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Abstract

Background: Predicting protein function from primary sequence is an important open problem in modern biology. Not only
are there many thousands of proteins of unknown function, current approaches for predicting function must be improved
upon. One problem in particular is overly-specific function predictions which we address here with a new statistical model
of the relationship between protein sequence similarity and protein function similarity.

Methodology: Our statistical model is based on sets of proteins with experimentally validated functions and numeric measures
of function specificity and function similarity derived from the Gene Ontology. The model predicts the similarity of function
between two proteins given their amino acid sequence similarity measured by statistics from the BLAST sequence alignment
algorithm. A novel aspect of our model is that it predicts the degree of function similarity shared between two proteins over a
continuous range of sequence similarity, facilitating prediction of function with an appropriate level of specificity.

Significance: Our model shows nearly exact function similarity for proteins with high sequence similarity (bit score .244.7,
e-value .1e262, non-redundant NCBI protein database (NRDB)) and only small likelihood of specific function match for
proteins with low sequence similarity (bit score ,54.6, e-value ,1e205, NRDB). For sequence similarity ranges in between
our annotation model shows an increasing relationship between function similarity and sequence similarity, but with
considerable variability. We applied the model to a large set of proteins of unknown function, and predicted functions for
thousands of these proteins ranging from general to very specific. We also applied the model to a data set of proteins with
previously assigned, specific functions that were electronically based. We show that, on average, these prior function
predictions are more specific (quite possibly overly-specific) compared to predictions from our model that is based on
proteins with experimentally determined function.
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Introduction

Protein functional prediction, or annotation, remains an important

open problem in biology [1–23]. Of the millions of proteins residing in

public repositories only a small percentage have had their functions

determined experimentally [2,24]. The vast majority of proteins have

been annotated through predictive methods which work by comparing

protein sequences and determining their degree of similarity. This is

carried out by computer programs such as BLAST [25,26] or various

other tools and databases [27–33]. This process, where a protein of

unknown function receives the function from a known protein, has

been described as ‘‘annotation transfer’’ [7,8,18]. The rationale being

that proteins of similar sequence fold into similar protein structures

which therefore perform similar biological functions. However, in spite

of much research more needs to be done to improve the accuracy of

function prediction [1–3,5,34,35,9,10,12,36–38,22,39]. There is also a

huge and burgeoning population of ‘‘hypothetical’’ proteins with only

moderate similarity to proteins of known function. Limitations of

current approaches in this moderate similarity range, or ‘‘twilight

zone’’, make it extremely difficult to annotate proteins of this type

reliably [40,5,41,14,17]. An important part of the annotation puzzle

that is missing in particular is an in-depth understanding of the

relationship between sequence similarity and function similarity over a

continuous range and the amount of variability inherent in the

relationship over all ranges of sequence similarity. Solving this puzzle

requires generation of a sufficiently large and diverse data set of

proteins with experimentally characterized function, determining the

best way to represent function for modeling purposes, and both

appropriately building and applying a proper statistical model.

To address this challenge we present here a novel annotation

model to predict the function of a protein of unknown function

based on its sequence similarity to a protein of known function.
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Our annotation model is trained on proteins whose functions have

been experimentally characterized and is therefore based on

primary biological evidence. A major concern with most existing

protein annotations is that they are predicted computationally and

not derived experimentally [2,10]. Previous approaches for

predicting function which use these data can lead to ‘‘circular

logic’’, i.e. using predictions for prediction. Consequences of this

can be over-prediction (otherwise called overly-specific prediction)

[1], or outright erroneous predictions. It is therefore imperative

that any statistical model be based on primary biological evidence.

In our annotation model, BLAST sequence similarity statistics

serve as the predictor variables. The output of the model, or the

response variable, is a measure of function similarity and represents

a novel aspect of our approach. The output provides a real

numbered value of the similarity of the functional match between

two proteins as opposed to just a textual protein function

description provided in a typical annotation by BLAST. This

numerical measure is enabled by the Gene Ontology (GO) [42].

The GO is a rich, hierarchical description of molecular protein

functions structured as a directed acyclic graph. Child, or

descendant, terms of the top level or ‘‘root’’ node (called

‘‘molecular function’’) become increasingly specific in their

description of protein function. This structure allows for the

measurement of distance between GO terms and development of a

numerical measure to represent both function specificity and

function similarity (see Methods).

