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Abstract 

Background:  Lung cancer is the leading cause of cancer death in both men and women. The most common lung 
cancer subtype is non-small cell lung carcinoma (NSCLC) comprising about 85% of all cases. NSCLC can be further 
divided into three subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell lung carcinoma. 
Specific genetic mutations and epigenetic aberrations play an important role in the developmental transition to a 
specific tumor subtype. The elucidation of normal lung versus lung tumor gene expression patterns and regulatory 
targets yields biomarker systems that discriminate lung phenotypes (i.e., biomarkers) and provide a foundation for the 
discovery of normal and aberrant gene regulatory mechanisms.

Results:  We built condition-specific gene co-expression networks (csGCNs) for normal lung, LUAD, and LUSC condi-
tions. Then, we integrated normal lung tissue-specific gene regulatory networks (tsGRNs) to elucidate control-target 
biomarker systems for normal and cancerous lung tissue. We characterized co-expressed gene edges, possibly under 
common regulatory control, for relevance in lung cancer.

Conclusions:  Our approach demonstrates the ability to elucidate csGCN:tsGRN merged biomarker systems based 
on gene expression correlation and regulation. The biomarker systems we describe can be used to classify and further 
describe lung specimens. Our approach is generalizable and can be used to discover and interpret complex gene 
expression patterns for any condition or species.
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Background
Even though lung cancer incidence has shown a gradual 
decline in the past decade, it remains the leading cause of 
cancer death in both men and women with its mortality 
rate exceeding breast, prostate, colorectal, and brain can-
cers combined [1]. Lung cancer comprises approximately 
a quarter of all cancer deaths and is strongly associated 
with environmental risk factors including smoking and 
exposure of toxic chemicals that trigger some forms of 

interstitial lung disease [2]. In 2018, it was estimated that 
about 2.1 million new people were diagnosed with lung 
cancer with 1.8 million deaths worldwide [3]. Lung can-
cer is the leading cause of cancer-related death due to fre-
quent diagnosis at an advanced stage [4]. The early stage 
of lung cancer patients had 70–90% of 5-year survival 
rates. However, the patients diagnosed with late stage 
only had very poor survival [5].

As evidenced by tumor heterogeneity, lung cancer 
can originate from different tissue contexts, be classi-
fied into multiple subtypes, and be present with varied 
molecular characteristics and biological phenotypes [6]. 
The most common subtype of lung cancer is non-small 
cell lung carcinoma (NSCLC), comprising about 85% of 
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all cases. NSCLC can be further divided into major sub-
types, including adenocarcinoma (LUAD), squamous 
cell carcinoma (LUSC), and large cell lung carcinoma 
[7]. LUAD and LUSC can be distinguished between 
each other by the complex expression patterns of multi-
ple genes. For example, Charkiewicz et  al. identified 53 
biomarker genes that can classify LUAD and LUSC with 
93% accuracy [8]. Further research by Valeria et al. iden-
tified 69 distinct tumor prognostic determinants that 
had significant impact on clinical factors for LUAD or 
LUSC, which include key factors on tumor growth, cell 
cycle, and tumor progression pathways. Those determi-
nants were quite different in LUAD and LUSC, and some 
of them had opposite impact on these two types of lung 
cancer [9].

Among candidate lung tumor genes, p63 is the best 
single marker to separate LUAD from LUSC [10]. Genes 
related to LUAD are more related to tight junction and 
cell adhesion molecules, while LUSC related signature 
genes are more correlated with cell communication path-
ways [11]. A proper differentiation between lung cancer 
subtypes at the molecular level is crucial especially for 
mapping appropriate treatment strategies [12]. For exam-
ple, the overexpression of epidermal growth factor recep-
tor (EGFR), which is involved in about 60% of NSCLC 
tumors and present in about 20% of LUAD tumors, cur-
rently has precision medicine implications in treating 
lung cancer [13]. Furthermore, mutations in other genes, 
such as anaplastic lymphoma kinase (ALK), Kirsten 
rat sarcoma viral oncogene homolog (KRAS) and ROS 
proto-oncogene 1 receptor tyrosine kinase (ROS1), can 
also be factored into targeted therapies [14].

Excellent genomics data repositories exist for discov-
ery of complex gene expression patterns between normal 
and diseased conditions including transcriptome and 
DNA polymorphism profiles from The Cancer Genome 
Atlas (TCGA) and the Genotype-Tissue Expression 
(GTEx) projects. TCGA is a cancer genomics database 
which provides a rich amount of high-throughput DNA 
sequencing and clinical data for different types of can-
cer based on tissue of origin (portal.​gdc.​cancer.​gov) [15]. 
TCGA contains both tumor and non-tumor tissue sam-
ples excised near the tumor, which are annotated as “solid 
tissue normal”. GTEx is a public resource database that 
contains high-throughput data from non-diseased indi-
viduals which are collected from 54 non-diseased tissue 
types for various molecular assays (www.​gtexp​ortal.​org) 
[16].

In order to directly compare GTEx and TCGA RNA-
seq datasets, Wang et al. developed a RNAseq pipeline to 
process and unify RNA-seq data from GTEx and TCGA 
[17]. First, raw sequencing reads were obtained from 
GTEx and TCGA, re-aligned based on the solid tissue 

normal samples from TCGA, and re-quantified using 
RSEM [18]. Finally, batch effects were corrected by run-
ning ComBat in the R package SVAseq [19]. This RNAseq 
pipeline utilized solid tissue normal samples from TCGA 
to unify data from GTEx and TCGA. Not all TCGA tis-
sue type datasets contain solid tissue normal samples. 
Thus, only 13 human tissues of origin were unified in 
total. Of high importance, the unified normal and tumor 
Gene Expression Matrices (GEMs) built with this pipe-
line can be processed in the same experiments to identify 
gene expression shifts between normal and tumor states.

