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Abstract: With the continuous research efforts, sophisticated predictive molecular dynamics
(MD) models for C-S-H have been developed, and the application of MD simulation has been
expanded from fundamental understanding of C-S-H to nano-engineered cement composites.
This paper comprehensively reviewed the current state of MD simulation on calcium-silicate-hydrate
(C-S-H) and its diverse applications to nano-engineered cement composites, including carbon-based
nanomaterials (i.e., carbon nanotube, graphene, graphene oxide), reinforced cement, cement–polymer
nanocomposites (with an application on 3D printing concrete), and chemical additives for improving
environmental resistance. In conclusion, the MD method could not only compute but also visualize the
nanoscale behaviors of cement hydrates and other ingredients in the cement matrix; thus, fundamental
properties of C-S-H structure and its interaction with nanoparticles can be well understood. As a
result, the MD enabled us to identify and evaluate the performance of new advanced nano-engineered
cement composites.

Keywords: molecular dynamics; calcium-silicate-hydrate; nano-engineered cement materials;
carbon-based nanomaterials; cement–polymer nanocomposites

1. Introduction

Historically, cementitious materials have been used as one of the most common and popular
construction materials. The hydrated cement is composed of nanostructured multiple composite phases
that include an amorphous phase, nano-/micro-size crystals, and bound water. Calcium-silicate-hydrate
(C-S-H) plays a pivotal role in controlling mechanical, chemical, and transport properties of cement
composites and their engineering performance as well [1]. Therefore, in order to improve and customize
the macroscopic properties of cementitious materials, understanding of the structure of C-S-H at
nano-/micro- level is prerequisite [2] because chemical process at molecular level eventually affects
engineering performance of the composites in the bulk scale [1,3–5].

Nano-engineering in cementitious materials encompasses alteration and modification of cement
hydrates for enhancing and modifying properties and performance in macro scale [1,6]. In addition,
it also deals with characterization and prediction techniques via atomic- or molecular-level modeling
for better understanding of how chemical interactions correlate with the macro-level behaviors [7,8].
Via nano-engineering processes such as nano-particles, nano-reinforcements, and chemical admixtures,
mechanical and durability properties and degradation processes of cement composites could be
effectively controlled and enhanced; thus, novel and smart multi-functions can be incorporated into
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the cement composites [9]. Fundamental knowledge in the field of the nano-engineered cement
composites has been advanced with high-resolution characterization tools [9]; however, there are
still many challenges in understanding material behaviors at the atomic/molecular level, solving test
repeatability, and realizing cost–benefit issues, etc. [9,10].

Molecular dynamics (MD) simulation is a powerful computational method that models physical
movements of atoms and molecules accounting for potential energy in a given position and then
numerically computes the atomic/molecular forces based on Newton’s classical mechanics [1]. The MD
simulation quantitatively determines statistical properties of multi-body systems because it models
a large size of the molecular system with longer simulation durations for the required level of
accuracy [11–14]. By this reason, the computational MD has been applied to cement composites to
study mechanical behaviors and properties of C-S-H and other applications such as carbon-based
nanomaterials, polymer–cement nanocomposites, and chemical treatments for the modification of
material’s properties, etc. [15–17]. There are still needs and opportunities for the MD in cement
composites because of diverse molecular structures of cement hydrates and introduction of numerous
nano-admixtures into the cement matrix.

This paper provides a comprehensive review on MD analyses on cement composites.
Fundamentals of C-S-H including formation, classifications, and molecular modeling were also
first reviewed. Thereafter, MD studies on C-S-H structures are reviewed, focusing on C-S-H MD
modeling, water dynamics characteristics in pore structures, and mechanical properties of the C-S-H in
nanoscale. Lastly, the recent applications of MD to nano-engineered cement composites were reviewed.