We evaluated a couple of measures of function specificity which are

possible in the GO. The first is the level, or depth, of a GO term. There

are idiosyncrasies in the GO however which make GO term depth

problematic. Path lengths from the root to any particular GO term are

highly variable (2–14 levels), which makes it difficult to compare

specificity between terms using this metric [43]. A better, more

normalized measure is Information Content (IC) [43]. IC is related to the

probability of occurrence of a particular GO term in a data set where

less common terms have higher IC, which is interpreted as being more

specific. In general, the IC of GO terms monotonically increase as the

GO hierarchy is traversed upward and the root term always carries an

IC of 0.0. Based on IC, metrics can be developed to measure the level

of function similarity between two proteins. Having this numerical

measure of function specificity enables our statistical model to make

predictions about function specificity and function similarity between

GO terms (see Methods and Supporting Figure S1).

The model described here serves as a novel tool for protein

annotation by predicting the specificity of function, based on the GO

hierarchy, which may be shared between two proteins for a given level

of sequence similarity. Through the statistical modeling process we

shed light on the variability in the relationship between sequence

similarity and function similarity. In addition, we demonstrate the

usefulness of our model through two use cases: evaluating existing

protein functional annotations based on predictive methods currently

residing in protein databases and providing possible annotations for

thousands of hypothetical proteins.

Results

Building gold-standard data sets
We created a ‘‘gold-standard’’ training and test data sets as a

first step in developing the annotation model. The training and test

set were created using only single function proteins from RefSeq

and Uniprot which were experimentally characterized (those

containing ‘‘IDA’’ GO evidence codes, see Methods). This resulted

in 425 proteins from RefSeq for the training set, and 313 proteins

from Uniprot for the test set which was used to validate models. All

proteins within each set were aligned against each other using

BLAST, this resulted in 2091 alignments being returned for the

training set and 2055 alignments for the test set (see Methods).

Numerical measures of function specificity
GO term depth and IC are measures of function specificity for a

single GO term. However, the purpose of our annotation model is

to output a measure of the relationship between two GO terms

(assigned to the two proteins in a BLAST comparison). We call the

relationship between two GO terms the function similarity. Three

measures of this were considered: 1) GO term depth of the

common ancestral GO term for the GO terms assigned to the two

proteins in a BLAST alignment, 2) the IC of the common

ancestral GO term, and 3) the Relative Information Content (RIC).

RIC is the ratio of the IC of the common ancestral GO term and

the mean IC of the GO terms for two proteins in a BLAST

alignment (see Methods). Whereas IC has less variability and a

stronger relationship with BLAST bit score than GO term depth

(adjusted R2 of 0.47 versus 0.34 respectively), normalizing IC by

generating the RIC metric reduces the influence on the model of

the variability of IC values in the training data (which improves

prediction accuracy). The reduction in variability is especially

apparent for log bit scores greater than 6.0 (training data). In this

bit score range GO level has a coefficient of variation (CV) of 23.6

(Figure 1), whereas IC is less variable (CV = 9.6, Figure 2). The

effectiveness of normalizing IC by using RIC however can be

clearly seen as RIC has CV of 0.0 in this range (Figure 3). For bit

score ranges below 4.0, the CV’s are comparable (186.4, 188.5,

and 188.9) for GO level, IC, and RIC respectively.

Knowledge of the IC of the GO term assigned to proteins is still

useful in regards to statistical modeling in that proteins determined

to be annotated with non-specific functions can be removed from

the data set. Non-specific functions, such as the GO terms ‘‘protein

binding’’ or ‘‘catalytic activity’’, confounds the process of statistical

modeling due to the high numbers of proteins annotated with

these terms (2566 and 5021 proteins respectively) which bias the

data sets. In addition, non-specific terms do not reflect the true

function of proteins. Consider that the true function of a protein

with a non-specific GO term can be a single specific GO term

among many possible child terms.

Statistical Model Selection
Generalized Linear and Generalized Additive models (GLM and

GAM respectively) were created using all log-transformed BLAST

statistics as predictor variables (‘‘full’’ models) and also using ‘‘stepwise’’

functions (‘‘step’’ models) which iteratively build models based on the

Akaike Information Criterion (AIC, see Methods). Stepwise models

retained only two predictor variables: 1) bit score, and 2) max length.