One method to detect condition-specific (i.e. disease) 
gene expression patterns is gene co-expression network 
(GCN) analysis, an approach that constructs a gene rela-
tionship network where co-expression of genes across 
multiple samples or specific conditions implies biochem-
ical co-functionality [20, 21]. There are several tools to 
construct GCNs including weighted correlation network 
analysis (WGCNA) [22], Bayesian based network con-
struction [23], multiscale embedded gene co-expression 
network analysis [24], and Knowledge-Independent Net-
work Construction (KINC) [25]. In our study, we uti-
lized KINC 3.4 to construct condition-specific GCNs 
(csGCNs), which employs Gaussian Mixture Models 
(GMMs) for clustering for each gene pair to identify 
gene-gene co-expression clusters that can then be tested 
for association with experimental conditions such as can-
cer subtype [26].

While GCNs describe correlated gene expression out-
put, the underlying factors regulating gene output are 
represented by gene regulatory networks (GRNs). A GRN 
identifies relationships between regulators and their tar-
get genes in a tissue-specific context [27]. In most cases, 
transcriptional regulation can be determined by the com-
plex interactions among cis and trans transcription fac-
tors (TFs) and their target genes [28]. There are many 
different approaches to construct GRNs, including sev-
eral linear models, such as Bayesian network (BN) mod-
els [29], dynamic Bayesian network (DBN) models [29], 
Boolean network [30], and ordinary differential equa-
tion (ODE) models [31]. For example, GRNVBEM is an 
algorithm utilizing Bayesian network [32]; SCODE [33] 
and GRISLI [34] are the algorithms using linear ODE-
based methods. Another method for constructing GRN 
is based on GCNs [35]. Of relevance to human tumor 
studies, Sonawane et al. constructed tissue-specific GRNs 
for 38 human tissues from GTEx in which they com-
bined gene co-expression and protein-protein interaction 
(PPI) information as well as the DNA motif information 
together to identify tissue-specific network elements [36]. 
This study showed that correlated genes were more likely 
to share a common transcriptional control mechanism 
[37]. Thus, linking co-expressed genes in either normal 
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condition or disease condition with normal tissue GRNs 
should be helpful to identify mechanisms underlying dis-
eases, including specific cancer subtypes.

The molecular mechanisms underlying complex traits 
including normal lung development or lung tumor 
formation are discoverable using systems genetics 
approaches. In this report, we aimed to discover lung 
biomarker systems which we define as co-functional 
gene sets that not only discriminate specific conditions 
or phenotypes (i.e., biomarkers) but also integrates gene 
regulation information as a foundation for the discovery 
of genetic control mechanisms between gene expression 
states. To achieve this goal, we first extracted pairwise 
gene expression correlations with KINC 3.4 from the uni-
fied GTEx-TCGA GEMs to construct normal lung and 
lung tumor csGCNs. The csGCNs were then combined 
with a normal lung tissue specific GRN (tsGRN). This 
integrated gene expression platform enabled the eluci-
dation of candidate control-target biomarker systems 
for normal and cancerous lung tissue which we will dis-
cuss. A summary of this pipeline is shown in Fig.  1. As 
more condition-specific GEMs and GRNs are reported, 
our approach will improve the resolution of complex bio-
marker systems for lung cancer but can be applied more 
generally to any organ context.

Results
Unified normal and tumor sample clustering with t‑SNE
The first step to discover biomarker systems based on 
csGCNs and tsGRNs was to obtain and explore normal 
and tumor RNA-seq transcriptome profiles. Unified 
GTEx and TCGA RNA-seq GEM files were obtained 
from Wang et  al. [17]. The profiles that belong to the 
same tissue of origin were merged into tissue-specific 
unified GEMs. For example, the GEM files containing 
GTEx normal lung samples, TCGA solid lung normal 
samples, TCGA LUAD samples, and TCGA LUSC sam-
ples were merged into one lung-specific unified GEM. 
Each unified GEM for 13 tissues underwent further nor-
malization as described in the Methods section.

To further explore the clustering patterns for different 
tissues, we performed t-distributed stochastic neigh-
bor embedding (t-SNE) [38] visualization (Fig. 2). Some 
tissue datasets did not form distinct clusters due to the 
small number of GTEx normal samples or TCGA solid 
tissue normal samples. For example, the bladder dataset 
did not show a definitive cluster pattern because there 
were too few samples for the GTEx normal condition 
(n = 11) and TCGA tumor-flanking “solid tissue” normal 
condition (n = 19) to form clusters. The same situation 
also occurred for the cervix dataset (Fig. 2A). For those 
tissue types that did form clusters, some tissue datasets 
cannot separate TCGA solid tissue normal samples apart 
from either GTEx normal or TCGA tumor samples. For 
example, for prostate, salivary, and stomach datasets, the 
TCGA solid tissue normal samples were located between 
GTEx normal samples and TCGA tumor samples situa-
tion. It was difficult to determine if the TCGA solid tis-
sue normal samples in these organs were truly “normal” 
samples (Fig. 2B). For the remaining tissue specific data-
sets, clear patterns of separation between normal sam-
ples and tumor samples were visualized. For example, in 
lung dataset, normal samples, regardless of the source, 
grouped together as a single cluster and each cancer sub-
type clustered separately (Fig.  2C). In some tissue data-
sets, such as stomach, liver, and uterus, the clusters were 
pushed together aside due to the outlier points, but the 
overall patterns were still clear. We chose the lung as a 
target organ to construct condition-specific lung GCNs 
using KINC followed by integrating the GTEx normal 
lung GRN with the condition-specific GCN to identify 
possible regulatory mechanisms in both normal lungs 
and lung tumors.