2. Background on C-S-H

2.1. Formation and Classification of C-S-H

Tricalcium silicate (alite: C3S) and dicalcium silicate (belite: C2S) because constitute about 50~70%
and 15~30% of Portland Cement (PC) by mass, respectively [18,19]. C3S dominates early hydration
process of PC, which controls early-age properties of cement and concrete [20]. During that time,
a large amount of calcium–silicate–hydrate (C-S-H) gel is formed by the alite hydration, whereas C2S
hydration governs later composition of C-S-H [21]. A study on the early hydration process of alite
shows the reaction begins immediately upon contacting the water. The initial reaction is a complex
heterogeneous process that are congruent dissolution and incongruent dissolution with a formation
of a silica-rich layer on the surface of C3S [22]. This alite–water reaction forms C-S-H and calcium
hydroxide (CH) following the relationship by the schematic Equation (1). The hydration of C2S occurs
similarly to the case of C3S and can be expressed by Equation (2). The rate of hydration is generally
lower than alite. In addition, the slow process of C2S due to different structures of C3S results in low
concentration of calcium ions; thus, CH crystals are generally large but the C-S-H form is similar [23].
In this reaction, roughly three Ca-O and two Si-O bonds are broken, including six O-H bonds and
eventually forms C-S-H gel and portlandite (Ca(OH)2). The energy required for the bond formation
of C-S-H and portlandite is 138 kJ/mol less than the energy released due to the bond breaking of the
reactants mentioned in the above reaction. As a note, it is known that some of the added C3S in PC
triggers an accelerated hydration process of C2S, as the nucleation of CH could be accelerated and thus
the C2S dissolution process is also accelerated [22].

C3S + (3 − x + y) H→ CxSHy + (3 − x) CH (1)

C2S + (2 − x + y) H→ CxSHy + (2 − x) CH (2)

It is important to note that the formation, composition, and structure of C-S-H can be influenced
even by a slight variation of w/c, mix proportion, humidity, the degree of hydration, and curing
temperature [21]. Those factors contribute the ratio of calcium to silicon (Ca/Si) [24–26] and the
variability of the C-S-H structure comes from the varied Ca/Si ratio ranged from 0.7–2.3 [10,27].
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The Ca/Si ratio may increase under higher hydration and better curing conditions, but the use of
supplementary cementitious materials (SCMs) may decrease the ratio. Lower Ca/Si ratios may increase
the length of silicate chains and the interlayer distance, resulting in changes of C-S-H structures [26].
Generally, C-S-H was firstly classified into two categories as tobermorite-like C-S-H(I) for Ca/Si < 1.5
and jennite-like C-S-H (II) for Ca/Si > 1.5 [28]. The C-S-H(I) was additionally divided into C-S-H(α)
for Ca/Si < 1.0 and C-S-H (β) for 1 < Ca/Si < 1.5 [29]. Nowadays, depending on this ratio, C-S-H can
be depicted as tobermorite, jennite, metajennite, and many other formations shown in Table 1 in the
next section.

It was observed that the type of C-S-H largely depends on hydration times; for instance,
low-density C-S-H is rapidly formed at the surface of C3S in the early stage of hydration [21,30].
As the hydration process continues, a group of C-S-H having higher density is subsequently formed,
which mainly contributes to the development of strength. Powers and Brownyard firstly denoted the
physical characterization of C-S-H at multiscale in the 1940s and 1950s [31,32]. They suggested inside
and outside hydrated products at the cement clinker particles (e.g., C3S and C2S), which were denoted as
inner (Ip) and outer (Op) of C-S-H by Taplin [33]. Diamond (1976) observed four different types of C-S-H
morphologies including three types of Op-C-S-H and one type of Ip-C-S-H [34]. They are classified as
Type I: fibrous particles look like partly rolled sheets, Type II: reticular network/interlocking structure
but not in C3S or C2S pastes, Type III: “relatively nondescript” or “equant grain morphology”, and Type
IV: inner product in older pastes. Richardson and Groves investigated the formation and classification
of C-S-H with transmission electron microscopy (TEM) and then adopted the terminologies of OP and
IP [35,36]. Later, Jennings and Tennis have classified the C-S-H in density perspective by modeling
colloidal particles that pack into two separate arrangements: high density (HD) and low density
(LD) products [37,38]. They showed that the LD products are formed during the first or second
day of hydration but those are more deformed during the drying stage due to its open structure
than HD products [39]. Nicoleau described the formation of C-S-H being the outcome of cohesive
forces during the hydration process, and its physical transformation could trigger coagulation and
eventually form structures [40]. Bonding characteristics of the C-S-H formation were also investigated.
The high-density C-S-H is a layered structure composed of calcium silicate sheets randomly connected
by strong iono-covalent bonds [41].

