased risk of starvation during periods of resource

unpredictability [15,16]. However, whilst trade-offs are evident in some populations, variation

in individual quality can mask trade-offs in others [13,17,18]. Indeed, larger individuals often

have higher fitness than smaller ones [19]. The proximate mechanisms behind this may

include larger females having lower infant mortality than smaller ones, owing to larger moth-

ers producing larger offspring, more or better quality milk or providing improved offspring

protection [13,15,20,21]. Moreover, large female size may be associated with advantages in

resource competition, as bigger females can outcompete smaller ones and are often dominant

over them [15,16].

Factors other than body size may influence reproductive success. In many group-living spe-

cies, high dominance rank is thought to confer females with priority of access to resources

such as food [22,23], leading to better energetic condition [24,25] and higher reproductive suc-

cess [10,26–28]. High ranking mothers in better energetic condition are able to invest more

energy into reproduction, resulting in accelerated offspring growth [29,30], shorter inter-birth

intervals [31–34] and lower infant mortality [24,31,35–37] than lower-ranking mothers. How-

ever, rank-related variation in energetic condition and reproductive success are only expected

under certain ecological and social conditions [38–40].

One explanation for if and how ecological and social conditions can influence reproductive

success is the socioecological model [28,38–40]. Socioecological theory posits that the degree

to which resources can be defended by one or a few individuals influences the type of feeding

competition and the strength of female dominance relationships, which in turn predict

whether rank-related variation in energetic condition and reproductive success is expected

[28]. In species living in environments where high quality resources are spatially or temporally

clumped, leading to within-group contest competition and highly differentiated dominance

relationships, higher-ranking females are expected to outcompete lower-ranking ones. Con-

versely, in species that feed on low value, evenly distributed food resources, dominance rela-

tionships tend to be weak and undifferentiated such that energetic condition and reproductive

success are not expected to vary with individual dominance rank. However, socioecological

predictions have been the topic of much debate, and few studies have rigorously tested the

model predictions, particularly the relationship among dominance rank, energetic condition

and reproductive success in the wild [28,40,41]. Moreover, species with weak dominance rela-

tionships have also been shown to have rank-related variation in reproductive success [36].

Female dominance rank is expected to correlate with body size (in addition to energetic

condition) since body size typically correlates with fighting ability which commonly

PLOS ONE Female reproductive success in mountain gorillas

PLOS ONE | https://doi.org/10.1371/journal.pone.0233235 June 3, 2020 2 / 15

Funding: This research was funded by the Max

Planck Society, National Geographic Society, The

Columbian College of the George Washington

University, The Wenner Gren Foundation (ICRG-

123), The National Science Foundation (BCS

1520221) and The Leakey foundation.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0233235


determines dominance rank [10,42]. For example, larger female elephants, feral ponies and

red deer are higher-ranking than smaller ones [43–45]. However, a number of traits, other

than body size, have also been shown to be important in determining female dominance rank

in group-living species, such as age, body mass and body condition [22,46–49]. In addition, in

some species with female philopatry such as macaques, baboons and spotted hyenas, females

occupy rank positions just below their mothers due to coalitionary support from kin, and con-

sequently individual traits are not expected to correlate with dominance rank [31, but see 50].

Mountain gorillas are an interesting species to examine the interrelationships among body

size, dominance rank and reproductive success. Gorillas are the largest extant primate and

have one of the highest degrees of male biased sexual size dimorphism in mammals [51].

Female mountain gorillas have weak dominance relationships, which is expected for a species

living in an environment with year-round abundant, evenly-distributed herbaceous vegetation

[52,53]. However, these dominance relationships are stable over the long-term [53], and the

majority of aggression is over food resources [54,55], suggesting that such dominance relation-

ships may confer some benefits to high ranking individuals. Higher-ranking females have pri-

ority of access to some food resources and may have reduced energy expenditure compared to

lower-ranking females due to decreased time travelling [55,56]. However, support for a posi-

tive correlation between dominance rank and energy balance (energy intake minus energy

expenditure) was found in one population (Bwindi) but not in the other (Virunga population)