(The ‘‘max length’’ variable is the length of either the query or subject

sequence in a BLAST alignment, whichever is longer). We found that

bit score was the most influential and significant predictor of RIC for

GLM and GAM models built stepwise or the full complement of

BLAST statistics. The well-known e-value statistic was not used since it

is a composite of the bit score and other statistics related to sequence

lengths, and is meant more for the context of database search [44]. E-

value is an estimate of the number of ‘‘hits’’ due to chance for a given

database size rather than an error measure of individual pair-wise

alignments as is of interest here. There is also a high correlation

between BLAST statistics which indicates that they carry similar

information and therefore add little subsequent predictive capability to

a statistical model. This is illustrated in a pair-wise plot of selected

BLAST statistics (Figure 4). Given that bit score was the most

influential, single parameter GLM and GAM models (‘‘single’’ models)

were also created using only the bit score as predictor. Statistical tests

comparing the full models with the step and single models indicated

A Statistical Annotation Model
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that differences in model fits to the training data were not significant.

This is indicated by non-significant reductions in model deviance in all

cases: 1) p = 0.12 and 0.93 between GLM models, and 2) p = 0.14 and

0.66 between GAM models.

Differences between single GLM and GAM models were also non-

significant (p = 0.31), indicating little difference in predictive capability

between the GLM model and the more complex GAM model. Plots

of model fits for the single GLM and GAM models on training and

test data sets to illustrate relationship between RIC and BLAST bit

score can be seen in Figure 5. Fits for both types of models are very

similar. Overall, RIC increases with increasing bit score but is

extremely variable in bit score ranges below about 4.0 (bit score

,54.6, e-value ,1e205, NRDB) indicating that predicting RIC with

any precision is difficult in this range, for any statistical modeling

approach. For bit score ranges above about 5.5–6.0 (bit score ,244.7,

e-value ,1e262, NRDB) RIC values are very close to 1.0 with little

variation (Figure 3), indicating that it, and specific protein function,

can be predicted with high precision.

Statistical Model Prediction Error on Test Data
Model prediction error was calculated by Mean Squared Error

(MSE) and Mean Residual Deviance (MRD) (see Methods). The

MRD error statistic was included in the model evaluation process since

it accounts for the observed unequal variance in RIC (Figure 5). MSE

does not weight observations for unequal variance. Calculations of

model prediction error on the training data indicated little or no

improvement in model performance when more predictor variables

are included, i.e. models with all predictor variables (full), or built

stepwise (step). However, estimates of prediction error on the test data

set produce different results from those on the training set (Table 1). As

to be expected, the prediction error was considerably larger for the test

set compared to the training set. The full models perform slightly worse

than the stepwise or single models, an example of potential over-fitting

(i.e. not generalizing well to a new data set). However, the difference in

prediction error between the single and stepwise models for both the

GLM and GAM method are in general very small. These results

indicate that the single variable GLM model is the best choice based on

its simplicity and performance.

Statistical Model Use Cases
The annotation model was used to predict function similarities

between proteins of interest and the data sets of proteins with gold-

standard annotations in our training and test sets. This scenario is

analogous to both annotating proteins of unknown function

(hypotheticals) and analyzing existing functional annotations

created using electronic methods, for proteins currently residing

in the RefSeq and Uniprot databases. These types of scenarios are

relevant to current challenges in modern biology regarding

improving the accuracy of function predictions and annotation

of the large population of hypothetical proteins.

Use Case 1: Electronic versus Experimental Annotations
We compared RIC predictions from the model trained on proteins

with experimental functions to RIC predictions based on electronic

Figure 1. BLAST bit score (log) vs GO term depth. The trend shown is a lowess line. GO level generally increases with higher bit scores, however
there is a high degree of variability in GO level over all ranges of bit scores, even for bit scores above 6.0 which indicate a high degree of sequence
similarity.
doi:10.1371/journal.pone.0007546.g001
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annotation data. BLAST alignments were obtained for a set of