2.2. Structural Models of C-S-H

Modeling the C-S-H structures needs to address the variation of chemical composition and its
distribution in a cement matrix because engineering performance of cement hydrates is highly affected
by structures and chemical compositions of C-S-H determined by w/c ratio and curing conditions.
Therefore, specifically, the model should be able to account for: (1) Ca/Si ratio of C-S-H ranged from
0.7 to 2.3 [42], (2) compositional heterogeneity of C-S-H, and (3) age of hydration process [43,44].
In an early stage of C-S-H study, Taylor (1986) announced that C-S-H appears to be a disordered
layer structure composed of structurally imperfect jennite (Ca9Si6O32H22) and others similarly related
to 14 Å tobermorite (Ca5Si6O26H18) [45]. Tobermorite and jennite are layered structures that are
calcium sheets flanked on both side by linear silicate chains called “dreierketten chain” [46,47].
Figure 1 shows a schematic diagram of C-S-H crystalline structure. The chains are composed in a
repeating manner at three SiO4 tetrahedra intervals. Two adjacent tetrahedrons are coordinated to
the Ca2+s of the layer, and the third tetrahedron bridges two consecutive dimers, which is called
bridging tetrahedra. Two oxygens from non-bridging tetrahedra are coordinated with Ca2+s in
tobermorite [48,49], whereas one oxygen from the non-bridging tetrahedra is coordinated to the Ca2+

on the sheet and the other oxygen is provided by hydroxide ions [50,51]. Taylor described several
formulas based on Ca/Si ratios: Ca4H4Si6O18·8H2O (Ca/Si = 0.66) and Ca5H2Si6O18·8H2O (Ca/Si = 0.83)
for tobermorite; and Ca5H2Si4O16·8H2O (Ca/Si = 1.25), Ca8H4Si6O18(OH)8·6H2O (Ca/Si = 1.33),
Ca9H2Si6O18(OH)8·6H2O (Ca/Si = 1.5), and Ca9H2Si4O16(OH)8·6H2O (Ca/Si = 2.2) for jennite [45].
In the early research period of Taylor, he proposed that both tobermorite-like and jennite-like structures
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may simultaneously exist at the early age of hydration, and the distribution could finally merge into a
jennite-type structure having an intermediate composition by interacting the regions of low and high
Ca/Si ratio as time passes. Thereafter, however, he suggested that the tobermorite-like and jennite-like
regions could be hardly determined and could merge into each other within individual layers [52].
Unlike Taylor’s model, Cong and Kirkpatrick reported that the jennite-like C-S-H is rarely formed based
on experimental studies, and they proposed tobermorite-like C-S-H model when Ca/Si < 1.5 [52,53].
There is a difference between the two models in that Tayler focused on the case of Ca/Si > 1.5 whereas
Cong and Kirkpatrick focused on Ca/Si < 1.5. Nonetheless, both models involve quite disordered
structures. Nonat and Lecoq later elaborated the model associated with the evolution of C-S-H in
accordance with the Ca/Si ratio of 0.66~2.0 [29]. In their model, the main differences from the Taylor’s
and Cong and Kirkpatrick’s models are that C-S-H structures are not necessarily to be disordered
structure and the layers do not contain jennite-like regions. The X-ray diffraction (XRD) analysis of
C-S-H showed similar patterns with the tobermorite over the wide range of Ca/Si ratios.

Figure 1. Schematic structure of crystalline C-S-H.

Table 1. Analysis models describing structure of C-S-H proposed by various researchers.