[55–57]. Most interestingly, higher-ranking females in the Virunga population had signifi-

cantly shorter inter-birth intervals and indications of lower infant mortality than lower-rank-

ing ones (when each mother was a data point, but not when each infant was used as a data

point) [58,59]. Given the low levels of feeding competition and weak dominance relationships,

such relationships were not expected and those authors suggested that the positive correlation

between dominance rank and reproductive success may in fact be a by-product of a positive

correlation between rank and body size, such that body size is driving the relationship, not

rank. However, it is unknown whether body size, which usually indicates fighting ability, is a

strong correlate of rank in this species.

In this study we examined the interrelationships among adult female body size, dominance

rank, and two measures of reproductive success, inter-birth interval and infant mortality, in

wild mountain gorillas. Using the non-invasive parallel laser method [60–64] we measured

two linear body dimensions associated with body size, back breadth and body length. We then

tested the hypothesis that both morphological traits positively correlate with female domi-

nance rank. Next, we tested the hypothesis that either higher-ranking and/or larger females

had shorter inter-birth intervals and lower infant mortality than lower-ranking/smaller ones.

Materials and methods

Study population and photogrammetry

The study was conducted on 34 adult females monitored by the Dian Fossey Gorilla Fund’s Kar-

isoke Research Center, Volcanoes National Park, Rwanda (between 1˚21’and 1˚35’S and 29˚22

and 29˚44’E). We collected body size measurements between January 2014 and July 2016 using

the non-invasive parallel laser method [60–64]. We measured two linear body dimensions, back

breadth and body length as described in Wright et al. [64] and Galbany et al. [62,63]. These two

measures incorporate several components of body size such as skeletal dimensions, and overly-

ing tissue, including the rounded contours of the deltoid and gluteal muscles. Whilst static lin-

ear body measurements may not directly represent body condition or mass, which likely vary

over time, they are expected to correlate with these measures and are important variables poten-

tially influencing reproductive success [6,21,65]. Females attain 98% of their body length and
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back breadth by 11.7 and 11.9 years, respectively [63]. Therefore, we only measured females

aged 12 years and above. Photographs were collected and measured in ImageJ [66] by E.W. and

J.G. [see S1 Material and [64] for details of photogrammetry error]. Measurements were

obtained from an average of six photographs per female and trait (range: 3–10) totaling 420

photographs. Back breadth and body length were weakly positively correlated (rs = 0.38).

Dominance hierarchies

Dominance hierarchies were based on displacement and avoids (approach and retreat interac-

tions) collected since the formation of each group or since 2000 (whichever was earliest) until

July 2016, during focal animal follows and ad libitum observations [53,67,68]. Approximately

four hours of observation were made on each group on a near daily basis. Females were con-

sidered behaviourally mature from age 8 years and older [69], so we included dominance data

on all females age eight and above (regardless of whether we had their body size measure-

ments). Dominance hierarchies were computed using the Elo rating method [70,71]. Females

were given a starting value of 1000 and k was set to 100. Maturing and immigrating females

entering into the dominance hierarchy were set to the lowest Elo rating of that day (Elo rating

argument innit set to bottom). This was based on indications from previous studies that immi-

grating females receive higher rates of aggression upon immigrating into a group from resi-

dent females and that dominance rank is in part related to tenure duration in the group

[53,72]. Additionally, we employed a burn in period, and only considered female dominance

ranks to be accurate once a female had interacted for a minimum of ten times. Ranks were

standardized per group and day such that the lowest ranking female was assigned 0 and the

highest ranking female 1 and rankings in between were set proportionally to their Elo rating.

The mean number of dominance interactions per female was 62 during an average of 10.4

years per female (range: 13–165; SD = 33; Fig 1).

Inter-birth intervals

Inter-birth interval was defined as the interval between two successive births by the same

mother. We only considered inter-birth intervals in which the first offspring in the interval

survived to weaning age (three years), as previous studies have shown that inter-birth intervals

are shorter following the death of unweaned infants [59,73]. This ensured that the observed

variance in inter-birth interval was not driven by infant mortality. The analysis included

infants born between April 2000 and April 2014 from 16 females. Demography data was used

until April 2017 to determine the survival of the first infant in all inter-birth intervals. All

births were known to the nearest day.