Lung condition‑specific gene go‑expression network 
(csGCN) construction
For deeper analysis, we selected the unified and nor-
malized lung GEM that containing 313 GTEx normal 
lung samples, 110 TCGA solid lung normal samples, 
489 adenocarcinoma (LUAD) samples, and 503 squa-
mous cell carcinoma (LUSC) samples to construct a 

Fig. 1  A summary of workflow used for discovering lung tissue specific biomarker systems
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csGCN. The density plot for the normalized lung GEM 
is shown in Supplemental Fig. 1. The sample stage dis-
tribution information is shown in Supplemental Fig. 2, 
and t-SNE visualization of unified lung samples stage 
information is shown in Supplemental Fig.  3. Most of 
the lung cancer patients in TCGA data were in early 
stage. Few were in stage IV. According to the t-SNE 
visualization, the stage information of the lung cancer 
patients cannot separate samples. Using this lung GEM 
as input, a csGCN was constructed using KINC version 
3.4.2. First, KINC identified GMMs and retained any 
pairwise Spearman correlation greater than |0.5| as a 
potential edge. KINC then ran a Pearson’s power anal-
ysis to remove edges with insufficient power. Next, by 
providing to KINC the sample condition information, 
it performed a linear regression test for each edge with 
each quantitative condition (r-square > 0.3 and p-value 
< 0.001) or two z-score tests of proportions for cat-
egorical conditions (p-value < 0.001). Edges with asso-
ciation to a condition were labeled with that condition 
resulting in condition-specific subnetworks. The four 

conditions for the unified lung GEM include GTEx nor-
mal, TCGA normal, LUAD, and LUSC.

There are instances where edge associations can be 
biased. For example, if expression of one gene is highly 
variable between conditions, it will bias the pairwise 
comparison to appear condition-specific even if the 
other gene is not variable between conditions. Addi-
tionally, samples with missing expression in one gene 
must be removed prior to correlation analysis. If miss-
ing values tend to occur in one condition in only one 
gene, then sample removal will bias the comparison 
to appear condition specific. To address these issues, 
KINC next employed a Welch’s one-way ANOVA test 
(to check for conditional variation in both genes) and 
a Student’s t-test (to check for equal patterns of miss-
ingness) to remove biased edges. Finally, remaining 
edges were ranked by their correlation value (similarity 
score), r-square (for quantitative conditions) and p-val-
ues [26]. All identified edges that were enriched in at 
least one condition formed the full lung csGCN.

Fig. 2  t-SNE visualization of gene expression patterns for 13 unified human normal tissues and tumor subtypes. Each tissue type contains GTEx 
normal, TCGA solid normal, and at least one tumor subtype. Each color represents a different condition. Cancer samples are labeled as orange, red 
and yellow; GTEx normal samples are labeled as green, light green and cyan; TCGA solid tissue normal samples are labeled as blue. Samples are 
separated into multiple clusters based on FPKM RNA-seq gene expression data. A t-SNE plots with tissue samples that did not form a cluster. B 
t-SNE plots with TCGA solid tissue normal samples grouped between GTEx normal samples and TCGA tumor samples. C t-SNE plots with TCGA solid 
tissue normal samples grouped together with GTEx normal samples
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The full lung csGCN contained 7868 genes and 
58,415 edges, and an average clustering coeffi-
cient < C > = 0.281 (Supplemental Table  1; Fig.  3). The 
global network attributes for both the full network 
and each condition-specific sub-networks are shown 
in Table  1. Connectivity, clustering coefficient, unique 
edge percentage, and unique node percentage for each 
csGCN were calculated (Table  1). The clustering coef-
ficient is the measure of the overall tendency of nodes 
to form clusters or groups. For the module-free scale-
free network, <C > is usually very low [39]. The GTEx 
normal csGCN contained the most nodes and edges, 
and the highest average clustering coefficient (6813 

nodes, 53,233 edges, and < C > =0.291). The TCGA nor-
mal subnetwork was small and contained had the low-
est average clustering coefficient (36 nodes, 21 edges, 
and < C > =0). The TCGA normal subnetwork also had 
the least average connectivity (1.17), least unique edge 
percentage (1.53%), and least unique node percentage 
(3.4%). The LUAD specific subnetwork contained 530 
nodes, 600 edges, and < C > =0.002. The LUSC spe-
cific subnetwork contained 1414 nodes, 1694 edges 
and < C > of 0.062. A 3D network visualization of lung 
GCN is shown in Supplemental Fig.  4 where one can 
observe that the four csGCN subnetworks can be sepa-
rated in four sub-clusters.

Fig. 3  Unified lung condition-specific gene co-expression network (csGCN). The full lung csGCN constructed from 1415 lung RNA-seq samples 
from 4 different lung conditions: GTEx normal lung, TCGA normal lung, TCGA LUAD tumor, and TCGA LUSC tumors. The GCN is scale-free and 
contains 7868 nodes and 58,415 edges
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Condition‑specific lung GCN and GRN integration
The GTEx normal lung specific gene regulatory net-
work (GRN) was downloaded from Zenodo https://​
zenodo.​org/​record/​838734 [36]. The entire GTEx 
normal lung related GRN is shown in Supplemental 
Table  2. We then integrated the normal lung tsGRN 
with our csGCNs. Edges in the normal lung GRN were 
selected where the TFs targeted at least one node in 
LUAD and LUSC specific GCNs to obtain LUAD and 
LUSC GRN networks.

DEG analysis was then performed for each gene in 
the unified GEMs to identify differentially expressed 
genes (DEGs) between GTEx normal lung and TCGA 
LUAD conditions as well as GTEx normal lung and 
TCGA LUSC conditions. For both LUAD and LUSC 
conditions, significant DEGs were determined for both 
a transcription factor (TF) and its target gene (TR). 
TF or TR genes were considered as DEGs when their 

DEseq2 adjusted p-value was less than 0.001; gene 
expression directionality (e.g., up−/down-regulation in 
tumor) was noted.