Type of C-S-H
Structure

Model Type

Layer Colloid Crystal Atomic Chain

9 Å tobermorite [55] - - - -
11 Å tobermorite [55–58] - - - [48]
14 Å tobermorite [53,55,56,59–62] - [63] [45] -

Jennite [53,54,60–62] - - [45] -
LD C-S-H - [39,64–66] - - -
HD C-S-H - [65,66] - - -
Op C-S-H [54] - - - -

Hillebrandite
(Ca2SiO3(OH)2) - - [67] - -

Figure 2 shows TEM images of Ip and Op C-S-H structures. The white arrows indicate the Ip–Op
boundary of a hydrated C3S paste; the Ip region is in the upper left side and Op region is in the lower
right side in the Figure 2, and zoom-in images of Ip C-S-H and Op C-S-H are also depicted, respectively.
The Ip C-S-H appears to consist of aggregates of small globular particles being 4–6 nm in diameter
whereas, the Op C-S-H looks like a bundle of fiber, about 100 nm wide, consisted of a large number of
long thin particles aligned along its length.
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Figure 2. TEM image showing Ip and Op C-S-H present in a hydrated C3S paste. Reproduced from [54],
with permission from Elsevier, 2004.

Selected studies of C-S-H structures and the corresponding models proposed by various researchers
are summarized in Table 1. It is noticed that the layer structure is the most widely adopted model
in which 11 Å and 14 Å tobermorite and jennite structures are used to model the structure of C-S-H.
Accordingly, these C-S-H structures have been mainly adapted for the MD simulation of C-S-H to be
presented in following sections.

3. Molecular Dynamics Simulation of C-S-H

3.1. MD Models of C-S-H

Since the 2000s, MD simulation of C-S-H has been explored and helped to investigate the structures,
behaviors, and diverse properties of hydrated cement matrix at molecular level [2]. MD theoretically
computes a set of molecular orbital phase spaces where each molecule follows Newton’s laws of
motion [68]. In other words, the MD simulation method calculate a typical trajectory of the molecular
system based on the fact that the total energy is constant. As this is a deterministic algorithm,
initial conditions use random velocities, and it is usually known as an initial configuration from
Monte Carlo simulations. Accordingly, understanding properties and behaviors of hydrated cement
in small scale will help understand the macroscopic behaviors. Pellenq et al. (2009) first suggested
the C-S-H molecular model by MD method [69]. The model was developed based on the mean
value of 1.7 for Ca/Si ratio repeating 14 Å tobermorite crystalline structure, which was suggested by
Richardson [36]. Figure 3 shows the TEM image of C-S-H clusters [70] and the corresponding MD
model by Pellenq et al. [69] The blue and white spheres are oxygen and hydrogen atoms of water
molecules, respectively. The green and gray spheres are inter- and intra-layer calcium ions, respectively.
Yellow and red sticks represent silicon and oxygen atoms in silica tetrahedral. The overall chemical
composition of the computational model of hydrated C-S-H is (CaO)1.65(SiO2)(H2O)1.75. The C-S-H
model is based on a bottom-up atomistic simulation approach (i.e., atomic to composite scale) which
considers only the chemical specificity of the system as a major constraint. This C-S-H pattern that
involves the interaction of CaO, SiO2 and H2O molecules allows the distributions of short silica chains
such as monomers, dimers and pentamers, and thus, it could provide more realistic Ca/Si ratio and
density values calculated by grand canonical Monte Carlo simulation of moisture adsorption at 300 K.
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Figure 3. C-S-H structure and model: (a) TEM image of C-S-H clusters [70], (b) molecular model of
C-S-H ((CaO)1.65(SiO2)(H2O)1.75). The blue and white spheres are oxygen and hydrogen atoms of water
molecules, respectively; the green and gray spheres are inter- and intra-layer calcium ions, respectively;
yellow and red sticks represent silicon and oxygen atoms in silica tetrahedral [69].