Infant mortality

We included 64 infants born between April 2000 and July 2015 from 28 females. We recorded

whether each infant survived to weaning age, using demography data up until July 2018. We

excluded cases of infanticide (N = 6) from the analysis because we were focusing on variation

in mortality related to body size and/or dominance rank. Infanticide by males occurred follow-

ing group disintegrations and interactions with lone silverbacks and neither female dominance

rank or body size were likely to prevent it.

Statistical analyses

To test the hypothesis that back breadth and body length were positively correlated with domi-

nance rank, we fitted a beta model with logit link implemented with the r function
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“glmmTMB” of the “glmmTMB” package [74]. The response variable was dominance rank

(averaged over the photogrammetry period: January 2014 –July 2016 and standardized

between 0 and 1, see above). Each female was a data point (N = 34). We included back breadth

and body length as test predictors, age (averaged over the photogrammetry period) as a control

variable and group ID (at the time of photogrammetry) as a random effect. We also included

the random slopes of back breadth and body length within group ID [75]. Because our hypoth-

eses concerning the effects of back breadth and body length on dominance rank were based on

the relative difference between females within a group rather than absolute differences across

groups we centered back breadth and body length among females within each group to a mean

of zero [64] (the largest difference in the group mean across groups was 3.4 cm and 4.4 cm for

back breadth and for body length, respectively).

To test whether dominance rank, back breadth or body length significantly influenced

inter-birth interval duration we fitted linear mixed models (LMMs) with Gaussian error distri-

bution and identity link implemented with the r function “lmer” of the “lme4” package [76].

The response variable in each model was the inter-birth interval and each inter-birth interval

represented a separate data point (N data points = 29; N females = 16). We fitted three models,

one for each predictor: dominance rank, back breadth and body length (due to the low number

of data points in the model; we also fitted a multivariate model comprising all the predictors,

see below). Values for dominance rank were taken from when the interval started (birth of the

first infant in the inter-birth interval). We included group ID and mother ID as random effects

in each model. Ideally, we would fit one model with all three predictors as well as controlling

for the potential influence of several additional variables such as mother age, offspring sex (12

Fig 1. Elo ratings for adult females in eight social groups between January 2010 and July 2016. Elo ratings were calculated using long-term dominance

interactions dating back to the date of each group formation (or to 2000 for PAB group). For clarity data are only shown for the period 2010–2016. Each

symbol denotes a female and each point represents an interaction between females, with lines between points representing the change in Elo rating for the two

interacting females.

https://doi.org/10.1371/journal.pone.0233235.g001
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F; 18 M), parity of mother (4 primiparous; 25 multiparous) and whether the mother trans-

ferred in between the birth of the two infants (23 did not; 6 transferred) [59,73,77,78] but due

to the low number of inter-birth intervals this likely results in an over-parameterized model

with very low power. Nevertheless, a potentially over-parameterized model with all test and

control predictors can still be informative in indicating which variables are likely important in

influencing inter-birth interval duration (this model is presented in the S1 Material).

To examine whether dominance rank, back breadth or body length were significantly asso-

ciated with the likelihood that infants survived to weaning age we used mixed effects Cox pro-

portional hazards models [79] using the “coxme” function from the package coxme [80]. The

response variable in each model indicated for each infant (the data point; N data points = 64; N
females = 28) the number of days which had passed until weaning or at death (if the infant

died before weaning age), and the status variable indicated whether the infant was alive (0) or

dead (1) at the time of weaning. We fitted three separate models, one for each test predictor:

dominance rank, back breadth and body length (due to the low number of data points in the

model; we also fitted a multivariate model comprising all the predictors, see below). We

included group ID and mother ID as random effects in each model. As above we also fitted an

additional and potentially over-parameterized model with the three test predictors and three

additional control variables: mother age, group size and parity of the mother (8 primiparous;

56 multiparous; see S1 Material for further information on this model).