For each edge pair, the ratio of the expression value of 
TF and TR genes (TF/TR ratio) was calculated respec-
tively for samples from GTEx normal, LUAD, and LUSC 
conditions. A Student’s t-test was performed (p < 0.001) 
to determine if TF/TR ratio of each edge pair was signifi-
cantly different between GTEx normal lung and LUAD 
or LUSC conditions. DEGs for TF and TR meant those 
genes were significantly different between normal and 
cancer condition, and the TF/TR ratio differences meant 
the edges were different between normal and cancer con-
dition. The counts of each edge category and distribution 
heatmap comparing regulatory edges from GTEx normal 
lung samples with different types of lung cancer samples 
are shown in Fig.  4. The detailed DEG results and TF/
TR ratio comparison for condition specific GRN edges 

Fig. 4  Summary of regulatory edges between GTEx normal lung and two lung cancer subtypes. A Bar graphs calculating number of GRN edges 
between GTEx normal lung tissue samples and LUAD (left panel) or LUSC (right panel) respectively for each category. Blue bars represent the 
number of regulatory edges in total where TF regulated at least one node in an edge from the LUAD/LUSC specific GCNs. Orange bars represent the 
number of edges when both TF and TR were differentially expressed. Green bars represent the number of edges when TF/TR ratio was significantly 
different between normal lung and LUAD or LUSC. Red bars represent the number of significant edges when TF and TR were both DEGs and TF/
TR ratio is significantly different. For those significant edges, purple bars represent TF was down-regulated in cancer while TR was up-regulated 
in cancer; brown bars represent TF was up-regulated in cancer while TR was down-regulated in cancer; pink bars represent both TF and TR were 
down-regulated; and bars represent both TF and TR were up-regulated. B Heatmap distribution of regulatory edges comparing between normal 
samples and two types of lung cancer with LUAD on the left and LUSC on the right. For DEGs up/down regulation, red means up-regulation in lung 
cancer, blue means down regulation in lung cancer, and white means not a DEG. For TF/TR ratio, red means the ratio was significantly different 
between normal and cancer, and grey means the ratio is not different

https://zenodo.org/record/838734
https://zenodo.org/record/838734
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are shown in Supplemental Table 3. As seen in Fig. 4 and 
Table  2, there were 1972 regulatory edges in total for 
nodes in the LUAD specific csGCN. Among those edges, 
1497 edges contained both TF and TR that were DEGs 
between GTEx normal lung and LUAD samples, 1019 
edges contained TF/TR ratio that was significantly dif-
ferent between GTEx normal lung and LUAD conditions, 
and 813 significant edges were DEGs and significantly 
different TF/TR ratios. For the significant edges contain-
ing both situations, most (498) showed that the TFs were 
down-regulated in LUAD versus normal while TRs were 
up-regulated, which means the downregulation of the 
TFs could result in the up-regulation of the correspond-
ing target genes that play roles in LUAD cancer develop-
ment. The number of edges with significant TF/TR ratios 
was similar for TF up/TR down, both TF down/TR down, 
and TF up/TR up patterns (98, 128, and 89 respectively).

There were 4037 regulatory edges in total with TFs 
targeting at least one node in the LUSC csGCN. Among 
those edges, 2229 were identified as significant edges as 
both TFs and TRs were DEGs and the TF/TR ratio was 
significantly different between normal to LUSC. The 
number of significant edges for all four conditions were 
similar (Fig.  4A and Table  2). The heatmap distribution 
was also performed for those edges. For the GRN edges 
comparing GTEx normal and LUAD conditions, there 
were more down-regulated TFs in LUAD than up-regu-
lated TFs, but more up-regulated target genes. Thus, the 
TF down/TR up pattern contains most significant edges. 
However, the up or down regulation pattern was split in 
half for both TF and TR in GRN edges comparing GTEx 
normal and LUSC, so the significant edges showed simi-
lar number for each of the four conditions (Fig. 4B).

To identify gene pairs potentially controlled by com-
mon regulatory factors, we selected csGCN edges where 
both nodes are the target of the same TF forming a tri-
angle network motif. The merged csGCN and GRN 
node and edge for LUAD and LUSC specific networks 
are shown in Fig. 5 and a Cytoscape network file can be 
found in Supplemental Data. Each TF that can regulate 
both nodes of a csGCN edge in lung tissue forms a tri-
angle. Gene names in red represented up-regulation in 
cancer, gene names in blue represented down-regulation 
in cancer, and gene names in black represented non-DEG 

genes. For the edge attribute, if the TF/TR ratio was sig-
nificantly different between GTEx and lung cancer, the 
directed edge color was orange. The detailed triangle 
edge information is shown in Supplemental Table 4.

Four triangles were found in LUAD, such that the TF 
targeting both nodes in a LUAD specific GCN edge. 
For example, all three edges in triangle of ETV4 target-
ing both ABCC5 and LIMS2 in the LUAD csGCN were 
DEGs. The up-regulation of ETV4 in tumors is associ-
ated with down-regulation of both ABCC5 and LIMS2 
in tumors. Further, both the ETV4/ABCC5 ETV4/
LIMS2 ratios were both significantly different between 
GTEx normal condition and LUAD. In LUSC, 169 trian-
gles were found that the TFs pointing to both nodes in a 
LUSC specific csGCN edge were significant GRN edges.

Biomarker system validation
In order to test the classification potential of our selected 
genes, a deep learning algorithm called Gene Oracle 
performed sample classification according to input gene 
expression patterns [40]. Gene Oracle utilized a multi-
layer perceptron (MLP) neural network to measure the 
classification. The MLP consists of an input GEM layer, 
three hidden layers, and a final softmax layer for classi-
fication. 70% of the dataset was trained and the rest 30% 
of the dataset was then evaluated. The separation of test 
and trained datasets was randomly determined. The 
input data we used for Gene Oracle were subsets of gene 
expression matrices collected from the normalized uni-
fied lung FPKM GEM. The FPKM GEM contains 19,648 
genes. We selected genes and TFs showed in the merged 
triangle network for GTEx normal, TCGA LUAD, and 
TCGA LUSC conditions, respectively, as condition-spe-
cific gene sets. Then we generated subGEMs by mapping 
those gene sets to the normalized lung GEM. The three 
subGEMs were the input for Gene Oracle to evaluate 
the cancer-type classification accuracy of samples. The 
confusion matrix for each gene set analyzed is shown in 
Fig.  6 where the number of correctly classified samples 
are shown in the diagonal boxes.

