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A B S T R A C T   

Intelligent food packaging is usually designed to monitor the state of the food itself and/or the environment 
around it, as well as the interactions between them, providing customers with information on food quality and/or 
safety through a variety of signals. They involve indicators (which inform by direct visual changes about specific 
properties related to food quality) and sensors (which detect specific analytes by using receptors, transducers, 
and signal processing electronics). A third type of intelligent packaging is known as data carriers, which are not 
typically used for information on food quality, but rather to track the movement of food along the food supply 
chain. In this graphical review, the basic mechanisms of intelligent food packaging systems are presented, as well 
as their main applications, with particular emphasis on those focused on food quality monitoring.   

1. Introduction 

Intelligent (or responsive) food packaging systems are those that 
include tools to monitor the packaged food and/or the surrounding 
environment. Thus, they typically generate information about the food 
quality and/or safety in real time, not depending on inaccurate expira
tion dates, thus helping not only to prevent illnesses resulting from the 
consumption of unsafe food, but also preventing the huge food waste 
derived from early food recall(Yousefi et al., 2019). 

Differently from active packaging (which involves some mechanism 
to actually improve food stability, such as removal of deleterious agents 
or release of components that prolong food stability), intelligent pack
aging systems usually do not directly extend food shelf life, but they 
rather convey information about food quality to the stakeholders of the 
food supply chain (Ghaani et al., 2016). 

This graphical review is focused on the basic mechanisms of intelli
gent food packaging systems, as well as their main applications for food 
industries. 

2. Main mechanisms of intelligent packaging 

Intelligent packaging systems rely on three main technologies, 
namely: indicators, data carriers, and sensors. 

2.1. Indicators 

Indicators basically inform the consumers about any property related 
to food quality. As shown in Fig. 1, they are typically based on indication 
about the actual conditions to which the food has been exposed and/or 
its actual quality status. Although most indicators are based on colori
metric dyes, there also those based on other mechanisms, such as fluo
rescent dyes (Kiryukhin et al., 2018). 

The information provided by such systems are related to the pres
ence/absence or concentration of a target chemical, or to the extent of a 
reaction, as a result of their interaction with food components (Ghaani 
et al., 2016; Kalpana et al., 2019). The most common types of indicators 
related to food packaging are based on temperature and freshness. 

2.1.1. Temperature indicators 
Most deteriorative changes in foods are temperature-dependent, and 

that is why temperature control is so important for food stability, mainly 
for refrigerated and frozen products. Temperature abuse (including 
temperature fluctuations) in frozen foods along the food distribution 
chain may not only negatively affect food texture (causing e.g. emulsion 
disruption in emulsion-based foods, and cell damages in frozen-thawed 
foods), but it also allows microbial growth, particularly of psychro
trophic microorganisms. 

Since temperature indicators are based on temperature changes, they 
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are indirect indicators of food quality, i.e., they provide information 
about an extrinsic factor in food changes (temperature abuse) rather 
than the changes themselves. Information on temperature abuse is 
useful to warn consumers about e.g. potential microbial growth, protein 
denaturation or emulsion breaking. Temperature indicators are classi
fied as critical temperature indicators (CTI, which indicate whether a 
critical temperature value has been reached along storage) and time- 
temperature integrators (TTIs, which provide information on the full 
temperature history of the food product along the food supply chain). 
They are based on temperature-induced mechanical, chemical, enzy
matic or microbiological changes, and the information is usually 
expressed as a visible (and irreversible) response such as mechanical 
deformation or color development (Fig. 2A and B) (Ghaani et al., 2016). 
There are also the thermochromic systems, which provide temperature 
indication based on reversible changes, thus useful rather for assessing 
real-time temperature for sensory purposes (e.g. for cold beverages) 
than information on food stability. 

2.1.2. Freshness indicators 
Freshness indicators are direct food quality indicators, since they 

provide information on microbiological and/or chemical changes 
responsible for food spoilage (Kalpana et al., 2019). Freshness indicators 
for meat products, for example, may be based on biogenic amines 
(Sørensen et al., 2018) or hydrogen sulfide (H2S, released during meat 
spoilage) (Zhai et al., 2019). In seafood, the total volatile basic nitrogen 
content (volatile amines), primarily composed of dimethylamine 
(DMA), trimethylamine (TMA) and ammonia, is frequently used to 
assess microbial degradation (Morsy et al., 2016). The indicators may be 
based on the detection of volatiles in the headspace of food packaging, 
such as Ag nanoparticles to detect H2S in meat (Zhai et al., 2019), and an 
array of chemo-sensitive compounds for volatile amines in fish (Fig. 2C) 
(Morsy et al., 2016). 