All the analyses were conducted in R [81]. We checked for overdispersion in the glmmTMB

model. The dispersion parameter was 1.2, close to the ideal value of 1 [82]. We also checked

for normally distributed and homogenous residuals of the LMMs by visually inspecting qq-

plots and residuals plotted against fitted values. In the model with multiple predictor variables

we checked for collinearity among the predictors by examining variance inflation factors using

the “vif” function from the “car” package [82]. In addition, we checked for model stability by

re-running the models after excluding each level of the random effects one at a time and com-

paring the estimates derived from these models with the estimates from the original model on

the full data set. No stability issues were found. All quantitative predictors were z-transformed

in each analysis (to a mean of 0 and standard deviation of 1). Before determining the signifi-

cance of individual predictors we compared a full model with a corresponding null model

[excluding the test predictors of interest; 83] using likelihood ratio tests. P-values for individual

predictors were also derived through likelihood ratio tests, comparing a full model with a

reduced model not comprising the test variable (excluded one at a time). Confidence intervals

were determined using the functions “simulate.glmmTMB” and “bootMer” of the

“glmmTMB” and “lme4” packages.

Ethical note

The Rwanda Development Board and the Ministry of Education gave permission to conduct

this study.

Results

The mean back breadth and body length were 48.9 cm and 71.1 cm, respectively (Table 1; for

reference the corresponding male values are also displayed [64]).

Back breadth and body length showed no significant associations with dominance rank

(non-significant comparison of the full model comprising back breadth and body length with

a null model with these variables excluded: likelihood ratio test: Χ 2 = 2.03, df = 2, p = 0.363).

The mean inter-birth interval was 44.5 months (N = 29; SD = 6.6; range = 34.7–63.1).

Higher-ranking females had significantly shorter inter-birth intervals than lower-ranking ones
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(LMM, estimate ± SE: -2.570 ± 1.209, 2.5 and 97.5% confidence intervals: -5.166; -0.170, Χ 2 =

4.201, df = 1, p = 0.040; Fig 2). An increase in one standard deviation in dominance rank

resulted in a reduction of 2.6 months in inter-birth interval. Neither back breadth nor body

length significantly influenced inter-birth interval duration (LMM back breadth, estimate ±
SE: -0.230 ± 1.381, 2.5 and 97.5% confidence intervals: -3.191; 2.794, Χ 2 = 0.026, df = 1,

p = 0.871; LMM body length, estimate ± SE: 0.844 ± 1.361, 2.5 and 97.5% confidence intervals:

-3.048; 2.810, Χ 2 = 0.382, df = 1, p = 0.537, respectively; the model including the three test pre-

dictors and all control variables revealed similar results, see S1 Material).

Of the total 64 infants that could have reached age 3 years during the study, 23 (35.9%) did

not survive to weaning age. Infant mortality was not significantly correlated with dominance

rank, back breadth or body length (Cox LMM dominance rank, estimate ± SE: 0.260 ± 1.297,

Χ 2 = 1.191, df = 1, p = 0.275; Cox LMM back breadth, estimate ± SE: -0.255 ± 0.274, Χ 2 =

0.932, df = 1, p = 0.334; Cox LMM body length, estimate ± SE: 0.133 ± 0.270, Χ 2 = 0.299,

df = 1, p = 0.585; the model including the three predictors and all control variables revealed

similar results, see S1 Material).

Discussion

We examined the interrelationships among body size, dominance rank and reproductive suc-

cess in female mountain gorillas. Neither linear body dimension was clearly associated with

variation in dominance rank or reproductive success. However, higher-ranking females had

significantly shorter inter-birth intervals than lower-ranking ones, confirming results of earlier

studies [58,59]. Assuming dominance rank is related to access to resources as suggested by

other studies [55,56], our results suggest that rank may influence female body condition,

which may be a stronger correlate of reproductive success than linear body size in this species.

Even though our linear measures of body size incorporate some components of muscle size,

we cannot rule out that other measures such as body mass or body condition would reveal dif-

ferent relationships.