Most samples were classified correctly using the con-
dition-specific gene expression profile. Based on the 
gene expression of GTEx normal specific 1459 genes, 
all GTEx normal samples were correctly classified, 

Table 2  Lung Condition-Specific Regulatory Edges Comparison

Up Up in tumor, Down down in tumor

*Significance was adj. p < 0.001 for DESeq2 and p < 0.001 for TR/TF ratio test

Comparison Total Edges DEseq2* TR/TF* DEseq2* + TR/TF* TF & TR Up* TF & TR Down* TF Up & TR 
Down*

TF Down 
& TR Up*

LUAD_vs_GTEx 1972 1497 1019 813 89 128 98 498

LUSC_vs_GTEx 4037 2917 3036 2229 533 479 618 599
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while other groups had some mis-classified samples. 
For both LUAD specific expression profile (13 genes) 
and LUSC specific gene expression profile (150 genes), 
most samples were correctly classified. The TCGA 

normal condition also had several mis-classified as 
GTEx normal which is understandable given that they 
are both considered to be normal lung samples as fur-
ther evidenced by the t-SNE plot in Fig. 2.

Fig. 5  The merged triangle network of TFs from GRNs regulating both nodes in csGCN subnetwork edges. A The merged network for GTEx normal 
lung subnetwork mapped with GRN. B The merged network for TCGA LUAD subnetwork mapped with GRN. C The merged network for TCGA LUSC 
subnetwork mapped with GRN. Pink round nodes represent TFs, grey rectangular nodes represent genes that are both regulated by TFs and exist in 
each csGCN subnetworks. A line with an arrow indicates a directed edge and the line without arrow is the undirected edge. For lung cancer specific 
sub-networks, the name of up-regulated DEGs are shown in red; the name of down-regulated DEGs are shown in blue; non-DEGs were shown in 
black. GCN undirected edges are shown in grey. The directed edges when TF/TR ratio was different from normal to cancer are shown in orange, 
while directed edges when TF/TR ratio was not significantly different are shown as black

Fig. 6  Gene Oracle classification confusion matrices from “triangle” csGCN nodes. The number in the diagonal boxes indicates the number of 
samples that are correctly classified, and other boxes show the number of misclassified samples. A The confusion matrix for GTEx normal gene sets. 
B The confusion matrix for TCGA LUAD gene sets. C The confusion matrix for TCGA LUSC gene sets
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Biomarker system functional enrichment analysis
By integrating the lung specific tsGRN network with 
csGCNs, we found specific biomarker systems that 
might be involved in LUAD and LUSC tumor biology. 
Functional enrichment analysis was performed on these 
gene sets with ToppFun (https://​toppg​ene.​cchmc.​org/​
enric​hment.​jsp) using TFs and their target genes from 
each triangle network as the input gene list. The anno-
tation databases we tested included REACTOME [41], 
KEGG [42], and Pathway Interaction Database (PID) 
[43]. The ToppFun enriched pathways can be found in 
Supplemental Table 5.

In the LUAD csGCN, four TFs out of 180 were asso-
ciated with the “transcriptional mis-regulation in can-
cer” pathway (Bonferroni p = 7.4E-3). These TFs were 
ETV1, ETV4, ETV6 and ELK4. For selected TFs which 
targeted edges from TCGA LUAD network, the edge of 
ILVBL and LIMS2 was regulated by ETV1, ETV4 and 
ETV6 simultaneously. The edge of LIMS2 and ABCC5 
was regulated by ETV4. LIMS2 had many edges in 
GTEx normal csGCN, while both ILVBL and ABCC5 
genes cannot be found in any nodes of the GTEx nor-
mal csGCN. Both ILVBL and ABCC5 genes had higher 

percentage of somatic mutations in LUSC relative to 
LUAD cases (Table 3).

For the LUSC csGCN, several genes were found related 
to DNA replication. The pathway called “DNA repli-
cation” contained eleven out of 111 genes, including 
PSMA4, PSMC5, E2F1, MCM5, GINS1, GINS2, CDC45, 
RFC4, RFC5, PRIM1, and PCNA. Several edges can be 
found for those genes in the LUSC csGCN. For example, 
CDC45 forms edge with MAM5 and PCNA. Also, several 
of these eleven genes formed edges with same node. For 
example, SPC25 formed edges with RFC5 and PRIM1. 
The expression pattern of these genes showed that most 
had differential expression between normal and LUSC. 
Another pathway we identified was related to defective 
CSF2RA which causes pulmonary surfactant metabolism 
dysfunction 5 (SMDP5). Four out of eight genes were 
found, including SFTA3, SFTPA2, SFTPB, and SFTPD. It 
has been shown that a rare missense mutation in SFTPA2 
can cause idiopathic pulmonary fibrosis and lung cancer 
[44]. These genes were all down-regulated in lung cancer 
and showed more down-regulation in LUSC than LUAD 
samples. There were no shared GCN edges between these 
four genes, but they do share same TFs. Thus, the edges 

Table 3  Genes Selected for Deeper Analysis

a  Mutation rates are the percent cases with simple somatic mutations on the target gene