Microbial or chemical deteriorative changes may also be indirectly 

monitored by evaluating the resulting pH changes (Fig. 2D), which may 
derive from organic acids produced from microbial growth or carbonic 
acid from CO2 dissolution, being an effective way to identify microbial 
spoilage (Yousefi et al., 2019). Actually, most freshness indicators are 
based on pH-sensitive dyes, which may be synthetic (e.g. bromocresol 
green, methyl red) or natural (e.g. anthocyanins, betalains, curcumin) 
(Wu et al., 2021). Although synthetic dyes are usually cheaper, more 
stable and with more intense colors, natural food-grade colorants (e.g. 
anthocyanins) have received more attention, due to their biodegrad
ability, and the overall perception by consumers (not always correct or 
scientifically based) of natural compounds as being healthier and safer 
than synthetic ones (Alizadeh-Sani et al., 2020). 

The term ‘freshness’ may also refer to fruit ripeness. For such in
dicators (such as RipeSenseTM, commercially available for pears, and in 
development for other fruits – http://www.ripesense.co.nz/, accessed 
on July 13th, 2021 – Fig. 2E), the indicated degree of ripeness is based 
on the release of aroma compounds or ethylene by the fruit on ripening 
(Kalpana et al., 2019). An indicator of apple ripeness was based on the 
release of aldehydes and its reaction with NaOH, consuming OH− and 
changing the color of methyl red (Kim et al., 2018). 

2.2. Data carriers 

Data carriers, including barcodes and radiofrequency identification 
tags (RFID), are specifically intended to help follow the movement of 
food products along the food supply chain, being generally not used to 
collect information on food quality status, but rather to enable autom
atization, traceability, theft prevention and counterfeit protection 
(Ghaani et al., 2016). The main data carriers in food packaging are 
barcode labels and radiofrequency identification (RFID) tags. A barcode 
is a machine-readable pattern of parallel bars and spaces (for 1-D 
barcodes, Fig. 3A) or an array of dots and spaces (for 2-D barcodes, 
Fig. 3B) arranged to represent hidden encoded data, the information 

Fig. 1. Scheme of a typical indicator for food freshness.  
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Fig. 2. Examples of indicators: (A) VitsabTM L5-8 Smart TTI Seafood Label (Vitsab International AB, Sweden); (B) TTI Monitor MarkTM (3M, USA); (C) fish freshness 
indicator based on volatile amines (Reprinted from Morsy et al., 2016, with permission from Elsevier); (D) pH indicator for shrimp, based on anthocyanins (Reprinted 
from Liu et al., 2019, with permission from Elsevier); (E) fruit ripeness indicator ripeSenseTM, based on aroma volatiles released by the fruit (Ripesense Ltd., NZ). 

Fig. 3. Examples of data carriers: (A) 1-D barcode; (B) 2-D barcode; (C) RFID tag and its components.  
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being decoded by an optical scanner that conveys it to a system where it 
is stored and processed (Ghaani et al., 2016; Sohail et al., 2018). An 
RFID system (Fig. 3C), more advanced and convenient, is based on 
wireless communication between a tag attached to the product and an 
interrogator. The main components of an RFID system (Fig. 3C) are: an 
RFID antenna for communication linked to a chip for unique identifi
cation and data storage, a reader (interrogator) for wave emission and 
reception upon backscattering from the tag, and a host computer/cell 
phone for data saving and processing (Bibi et al., 2017). 

2.3. Chemical sensors 

Chemical sensors can rapidly detect specific analytes by trans
forming a chemical information into a quantifiable output signal pro
portional to that measurement, which is then processed by proper 
electronics and software (Ghaani et al., 2016). Chemical sensors are 
constituted by the following main components (Fig. 4): a receptor (the 
sensing part, represented by a sampling area where the surface chem
istry takes place), a transducer (the measuring part, such as an electrode, 
which transforms the physical or chemical information into a useful 
signal), the signal processing electronics, and (usually) a signal display 
unit (Ghaani et al., 2016). 