Body size and dominance rank

We found no clear support for back breadth or body length significantly correlating with

female dominance rank. This finding went against our expectation as body size tends to corre-

late with fighting ability, or levels of aggression, which commonly determine dominance rank

[42,84]. This result contrasts with some other group-living species such as female feral ponies,

elephants and red deer [43–45]. The lack of a strong correlation between linear measures of

body size and dominance rank is also surprising as positive relationships between body mass

and female dominance rank appear to be common [22,47–49,85]. However, in some species,

Table 1. Mean, range, sample size (N) and coefficients of variation (CV) among females and males for the two

morphological traits: Back breadth and body length.

Trait Back breadth Body length

Sex Female Male † Female Male †

Mean 48.9 59.2 71.1 87.7

Range 45.0–52.1 54.6–65.0 64.2–78.7 80.8–96.5

N 34 26 34 26

CV % 3.6 4.9 4.0 3.3

† Taken from Wright et al. [64]. CV % is calculated by dividing the standard deviation by the mean, multiplied by

100. For intra-individual CV % see S1 Table in S1 Material.

https://doi.org/10.1371/journal.pone.0233235.t001
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high dominance rank may lead to increases in body mass, rather than being a consequence of

large body mass [48]. In female mountain gorillas, traits such as age and group tenure, which

have been shown to influence dominance rank, are likely to have a greater importance in

determining dominance rank than body size [53]. Moreover, these results suggest that female

dominance rank may not strongly reflect (current) fighting ability or that larger females do

not often challenge smaller higher-ranking ones. Female gorillas exhibit low rates of aggression

towards each other, particularly aggression involving fighting or physical contact [52,54].

These results are similar to those for female chimpanzees, which do not tend to aggressively

challenge rank positions and have stable long term dominance relationships that are, at least in

part, dependent on group tenure length [86].

Fig 2. Relationship between dominance rank and inter-birth interval duration. Dominance rank is standardized between 0 (lowest rank) and 1 (highest

rank). The area of the circles represents sample size (N = 29 inter-birth intervals; 16 adult females). The dashed line is the fitted model line and the shaded area

is its 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0233235.g002
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The lack of a significant relationship between back breadth and female dominance rank

contrasts with findings in male mountain gorillas in this population, which show strong posi-

tive correlations between back breadth and dominance rank [64]. Since male fitness is more

dependent on access to mates, which are a more limited resource than food, large body size

and associated advantages in fighting ability are expected to be under much stronger selection

in males [87]. Therefore, compared to males, females may follow a more conservative growth

strategy, allocating resources into reproduction and maintenance rather than large body size.

In support for this idea, females attain full body size at an earlier age than males [63,88] and

have their first offspring 4–5 years earlier on average than males [89]. Variation in body size

among females would also be expected to be lower. Accordingly, we found that the variation

(coefficients of variation; CV) in back breadth among females was smaller than it was among

males (Table 1). Interestingly, variation in female body length was slightly higher than the vari-

ation in male body length, although it is unclear why this is the case (Table 1). We also found

no significant associations between body length and either female or male dominance rank

[current study, 64], which suggests that this trait does not correlate with competitive ability in

either sex.

Body size, dominance rank and reproductive success

We found that higher-ranking females had significantly shorter inter-birth intervals than

lower-ranking ones, which is similar to findings in earlier studies on this population [58,59],

and to other group-living species [31,32,34,90,91]. The main explanation for this relationship

is that high dominance rank leads to priority of access to food resources and consequently bet-

ter energetic condition [10,26,27,32]. Evidence for rank-related variation in energetic condi-

tion has been found in the neighboring Bwindi mountain gorilla population [56]. Higher-

ranking females had higher energy intake rates, due to faster ingestion rates, as well as lower

energy expenditure than lower-ranking females, leading to a positive relationship between

dominance rank and energy balance. However, support for rank-related energetic condition

in the current population has received less support [55,57]. Even though higher-ranking

females had greater access to some food resources over lower-ranking ones, dominance rank

did not significantly predict energy intake rate or levels of urinary C-peptide, a common proxy

for energy balance. To further investigate the mechanism leading to shorter inter-birth inter-

vals in higher-ranking females, future studies should measure the phases of the inter-birth

interval separately (estrous cycling, gestation and lactation). In baboons, higher-ranking

females have shorter postpartum amenorrhea (lactation) phases than lower-ranking ones [34],

whereas in mandrills it is the cycling phase that is reduced in higher-ranking females [33].