Gene Description Condition LUAD mutation ratea LUSC 
mutation 
ratea

ETV1 ETS Variant Transcription Factor 1 LUAD 1.23% 1.82%

ETV4 ETS Variant Transcription Factor 4 LUAD 0.35% 0.61%

ETV6 ETS Variant Transcription Factor 6 LUAD 1.06% 2.63%

ELK4 ETS Transcription Factor ELK4 LUAD 0.88% 0.40%

LIMS2 LIM and senescent cell antigen-like domains 2 LUAD 0.71% 1.62%

ILVBL IlvB Acetolactate Synthase Like Protein LUAD 0.71% 1.41%

ABCC5 ATP Binding Cassette Subfamily C Member 5 LUAD 3.88% 4.65%

PSMA4 proteasome 20S subunit alpha 4 LUSC 0.71% 1.21%

PSMC5 proteasome 26S subunit, ATPase 5 LUSC 0.88% 0.61%

E2F1 E2F transcription factor 1 LUSC 0.53% 0.81%

MCM5 Minichromosome Maintenance Complex Component 5 LUSC 2.65% 2.63%

GINS1 GINS Complex Subunit 1 LUSC 0.35% 0.81%

GINS2 GINS Complex Subunit 2 LUSC 0.35% –

CDC45 Cell Division Cycle 45 LUSC 0.71% 1.62%

RFC4 Replication Factor C Subunit 4 LUSC 1.41% 2.42%

RFC5 Replication Factor C Subunit 5 LUSC 0.88% 1.21%

PRIM1 DNA Primase Subunit 1 LUSC 0.53% 2.02%

PCNA Proliferating Cell Nuclear Antigen LUSC 0.18% 0.61%

SPC25 SPC25 Component Of NDC80 Kinetochore Complex LUSC 0.53% 0.20%

SFTA3 Surfactant Associated 3 LUSC 0.71% 0.61%

SFTPA2 Surfactant Protein A2 LUSC 0.53% 2.22%

SFTPB Surfactant Protein B LUSC 1.59% 1.21%

SFTPD Surfactant Protein D LUSC 0.71% 1.01%

https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
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from LUSC specific GCN containing these genes could 
be involved in this pathway and had function in forming 
LUSC.

We identified another four out of eight genes in the 
pathway called “defective CSF2RA causes pulmonary sur-
factant metabolism dysfunction 5 (SMDP5)” (Bonferroni 
p = 5.73E-3). Most selected genes from LUSC networks 
had higher mutation rates in LUSC than LUAD. Among 
those genes, SFTPA2 had much higher mutation rate in 
LUSC than LUAD. The expression pattern of the selected 
genes is shown in Table 4.

Discussion
Lung cancer is a highly complex disease. The subsets of 
lung tumors show diverse patterns of gene expression. In 
this study, lung csGCNs were generated and were com-
pared with normal lung specific tsGRNs. The number of 
edges and nodes enriched in TCGA LUSC csGCN was 
approximately three times those in the TCGA LUAD 
csGCN, even though the sample size was similar in the 
two conditions. Many unique edges were found in LUAD 

and LUSC csGCNs, which indicated that the two lung 
cancer subtypes may have distinct tumor gene expression 
profiles.

Many genes in the LUAD and LUSC csGCNs are 
known to be involved in cancer. For instance, many prog-
nostic gene determinants identified by Relli et  al. [9], 
which showed significantly different survival impacts on 
LUAD and LUSC patients, can be found in the LUAD and 
LUSC csGCNs respectively. For example, many LUAD 
associated genes, such as FOLR1, SFTA3, TMC5, and 
TMEM125, can be found in the LUAD csGCN network. 
Furthermore, determinants showing negative prognos-
tic impact on LUAD, but positive impact on LUSC, such 
as DSG3, FOXE1, GRHL3, DLX5, and TMPRSS11D, 
can be found in the LUSC csGCN. Yao et  al. identified 
prognostic biomarkers in LUAD, which contains 12 lncR-
NAs, nine mRNAs and one miRNA that were signifi-
cantly (p < 0.001) associated with the overall survival with 
LUAD patients. Five out of nine mRNAs were identified 
in the LUAD csGCN, including CCNE1, CCNB1, KIF23, 
CEP55, and CHEK1 [45]. Similarly, Dong et  al. con-
structed lncRNA-miRNA-ceRNA network that revealed 
pathological roles of the LUAD and LUSC. Only two of 
twenty mRNAs in LUAD that were also identified by 
our LUAD specific GCN (UBE2C and CTHRC1), while 
nine out of twenty mRNAs were identified in LUSC spe-
cific GCN, including SFTPA2, CLDN18, SFTPB, SFTPD, 
NAPSA, CALML3, SPRR1B, KRT6B, and KRT5 [46].

According to the merged tsGRN-csGCN network, we 
can tell that each targeted gene can be regulated by mul-
tiple transcription factors, and each transcription factor 
can regulate a lot of genes as well. Thus, even merge the 
regulation relationships with the correlation networks 
in each condition, we still cannot figure out what is the 
potential reason for edges being altered from normal 
condition to cancer. Evidence shows that genes with high 
correlation and with similar functions are more likely to 
be regulated by the same mechanism [37]. Highly co-
expressed genes are more likely to share same TFBS and 
thus regulated by same transcription factor. By extracting 
triangle network motifs that TFs regulating both nodes in 
the csGCN subnetwork edges, we can further investigate 
the regulatory mechanisms underneath the alteration in 
gene co-expression relationships for different conditions.