Table 2 summarizes the selected studies of MD simulation on C-S-H structures and experimental
methods for validation. The table also summarizes the applications of MD analyses to C-S-H,
looking into the structures of C-S-H, diffusion coefficients of water, density, elastic modulus,
tensile/compressive/shear strength, chloride diffusion, and the most stable structures corresponding
to minimum energy. One of the most important parameters in the simulation of C-S-H is Ca/Si ratio.
Researchers used different Ca/Si ratio to simulate the closest structure to the C-S-H gel, which ranged
from 0.66 to 2.0, however, the typical ratio of Ca/Si in hydrated cement composite is considered as 1.7. 9 Å,
11 Å, and 14 Å tobermorite layered C-S-H structures have been mainly modeled. Tobermorite structures
could have several modifications under different levels of hydration and degree of cross-linking of
silicate chains between two adjacent layers, and this could form different levels of separation of the
interlayer. According to the spacing due to the separation, the structures are named by the 9 Å, 11 Å,
and 14 Å tobermorite. On the other hand, only a few studies attempted to model amorphous C-S-H
clusters [68]. MD simulation software (i.e., GULP, LAMMPS, and TREMOLO) involves NVT (Number
of atoms, Volume and Temperature are constant) or NPT (Number of atoms, Pressure and Temperature
constant). Appropriate potentials are used to simulate the real-life interactions (i.e., 2-body or 3-body)
among the molecules. Reactive force field ReaxFF is useful for capturing bond breaking and reforming
by considering fracture [71], electrostatic equilibrium, and water dissociation [72], and thus, it is widely
adapted for simulating systems having dynamically changing bond topologies [73]. Whereas the
ReaxFF reproduce the energy evolution due to the bonding and dissociating atoms, empirical force
fields such as CLAYFF and CSHFF predefine the connections between atoms at a fixed state [74].
CLAYFF force field combines coulombic, van der Waals, bonded stretch and angle bend potentials
altogether. On the other hand, CSHFF is more popular for investigating water dynamics and cohesion
between C-S-H grains [75]. Accordingly, the empirical force fields have been employed for studying the
nano-engineered cementitious materials and its applications such as nanomaterial-reinforced cement
and polymer modified cement, which to be presented in the following sections.
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Table 2. Summary of MD analyses on C-S-H.

Author (Year) [Ref.] C-S-H Model Simulation
Package

Experimental
Validation Temp. (K) # of Atoms Ensemble Used Energy Potential Used Calculated Items

Faucon et al. (1997) [58] Tobermorite 11 Å Ca/Si =
0.66 and 0.83

- 29Si-MAS NMR 800 2500 - - Structural reorganization due to
cationic substitution in C-S-H

Dolado et al. (2007) [76] Ca/Si = 0.7, 1.0, 1.4, 2.0 TREMOLO 29Si-MAS NMR 300–1800 6304–7448 NVT Custom Density

Kalinichev et al. (2007) [77] Tobermorite 9 Å
(Merlino’s model)

- 1H NMR - 3646 NPT, NVT CLAYFF
Diffusion coefficients of H2O

molecules, Behavior of water in
C-S-H and near the interface

Pellenq et al. (2008) [41] Tobermorite GULP,
CRYSTAL AFM 310 - NVT Empirical/transferable

interatomic potential
Mean square displacement (MSD),

self-diffusion
Pellenq (2009) [69] Tobermorite 11 Å GULP SANS, NMR 300 - NVT - Moduli, plane stress, strength

Murray et al. (2010) [78] Tobermorite 9 Å
(Hamid’s model)

LAMMPS - 300 - NPT
FF (Buckingham,

Coulomb and
Stillinger-Weber)

Tensile/compressive strength and
elastic modulus of C-S-H

Pan (2010) [79] Ca/Si = 1.7~1.8 -
35Cl NMR, 23Na

NMR
298 - NVT Coulombic, LJ Chloride diffusion in C-S-H

Liu and Shi (2010) [80] Tobermorite LAMMPS RDF 300 Vario-us NVT Custom potential
(Buckingham, LJ)

Diffusion coefficient, structure at
minimized energy

Dai and Hu (2011) [81] Tobermorite 11 Å
(Hamid’s)

Materials studio XRD, RDF 300 - NVT, NVE Universal force field
(UFF)