More generally, high dominance rank may also confer other benefits to high ranking individu-

als, which were not investigated here, such as improved mate choice, lower predation risk and

reduced social stress [10].

We found no support for linear body dimensions influencing inter-birth intervals. This

suggests that large female size in mountain gorillas does not provide clear advantages in

resource competition that could result in improved energetic condition, assuming that addi-

tional energy accrued via resource competition is allocated to reproduction and not only main-

tenance of larger body size. This result contrasts with fur seals, for example, in which females

with larger linear body dimensions are in better energetic condition and therefore invest more

energy into offspring than smaller ones, leading to improved reproductive success [13,92]. In

general, larger females are able to store greater fat reserves than smaller ones, allowing them to

invest more resources into offspring [7,92,93]. However, the advantage of storing greater fat

reserves is only expected to benefit capital breeders, such as harbor and fur seals as well as
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many other large mammals, which rely on stored energy reserves to meet the higher costs of

gestation and lactation [94]. In contrast, strong selection for large body size in order to

increase storage of fat reserves is not expected in income breeders which rely on short-term

food acquisition to meet the increased energy demands of reproduction [1,7]. It is unclear

where mountain gorillas lie on the capital-to-income breeder continuum, although during

periods of increased energetic need, we would expect them to rely on fat reserves to some

extent, as observed in orangutans Pongo abelii [95]. However, mountain gorillas live in an

environment with year-round abundant food resources. Therefore, selection for large body

size to better store fat reserves for use during costly reproductive phases may be reduced com-

pared to other large mammals. Interestingly, body mass correlates with dominance rank and

reproductive success in female chimpanzees [47,91]. Overall, we suggest that body condition,

which is likely influenced by dominance rank, is more important in determining female repro-

ductive success than body size in mountain gorillas.

We did not find support for linear body dimensions or dominance rank influencing infant

mortality, similar to a previous study [59]. This contrasts with several other studies which

found that high dominance rank and/or large female size to be generally associated with lower

infant mortality in red deer, long-tailed macaques, spotted hyenas and chimpanzees for exam-

ple [4,24,31,36], although this relationship is not universal [10,27]. The influence of body size

and dominance rank on infant mortality is likely to depend on other causes of infant mortality

including species specific predation pressure, the risk of infanticide and the degree of feeding

competition [96]. Lastly, in primates at least, it has been suggested that the advantages of high

dominance rank may be stronger via its effects on infant growth and rates of reproduction

rather than infant mortality [27].

Sexual dimorphism is the product of selection acting on both male and female body size

[15,20]. Since we did not find clear support for advantages (or disadvantages) of large body

size in females, as measured by two linear dimensions, we suggest that sexual dimorphism in

mountain gorillas may be a product of selection on large male size, presumably due to strong

male-male competition [64,88]. Furthermore, the large size of female gorillas can be explained

by genetic correlation between the sexes for genes controlling for size [15,97].

Conclusion

Females must balance the need to begin reproducing as early as possible against attaining suffi-

cient body size to optimize reproduction across the lifespan and maximizing survivorship. An

interesting question is whether body size correlates with longevity, because higher-ranking

female mountain gorillas live longer than lower-ranking ones and consequently they produce

more surviving offspring over the lifespan, resulting in higher lifetime reproductive success

[98]. In addition, studies should examine the influence of maternal effects and early life adver-

sity on heterogeneity in adult female body size, longevity and lifetime reproductive success

[99,100]. Correlating body size with lifetime reproductive success would be informative about

the life history trade-offs of maintenance, reproduction and survival, but such data are difficult

to obtain [4,36].
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