By performing functional enrichment on genes 
and TFs in LUAD and LUSC csGCNs, we found sev-
eral genes and TFs participate in the same biologi-
cal pathway. For the LUAD network, four TFs, ETV1, 
ETV4, ETV6, and ELK4, were involved in the path-
way called “transcriptional mis-regulation in cancer”. 
All four TFs were normal lung and LUAD DEGs. The 
edge (LIMS2, ILVBL) is potentially regulated by ETV1, 
ETV4, and ETV6 simultaneously, and LIMS2 was also 

Table 4  Gene Expression Patterns of Selected Genes

LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma

*Adjusted p values less than 1e-03 represents this gene was differentially 
expressed between GTEx normal and LUAD or LUSC

Genes Condition log2Fold *p-value DEG Up in 
LUAD/
LUSC

ETV1 LUAD 0.59 2.82E-15 Y N

ETV4 LUAD −3.71 0.00E+ 00 Y Y

ETV6 LUAD 0.17 1.26E-04 Y N

ELK4 LUAD 0.39 1.20E-25 Y N

LIMS2 LUAD 3.66 0.00E+ 00 Y N

ILVBL LUAD −0.28 1.02E-11 Y Y

ABCC5 LUAD 0.52 3.04E-19 Y N

PSMA4 LUSC −0.93 3.90E-181 Y Y

PSMC5 LUSC −0.38 1.28E-43 Y Y

E2F1 LUSC −1.81 2.47E-184 Y Y

MCM5 LUSC −1.82 0.00E+ 00 Y Y

GINS1 LUSC −4.35 0.00E+ 00 Y Y

GINS2 LUSC −4.03 0.00E+ 00 Y Y

CDC45 LUSC −4.10 0.00E+ 00 Y Y

RFC4 LUSC −2.92 0.00E+ 00 Y Y

RFC5 LUSC −1.92 0.00E+ 00 Y Y

PRIM1 LUSC −2.00 0.00E+ 00 Y Y

PCNA LUSC −2.33 0.00E+ 00 Y Y

SPC25 LUSC −3.36 0.00E+ 00 Y Y

SFTA3 LUSC 2.97 4.41E-87 Y N

SFTPA2 LUSC 2.25 2.01E-38 Y N

SFTPB LUSC 2.64 2.43E-68 Y N

SFTPD LUSC 1.94 3.61E-41 Y N
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co-expressed with ABCC5, which were both regulated 
by ETV4. The three target nodes were all involved in 
our LUAD specific significant triangles.

We searched these three target nodes in all csGCNs. 
Both ILVBL and ABCC5 genes did not form any edges in 
GTEx normal condition, which indicated that gaining the 
(ILVBL, LIMS2), (ILVBL, LIMS2), and (LIMS2, ABCC5) 
edges could be related to the formation of LUAD cancer. 
Both LIMS2 and ABCC5 were down-regulated in LUAD, 
while ILVBL was up-regulated in LUAD. Chang et  al. 
found that up-regulation of ETV4 resulted in the up-reg-
ulation of MSI2 in LUAD, which promotes proliferation 
and invasion of LUAD [47]. Our results suggest that the 
up-regulation of ETV4 can both down-regulate ABCC5 
and LIMS2 and up-regulate ILVBL, which may also result 
in the proliferation of LUAD. Thus, our merged csGCN-
tsGRN network especially for LUAD and LUSC could 
give us potential regulation information in forming dif-
ferent types of lung cancer.

Many studies have previously described the role four 
of the TFs we identified in non-small cell lung cancer. 
Zhang et al. identified ETV1 is one of the potential onco-
genic TFs that are critical to non-small cell lung cancer 
[48]. Wang et  al. found that overexpression of ETV4 
upregulated PXN and MMP1 that promotes progression 
of non-small cell lung cancer [49]. PXN was found in our 
LUSC specific GCN, and MMP1 was found in our LUAD 
specific GCN. Liang et  al. studied the expression pat-
tern of ETV6/TEL related to non-small cell lung cancer 
patients on survival [50]. Kossenkov et al. found the bind-
ing sites for ELK4 was enriched in the promoter regions 
of genes which are up-regulated in tumor [51]. For the 
target genes, only ABCC5 was identified to have function 
on gemcitabine sensitivity that related to non-small cell 
lung cancer [52]. Our study suggests that the regulatory 
changes for ABCC5 and LIMS2 led to the correlation of 
these two genes only existed in LUAD, which could be 
associated with LUAD cancer etiology.

The tsGRN was generated from GTEx normal sam-
ples. The regulatory information for TCGA tumor 
datasets cannot be found. Some transcriptional regula-
tion might be extensively changed in cancer, which will 
result in new regulatory edges that are not present in 
normal GRN. Thus, some transcriptional factors cannot 
be detected due to this reason. This is one of the limita-
tions of our analysis. The reason why we integrated tis-
sue-specific GRN with condition-specific GCNs is that 
we want to further investigate how those correlated 
genes disappeared or showed in different types of lung 
cancer compared to normal condition. Even though 
the tissue specific GRN was generated from GTEx nor-
mal lung samples and might miss some of the TF links, 
this integration still gave us some hint of why correlated 

genes altered from normal condition to different types of 
cancer.

Conclusions
The utility of biomarkers in lung cancer helps in early 
detection, prognosis, and treatment guidelines, especially 
helpful for different subtypes of lung cancer. Our study 
describes how regulatory-linked biomarker systems can 
be discovered in different types of lung cancers using 
csGCN analysis and integration with tsGRNs. In future 
studies, stage information can be considered, and our 
approach can be used to interpret complex gene expres-
sion patterns between metastatic and non-metastatic 
lung cancer samples as well as other types of tumors.

Materials and methods
Input data and gene expression matrix (GEM) preparation
All available gene expression FPKM files for GTEx nor-
mal samples, TCGA solid normal samples, TCGA tumor 
samples of each tissue type were downloaded from the 
data records of Wang’s research [https://​doi.​org/​10.​6084/​
m9.​figsh​are.​53305​93] [17]. All files were quantile nor-
malized and corrected for batch effects. For each tissue 
type, we merged those GTEx normal, TCGA solid nor-
mal and TCGA tumor files together into one GEM using 
GEMprep [https://​github.​com/​Syste​msGen​etics/​GEMpr​
ep.​git]. The condition-specific sample annotation matrix 
was collected from the original GEMs of each condition. 
The merged GEM then underwent the log2 transforma-
tion, quantile normalization, and Kolmogorov-Smirnov 
test (KS Dval> 0.15) by using the normalization function 
in GEMprep. No outlier sample was removed by the KS 
test analysis for each tissue. For unified lung dataset, the 
total of 1415 samples were downloaded, including 313 
GTEx normal lung samples, 110 TCGA normal samples, 
489 TCGA LUAD tumor samples, and 503 TCGA LUSC 
tumor samples. Each file contains the measurements of 
19,648 genes. The density plot for unified lung GEM, 
which is the gene expression distribution of each sample, 
is shown in Supplemental Fig. 1.