The receptor of a chemical sensor interacts chemically with the an
alyte, and the transducer converts the chemical information into a 
measurable signal. Chemical sensors are usually classified according to 
the transduction principles as electrical, electrochemical, optical, and 
gravimetric (Teodoro et al., 2021). Chemical sensors have been pro
posed, for example, to quantify gases generated by food deterioration, 
such as a capacitive sensor to quantify NH3, TMA, ethanol, and H2S 
emitted from chicken meat spoilage (Senapati and Sahu, 2020). In 
another approach, a hybrid chemiresistor sensor was developed to 
convert radio-frequency identification tags into wireless sensors to be 
potentially employed in smart packaging to monitor biogenic amines 
released from chicken, beef and fish (Andre et al., 2021). Electro
chemical sensors have also been proposed to quantify potentially toxic 
additives or monomers migrated from packaging materials into food (or 
their toxic products generated upon contact with the food), including 
primary aromatic amines produced from isocyanate monomers of 
polyurethane adhesives (Ghaani et al., 2018) and bisphenol-A (BPA, 
which may play some role in endocrine disorders) migrated from poly
carbonate bottles and epoxy resins (Karthika et al., 2021). 

Biosensors constitute a specific type of chemical sensors in which the 
receptor is combined with some biological material (e.g. enzymes, an
tigens, antibodies, and nucleic acids) specific to the target analyte and a 
transducer that converts the biological signals into a quantifiable elec
trical response (Yam et al., 2005). Biosensors are especially useful, for 
example, when it comes to the detection of specific microbial species in 
food, particularly pathogenic microorganisms (Ghaani et al., 2016). 
Intelligent devices have been created with surfaces functionalized with 

antibodies that respond to microbial metabolites, e.g. aflatoxins (Costa 
et al., 2017), or antigens on the surface of pathogenic microorganisms, e. 
g. Escherichia coli (Lamanna et al., 2020). Many of the recent de
velopments involve nanomaterials as the active layer of the sensor de
vices, owing to their special optical and electrical properties as well as 
their large surface area, which are able to amplify the detection signal 
(Caon et al., 2017). Other examples of nanosensors applicable to food 
packaging include a black phosphorene-based one for voltammetric 
detection of ochratoxin A (a mycotoxin that may be found in wine, 
coffee, etc.) (Xiang et al., 2018), and an electrochemical sensor based on 
MoWS2 nanoparticles for the determination of Sudan I (a potentially 
carcinogenic azo dye that have been banned in several countries as a 
food colorant) and BPA (Ghazanfari et al., 2021). Although nano
materials have remarkably enhanced the transduction mechanisms and 
detection sensitivity towards several targets (including bacteria, aller
gens, antibiotics and toxins), challenges related to integration of sensing 
technology into food packaging, improved selectivity, large-scale 
manufacture with reproducibility and improvement and removal of 
matrix effects due to the food complex composition (Mustafa and 
Andreescu, 2020) are current bottlenecks to be overcome. 

3. Final remarks 

The intelligent packaging technologies (especially those related to 
sensors) are mostly still underexplored in market applications, not only 
for economic reasons (some devices have significant costs), but also 
because of a number of challenges in translating them to the real world, 
where, in contrast to the controlled conditions of a laboratory, the 
presence of a myriad of components may interfere with the functionality 
of the sensing devices. Moreover, some intelligent devices are required 
to be placed inside the packaging (i.e. in contact with the food), so their 
use must conform to the food safety legislation, which may is also be a 
limitation. Additionally, the sensing properties of some devices may be 
diminished during food storage, e.g. by oxidation or any other chemical 
reaction that might lead to degradation, which would impair their actual 
effectiveness. So, those challenges should be addressed in order to 
translate some systems into actual food applications. 

On the other hand, intelligent devices have great potential to revo
lutionize food packaging in many aspects, benefitting consumers (in 
terms of food quality and safety assurance) but also manufacturers and 
retailers (who could answer legally and financially for the outcomes 
from any spoiled or hazardous products reaching consumers’ fridges and 
tables). Particularly for food quality and safety, it does not make sense to 
keep relying on estimated expiration dates (which are based on pre
dictions established over probable storage conditions and probable 
outcomes) in an era when the information technology has advanced so 
much over all aspects of life. Intelligent packaging technologies are tools 
that enable consumers to rely on more accurate current information 
about the state of food quality/safety. 

Fig. 4. Components of a sensor. (Adapted from Ghaani et al., 2016, with permission from Elsevier).  
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However, advances on the widespread use of intelligent packaging 
may also be hampered by e.g. inappropriate suppliers in the food supply 
chain (who may have the habit of turning off refrigerators and freezers 
on off hours to save on the energy bill). Neophobia by some consumers 
could also be a factor to negatively impact the acceptance of intelligent 
food packaging systems. On the other hand, once consumers understand 
the benefits of those systems for their own safety, they may be more 
confident about their reliability, and even demand that they are adop
ted, which may balance any eventual resistance. 
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