Distance between atomic and
coordination number

Dai et al. (2011) [82] Tobermorite (Hamid’s
model) Materials studio - 300 - NVT COMPASS FF Bulk modulus Shear Modulus,

compressibility of C-S-H

Qomi et al. (2012) [83] Tobermorite 14 Å and 11
Å

GULP NMR 300 - NPT, NVT
Custom potential

(Buckingham,
Coulomb, Morse, LJ)

Indentation modulus, Gibbs free
energy, Young modulus

Fu et al. (2018) [84] (CaO)1.67(SiO2)(H2O)1.7 LAMMPS AFM,
Nanoindentation - - NPT CLAYFF Elastic modulus

Cao et al. (2020) [85] Tobermorite 11 Å Materials studio NMR 298 - NPT, NVT Interatomic potential Influence of pore size and fatigue
loading

Sindu and Sasmal (2020) [86] Tobermorite 11 Å
LAMMPS

NAMD [87] 300 - NPT, NVT CSHFF Behaviors of carbon nanotubes
(CNT)-reinforced C-S-H
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3.2. Water Dynamics in C-S-H

The pore system having a wide range of size distribution from nano- to micro- meters significantly
affect physical and chemical properties of hydrated cement composites such as strength, shrinkage,
creep, and chemical reactivity [77]. Since 1970s, extensive studies about water interactions which
include water bound into cement paste, “glassy water” interacted in gel pores, and unbound water in
larger capillary pores in the near surface of cement hydrates have been made; for instance, dynamics of
unbound water, physically bound and chemically bound water under variable conditions [88–96].
Hou et al. (2014, 2015) simulated C-S-H nanostructure under varied moisture conditions (from dry
to saturated conditions) based on twelve (12) C-S-H gel structures with water/Ca ratios from 0
to 0.95. Specifically, they investigated the chemical bonds in the C-S-H structure using “CSHFF
force field” [97–100]. Figure 4 illustrates the morphology change of silicate chains in C-S-H models
under different water contents. In the dry state, the bridging silicate tetrahedron is connected to
the surrounding monomers and adjacent tetrahedrons. When the water/Ca ratio is 0.3, two dimers
and one monomer can be linked together and form a longer silicate chain. In the saturated state,
the dimer structure develops orderly, and the water molecules block the silica chains from connecting
to each other.

Figure 4. Morphology change of silicate chain: (a) dry condition—bridging silicate tetrahedrons
connect to surrounding monomers; (b) water/Ca = 0.3—two dimers and one monomer develop a
long silicate chain; and (c) saturated condition—dimer structures grow orderly along one direction.
Reproduced from [101], with permission from Elsevier, 2014.

The behavior of confined water in nanometer scale greatly differs than that of bulk-scale water.
The viscosity of the nanoconfined water (≤ 1 nm separation) is seven orders of magnitude higher than
the viscosity of bulk water at room temperature [102]. Solid surfaces can perturb the confined water up
to several molecular diameters [77]. Kalinichev et al. (2007) and Youssef et al. (2011) simulated water
dynamics in the pore systems of cement matrix. Kalinichev’s MD analyses illustrate that (1) water
molecules develop a three-dimensional H-bond network and (2) the structure of the H-bond network
can be influenced by substrate structures (e.g., C-S-H structures and/or charge distribution) [77].
In addition, Youssef’s research demonstrates that nano-pore space has hydrophilic characteristic due
to non-bridging oxygen atoms on the disordered silicate chains acting as H-bond acceptor sites [103].
In their studies, the models were intentionally designed to simulate the solid-fluid interaction that is a
strong attractive forces between water molecules and C-S-H chains, and used a “CLAYFF forced field”
method to generate energetics between the solid-fluid interfaces that do not require the prior definition
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of chemical bonds. Since the disordered systems such as hydrous minerals, which is composed of
a large number of atoms, could be kept relatively small and simple by modeling the number of
interactions in the absence of defined chemical bonds, the O-H of H2O, the OH- group on the solid
surface, and the bond at the aqueous oxyanion were only defined in the CLAYFF [77]. Moreover,
they found that the diffusion coefficients of water molecules are much higher near the surface of solid
than in the confined channels. However, the both values are much lower than the diffusivities of bulk
water, which were validated using NMR technique. Consequently, it was concluded that the water at
the surface of tobermorite and jennite is highly structured with reflecting the structure, composition,
and charge distribution of the underlying C-S-H substrate. In these ways, MD methods offer significant
potential for modeling fluid-solid interface and their interaction in cement systems.