Gene co‑expression network construction
The Knowledge Independent Network Construction 
(KINC) software (https://​github.​com/​Syste​msGen​etics/​
KINC) was used to identify gene correlation relation-
ships from the gene expression data. KINC was per-
formed on an NVIDIA DGX-2 workstation. KINC 3.4.2 
was pulled in the Docker environment. The network 
construction used Gaussian Mixture Models (GMMs) to 
identify clusters before calculating correlation for each 
cluster, for each gene pair. Only clusters with equal to or 
greater than 30 samples underwent Spearman correlation 
and up to five clusters could be detected. The number 

https://doi.org/10.6084/m9.figshare.5330593
https://doi.org/10.6084/m9.figshare.5330593
https://github.com/SystemsGenetics/GEMprep.git
https://github.com/SystemsGenetics/GEMprep.git
https://github.com/SystemsGenetics/KINC
https://github.com/SystemsGenetics/KINC
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of identified clusters was between one and five. All log2 
transformed and normalized FPKM expression values 
less than 0 and more than 15 were ignored. We retained 
all gene pairs with a Spearman correlation value greater 
than 0.5 or less than − 0.5. Because we used a very low 
minimum similarity score threshold, we found many 
potential edges. A Pearson’s power analysis test for the 
GMM method was performed to filter the low powered 
clusters using the pwr.r function in the pwr R package. 
Alpha setting limited the Type I error to the significance 
of 0.001, and power setting allows 20% Type II error. The 
condition (GTEX, TCGA_NORMAL, LUAD, LUSC) 
specificity test was performed to generate condition-spe-
cific subnetworks. Linear regression for quantitative con-
ditions and two z-tests for proportions of categorical data 
was performed. For linear regression test, both r-square 
values and p-values were calculated to obtain condition-
specific edges. R-square value counts for the variation of 
the trend line, and significant p-value indicates how well 
the samples in the cluster showed the correlation pat-
tern. We set the r-square value to greater than 0.30 and 
p-value less than 0.001. After extraction of the condition-
specific networks, two cases of biased condition-specific 
edges were removed, including lack of differential cluster 
expression (DCE) and unbalanced missing data, by using 
KINC.R package (https://​github.​com/​Syste​msGen​etics/​
KINC.R). The package used a Welch’s one-way ANOVA 
test to identify DCE and a Student’s t-test to compare 
missing data. Edges without significant p-values for both 
tests (a p-value more than 0.001 for Welch’s ANOVA 
test and a p-value less than 0.1 for Student’s t-test) were 
removed. A series of summary plots were generated to 
check condition-specific response in the network. The 
last filtering step was to rank the network based on the 
correlation value (similarity score), the r-square value 
(for quantitative conditions) and corresponding p-value 
also by using KINC.R package. Rank was performed 
for our condition-specific networks, but no edges were 
removed. This ranking method helped prioritize higher 
ranked edges. The final step was to visualize the whole 
network using cystoscope as well as the KINC 3D net-
work viewer [26]. The 3D layout screenshot was shown 
in Supplemental Fig.  4. The full GCN is shown in Sup-
plemental Table 1.

Network integration and analysis
The GTEx GRNs were generated by Sonawane et  al. 
(https://​sites.​google.​com/a/​chann​ing.​harva​rd.​edu/​
kimbe​rlygl​ass/​tools/​gtex-​netwo​rks) [36]. Some GRN 
edges were only found in lung tissue, while some other 
edges were enriched in several tissue types but were 
still considered as tissue-specific edges. The full GRN 
network is shown in Supplemental Table  2. The lung 

condition-specific GCN subnetworks were mapped to 
the GTEx normal lung GRN network. We selected the 
TFs that can regulate at least one nodes of the edge as 
well as both nodes of the edge from each condition-spe-
cific subnetwork. DEG analysis was performed between 
GTEx normal lung GEM and LUAD as well as GTEx 
normal lung GEM and LUSC by using DESeq2_1.30.1 in 
R 4.0 (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​
html/​DESeq2.​html). The input lung GEM was obtained 
from https://​doi.​org/​10.​6084/​m9.​figsh​are.​53305​39. For 
each comparison, we determined the TF/TR ratio value, 
mean and standard deviation in each sample condition 
and performed a Student’s t-test to determine if a given 
ratio was significantly different from normal to cancer 
conditions (p < 0.001). All ratio comparisons are shown 
in Supplemental Table 3. We also determined which TFs 
and TRs were up-regulated or down-regulated using 
DESeq2 results. Group classification was performed on 
condition-specific gene sets using the deep learning soft-
ware, Gene Oracle [40] (https://​github.​com/​Syste​msGen​
etics/​gene-​oracle). The MLP model contained five lay-
ers: an input layer with the size of gene set, three hid-
den layers of 512, 256 and 128 units using rectified linear 
unit (ReLU) activation function [53], and a final later for 
classification. Confusion matrices were generated using 
Gene Oracle. Functional enrichment analysis was per-
formed using all genes and TFs in LUAD and LUSC com-
bined networks with Toppfun (https://​toppg​ene.​cchmc.​
org/). We focused on the pathway results. Genes shown 
in the same pathway, as well as the target genes regulated 
by TFs in the same pathway, were selected, aiming to find 
any candidate genes associated with specific lung cancer.
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The online version contains available at https://​doi.​org/​10.​1186/​
s12864-​022-​08591-9.
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