electronically annotated proteins from RefSeq and Uniprot versus the

experimental data sets (see Methods). Electronically-based models

predict the RIC from BLAST bit scores using the same type of single

variable GLM model. RIC predictions from the model based on

experimental functions were plotted against RIC predictions from the

model based on electronic functions (Figure 6). RIC predictions from

the experimental model are generally lower than those predicted by the

electronic model. This is especially so for log bit scores 4.0 to about 5.0

(bit scores 54.6 to 148.4, e-values 1e205 to 1e234 on the NRDB). In this

range, the difference in mean RIC was 0.13 higher for the model

trained on electronic data than the model trained on experimental data

(p ,2.2e216) on the training data set and 0.12 higher on the test set

(p = 3.9e214). The similar difference in mean RIC between the models

for both training and test set provides some evidence that this result is

not an artifact of a single data set. Another way to state this result is that

the function similarity between proteins with comparable sequence

similarity is higher on average when one has been electronically

annotated than that observed between two experimentally character-

ized proteins. We did note a couple of cases in the electronic annotation

data where no function similarity was indicated between two proteins

but their sequence similarity was very high (log bit score .6.0). After

inspecting some of these cases in more detail, we concluded that they

were due to spurious electronic annotations (see File S1).

Use Case 2: Annotation of Hypothetical Proteins
BLAST comparisons of hypothetical proteins versus the 738

experimentally characterized function proteins from our test and

training data sets resulted in 58,038 BLAST alignments, after

selecting only the best hit by bit score. These 58,038 hypothetical

proteins were mapped to their Entrez Gene identifiers to account

for splice variants and also for proteins marked as ‘‘removed’’ from

the NCBI database (for unknown reasons). This resulted in 47,364

unique Entrez Genes with varying degrees of sequence similarity

to experimentally characterized proteins (Table 2).

Discussion

Statistical models are beneficial in data-rich environments such

as 21st century biology where they can be used to summarize and

quantify biological relationships not readily apparent. The models

used do not have to be overly complex, GLMs and GAMs are

relatively simple to understand and deploy. What matters is that

they are developed appropriately. In this study we use GLMs and

GAMs to model the relationship between the sequence similarity

between proteins and their function similarity. This represents a

novel approach to functional annotation and potentially more

accurate than current methods based on sequence similarity

thresholds which do not account for the degree of function

specificity which can be transferred between proteins over a wide

range of sequence similarity. Our annotation model accounts for

the fact that the function similarity between two proteins generally

increases as their sequence similarity increases over a broad range

of BLAST bit scores.

Using our annotation model we demonstrated that statistical

models trained with experimental data generally predict lower

Figure 2. BLAST bit score (log) versus IC. The trend shown is a lowess line. The IC of GO terms generally increases with higher bit scores. IC is less
variable than GO level across most bit score ranges, however there remains a significant degree of variability even above a bit score of 6.0.
doi:10.1371/journal.pone.0007546.g002
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functional similarity (measured by RIC), over a range of BLAST

bit scores, than those trained with electronic data. This suggests

that the sequence similarity threshold applied in many electronic

annotations may be below the degree of sequence similarity

required to transfer exact and specific functions from experimen-

tally characterized proteins, at least for moderate bit score ranges

(log bit score 4.0 to 5.0, see Figure 6). One implication of this is

that many proteins with existing electronic annotations, at least

those with specific functions, may be overly-specific. Overly-

specific prediction, or simply over-prediction, is a common and

‘‘systematic’’ error of electronic annotations [1], although its exact

prevalence is not known. We cannot extrapolate an error rate

from our data for electronic annotations in public databases

currently as we selected only specific electronic annotations (i.e. we

did not analyze non-specific electronic annotations).

It’s notoriously difficult to predict exact function in the ‘‘twilight

zone’’ range of sequence similarity [29,5,6,40] (i.e. moderate to

low ranges of sequence similarity) but vitally important given the

large volume of hypothetical proteins being discovered

[29,41,17,14]. Analyzing a fairly large sample of hypothetical

proteins using our annotation model indicates that a general

function can be predicted for a sizeable number. This represents a

substantial improvement over their current state of annotation.

Exact function predictions are problematic for these proteins

however and our analysis indicates that direct transfer of functions

will likely result in overly-specific function predictions due to their

mostly moderate degree of sequence similarity to experimentally

characterized proteins (Table 2). This illustrates the advantage,

and novelty, of our annotation model. However, the degree of

variability in the relationship between sequence similarity and

function similarity in moderate sequence similarity ranges

currently places constraints on the predictive accuracy of ours or

any model. For instance, even in the bit score range of 3.5 to 4.0 a

substantial proportion of proteins have an RIC of 0.0 as well as 1.0

(Figure 5). This may have something to do with the heterogeneity

of functions in our data set and how the GO is constructed. A way

to potentially address this is to create several annotation models

each based on logically defined subsets of the GO (e.g. enzymes,

receptors, etc.), similar to [39]. This would however require

generation of much larger datasets.

An additional related problem is in regard to multi-domain

proteins. Functions are reported at the protein level. Proteins

however may be composed of multiple functional domains, or

common and re-usable subsequences. Functions reported at the

protein level may correspond to the whole protein, a subset of

domains, or even a single domain. It can be hard to tell with

certainty which single entity carries the function or if it’s some sort

of combination thereof. Inter-domain similarities regions of high

similarity not functionally related due to incomplete (experimental)

annotation, especially in the 3.5 to 5.0 bit score range, could be

part of the reason for the high degree of variability in the

relationship between bit score and RIC (Figure 5). In the future we

intend to refine and develop computational methods to segment

multi-domain proteins into their functional components in a

Figure 3. BLAST bit score (log) versus RIC. The trend shown is a lowess line. The RIC statistic normalizes the variability of IC values in the training
data. RIC is the least variable statistic across most bit score ranges. This is especially so for bit score ranges above 6.0, where all RIC values are 1.0 (no
variability).
doi:10.1371/journal.pone.0007546.g003
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reliable way. This may enable us to create much larger gold-

standard data sets, with lower variability, with which to further

develop, improve, and evaluate our model for protein functional

annotation.

Materials and Methods

Gold-Standard Training and Test Data Sets
In order to avoid ‘‘circular logic’’, or using predictions for

prediction, training and test data sets only contained proteins with

experimentally characterized functions. Many protein annotations

are now attributed with GO evidence codes (http://www.

geneontology.org/GO.evidence.shtml). These are a simple catalog

of the type of evidence used when annotating a protein with a

specific function. They can be used to filter out protein

annotations not based on experimental evidence.

Proteins annotated with GO terms (molecular function

ontology) were identified in the RefSeq and Uniprot databases

[45–47]. Of these, only annotations attributed by GO evidence

code ‘‘IDA’’, indicating experimental evidence, were selected. The

proteins from RefSeq and Uniprot were kept in two separate data

sets which made up our training and test data sets respectively.

This technique is known as split-sample model validation and is a

robust method of model selection and validation [48]. To ensure

independence between our data sets, proteins from the test set

(Uniprot) determined to be identical or subsequences of proteins in

the training set (RefSeq) were removed from the test set.

Redundancy between proteins was determined using the blastclust

(parameters: -p T –S 100) program made available with the

downloadable BLAST program from the NCBI [44].

In addition to our training and test data sets we developed two

additional model ‘‘use-case’’ data sets. The first was a compilation

of RefSeq and Uniprot proteins electronically annotated (GO

evidence code ‘‘IEA’’) with identical GO terms as in our training

and test set. A search of the Refseq database resulted in 1,870

proteins. A search for electronically annotated Uniprot proteins

with identical GO terms as in our test set resulted in 90,480

proteins (electronic annotations are apparently more ubiquitous in

Uniprot). The second use case data set was based on ‘‘hypothet-

ical’’ proteins in RefSeq. A search of the Entrez database for

RefSeq proteins on genomic sequence with ‘‘hypothetical’’ in the

description line returned over two million protein sequences (June,

2009).

Sequence Similarity
Local regions of similarity between all possible combinations of

pair-wise protein sequence comparisons in the training and test

data sets were determined by using BLAST [25]. Various statistics

indicating the degree of similarity between two proteins were

parsed out the BLAST results for each comparison including: 1) e-

value, 2) bit score, 3) alignment length,4) number of alignment

gaps, 5) amino acid identities, 6) amino acid positives, and 7)

amino acid identities plus positives. We applied the log

transformation to each of the BLAST statistics. The log

Figure 4. Correlation between log-transformed BLAST statistics. BLAST statistics are generally highly correlated with each other. If two
variables are highly correlated the information they provide about a response variable (i.e. RIC) is not independent. Generally only one of the variables
in this case will add significant predictive power to a statistical model.
doi:10.1371/journal.pone.0007546.g004
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transformation is often applied to biological data which vary across

different orders of magnitude to make it more symmetrically

distributed and thus more amenable to statistical modeling.

Sequence similarity data was creating using all-against-all

BLAST comparisons within the training and test data sets, and

between the training and test data sets and the use case data sets

(redundant alignments were excluded). BLAST comparisons

performed between the training and use case (electronic) data set

yielded 13199 alignments. BLAST comparisons between the test

and electronic Uniprot annotations resulted in over 400,000

alignments due to the much larger number of proteins (90,480).

To make our analysis tractable, we took a sample of 5000 of these

BLAST alignments. The sample contained a total 4781 Uniprot

proteins with 77 GO terms, indicating an unbiased data set.

Function Specificity and Functional Similarity
We use Information Content (IC) as a measure of GO term

specificity. The IC of a GO term is related to the probability of

discovering a particular GO term in a data set. The definition of

IC is:

IC tð Þ~{log2 p tð Þð Þ ð1Þ

Where t is a particular GO term and p is the probability of that

term occurring in a data set. The probability of a GO term is the

Figure 5. GLM and GAM model fits on the Training, Test, and Combined data sets. Functional similarity (RIC) between two proteins
generally increases for higher similarity levels, measured by bit score. The RIC predictions for the GLM and GAM model fits to the Test data (solid and
dashed green lines) are somewhat higher than the GLM and GAM model fits to the Training data (solid and dashed black lines), indicating some bias
in the data sets. GLM and GAM models fits using a combined data set (training + test) may be more general for prediction (solid and dashed blue
lines). There is not a significant difference between the GAM and GLM model fits on any data set.
doi:10.1371/journal.pone.0007546.g005

Table 1. Prediction error of GLM (glm.*) and GAM (gam.*)
models on training and test data sets.

Model MSE (Train) MRD (Train) MSE (Test) MRD (Test)

glm.full 0.032 0.277 0.082 0.511

glm.step 0.030 0.278 0.081 0.499

glm.bits 0.032 0.283 0.082 0.497

gam.full 0.030 0.264 0.085 0.534

gam.step 0.030 0.274 0.081 0.498

gam.bits 0.032 0.281 0.082 0.497

Results are shown for models with three sets of predictor variables: 1) full
models which contain all BLAST statistics (full), 2) stepwise models which
contain BLAST statistics selected during using a stepwise AIC variable
selection process (step), and 3) bits models only utilize the BLAST bit score
(log) as a predictor variable (bits). Models were assessed using both MSE and
MRD (lower values are better). On the training set, models with all predictor
variables (glm.full, and gam.full) fit the data best (MSE = 0.032 and 0.030 and
MRD = 0.277 and 0.264 respectively). However, models with more predictor
variables do not perform significantly better on the test data versus models
which have bit score as a single predictor.
doi:10.1371/journal.pone.0007546.t001
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number of times that it or any of its child terms occur in a data set.

The approach of using IC as the term specificity measure in the

GO is adapted from [43].

We use Relative Information Content (RIC) as a measure of the

function similarity between GO terms (the term semantic similarity is

also used [49]). RIC is used in the context of BLAST alignment

between two proteins (with assigned GO terms), its formula is:

RIC~
ICa

ICm

ð2Þ

Where ICa is the IC of the ancestral GO term relating the GO

terms assigned to two proteins in a BLAST alignment. The ancestral

term found by traversing up the GO hierarchy. ICm is the mean IC of

the GO terms for the proteins in the BLAST alignment. A figure

explaining IC and the GO can be found in Supporting Figure S1.

Note that our RIC measure is an alternate derivation of Lin et al’s

semantic similarity measure between GO terms [50].

Statistical Modeling and Software
We chose to model the relationship between sequence similarity

and functional similarity using relatively straightforward General-

ized Linear and Generalized Additive Models (GLM and GAM

respectively). Statistical modeling was performed using the open-

source R statistical package. The standard distribution includes

packages for GLM’s. A package for GAM’s is provided by [48]

and can be installed from the CRAN library (http://cran.r-

project.org/). GLMs and GAMs are both statistical models which

specify a relationship between predictor and response variables.

GAMs are a generalization of GLMs in that predictor variables

are not restricted to a linear relationship with some function of the

response variable. A drawback of GAMs is their potential for over-

fitting. For both types of models the response variable was

restricted to 0.0–1.0 (all possible RIC values) using the logit

transformation of the mean [51], and modeled it as a linear

function of the predictor for the GLM model and as cubic splines

for the GAM model. Parameter estimation can be achieved by

using the quasi-likelihood function [48], which can be duplicated

in R by using the ‘‘family = binomial’’ parameter for both GLM

Figure 6. GLM model fits from BLAST alignments generated from proteins with experimental functions only and from proteins with
electronic annotations. The GLM models fit on data containing only experimental annotations (solid lines) predict a lower RIC for most ranges of
bit scores than for models fit using electronic annotations (dashed lines), for both the Training (black lines) and Test (green lines) data sets. The
difference in predicted RIC is greatest for (log) bit score ranges of about 4.0 to 5.0 (bit scores 54.6 to 148.4, e-values 1e205 to 1e234, NRDB).
doi:10.1371/journal.pone.0007546.g006

Table 2. Hypothetical proteins with at least some similarity to
experimentally characterized proteins.

RIC 0.10 0.25 0.50 0.75 0.90 0.95

# Proteins 47363 26613 16248 7544 2428 1349

The columns represent the number of hypothetical proteins with an RIC greater
than or equal to the stated RIC value. Although a large number of proteins have
high function similarity to experimentally characterized proteins (RIC .0.90), the
function similarity of the majority is rather moderate (RIC , = 0.50).
doi:10.1371/journal.pone.0007546.t002
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and GAM models. Predictor variables for both GLM and GAM

models were selected using the ‘‘step’’ function in R which

exhaustively adds or drops predictor variables from a statistical

model according to the Akaike Information Criterion (AIC) [52].

Both GLM and GAM models were also fit using the single best

BLAST predictor of RIC (bit score) as well as all reported BLAST

similarity statistics. Quasi likelihood ratio tests were used for

statistical comparison of developed models [51].

Model Prediction Error
Model prediction error was determined by calculating Mean

Squared Error (MSE) and Mean Residual Deviance (MRD). The

calculation for MSE is:

MSE~

Pn
i~1

RICi{fitið Þ2

n
ð3Þ

Where RICi is the observed value (actual) and fiti is the value

predicted for the same observed value from the model. The

calculation for MRD is:

MDE~

2|
Pn
i~1

RICi|log
RICi

fiti

z 1{RICið Þ|log
1{RICið Þ
1{fitið Þ

� �� �

n
ð4Þ

Where RICi is the observed RIC and fiti is the associated

predicted RIC from the model. For RIC values of 0.0, a small

number is added (1e207) to avoid errors produced when taking the

logarithm of 0.0. Both GLM and GAM models were fit to the

training set using 10-fold cross-validation in order to estimate

MSE and MRD in those cases. 10-fold cross-validation was used in

order to remove the bias of estimating the error and training the

model based on the same data.

Supporting Information

Figure S1 An example of a hierarchical protein function

description in the Gene Ontology (GO). The ‘‘protein phosphatase

type 2A regulator activity’’ (PP2A) and ‘‘phosphatase inhibitor

activity’’ (PIA) are relatively specific descriptions of protein

function compared to the more general ‘‘protein phosphatase

regulator activity’’ (PPRA) or completely non-specific root

‘‘molecular function’’ term. PPRA, and those terms further up

in the hierarchy, are a common ancestral terms of PP2A and PIA.

Both PP2A and PIA occur at a GO depth level 5 (counting from

the root term) and are the same degree of specificity according to

this metric. However, according to IC PP2A is a more specific

function (IC = 13.7) compared to PIA (IC = 9.8) given the much

lower number of proteins annotated with this function in the

RefSeq database. Also note that IC decreases as the GO hierarchy

is traversed upward. The PPRA GO term has IC = 8.8 for

example, less than either PIA or PP2A. In general, the IC metric is

a more normalized specificity metric than GO term depth. The

RIC between PP2A and PIA, a measure their functional similarity,

is calculated by obtaining the mean IC of PP2A and PIA (11.75),

the IC of their most specific common ancestor term (PPRA,

IC = 8.8), and taking the ratio of the ancestor and their mean IC

(RIC = 8.8/11.75 = 0.75).

Found at: doi:10.1371/journal.pone.0007546.s001 (0.68 MB TIF)

File S1 In depth-analysis of electronic annotation data.

Found at: doi:10.1371/journal.pone.0007546.s002 (0.01 MB

DOC)
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