3.3. Nanoscale Mechanical Properties and Performance of C-S-H

Understanding properties of C-S-H can help predict mechanical and chemical properties of
hydrated cement materials, thus findings can be reflected on the design of cement/concrete composites.
Manzano et al. (2007) [104] simulated different crystalline C-S-H models that have diverse Ca/Si
ratios, and subsequently computed diverse elastic properties such as bulk (K), shear (G), and Young’s
Modulus (E). The results showed that the values of modulus slightly decreased when Ca/Si ratio of
C-S-H increased and also when more water content was added. Moreover, the study also showed that
mechanical properties of C-S-H with dimer or pentamer silicate chains were lower than those with
infinite silicate chains. MD studies computing elastic properties of C-S-H have been widely performed
under diverse force field types. It is shown that CLAYFF generally estimates higher modulus values
than other types such as COMPASSFF, COMPASSIIFF, or Universal, but estimates Poisson’s ratio in the
middle range [105]. Table 3 summarizes the computed elastic properties of diverse C-S-H structures;
however, nanoindentation tests show much lower values. The test results report bulk modulus (K)
of 15–18 GPa, shear modulus (G) of 9.7 GPa, and Young’s modulus (E) of 18–30 GPa [65,106–108].
In other words, the computed moduli of C-S-H gel overestimates about 3–5 times larger than those of
experimental test.

Table 3. Elastic properties of C-S-H gels computed by MD simulations.

C-S-H Model Force Field K (GPa) G (GPa) E (GPa) Poisson’s Ratio

Tobermorite 9
Å Others 53.36–86.25 26.72–37.44 72.38–112.72 0.23–0.35

[105,109,110] CLAYFF 135.93 68.83 176.67 0.28

Tobermorite 11
Å Others 38.45–77.19 17.91–40.42 46.5–103.25 0.27–0.33

[56,105,111] CLAYFF 125.70 53.78 141.20 0.31

Tobermorite 14
Å Others 20.7–56.42 15.33–31.65 41.47–80.00 0.24–0.35

[41,105,112–
114] CLAYFF 80.79 42.30 108.04 0.27

Clinotobermorite Others 40.98–81.00 19.84–35.00 39.45–91.78 0.29–0.34
[105,109] CLAYFF 104.12 47.59 123.89 0.3

Murray et al. (2010) [78] studied tensile and compressive strength of the C-S-H structure from the
uniaxial stress–strain data computed by MD. The results showed that the strength values of C-S-H in
nanoscale is about three times of maximum compressive and tensile strength of hydrated cement at
bulk scale. In their MD simulation, the tensile strength appeared 23% of the compressive strength.
This study also addressed that attractive electrostatic forces and silicate bond (O-Si-O), which resist
tensile stresses greater than 600 MPa, play a crucial role in determining the strength of hydrated cement,
and the breakage of silicate chains is the primary cause of reduced tensile strength of C-S-H structure
due to less O-Si-O bonding. The application area of MD simulation methods was also expanded as such
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from the conventional analysis of static performance and mechanical properties of C-S-H phases to
investigate dynamic behavior characteristics such as propagation of stress waves under shock loading.
For instance, the pattern of crack propagation may change as the strain rate increases due to higher
shock wave; a higher stress level is required for the failure of specimen, and the energy absorption
capacity increases [115–117]. Lin et al. (2018) investigated the propagation of stress waves in the C-S-H
under the compressive shock loading by selecting the particle velocity of 0.2–3.0 km/s for the wave
generation using MD simulations [118]. The elastic limit was calculated as 7.5 GPa, and the results also
presented that 0.5 km/s is the critical particle velocity to transit the C-S-H structure from an elastic state
to a plastic state. If the particle velocity is larger than 2.0 km/s, the C-S-H structure is collapsed due
to the shock wave. Figure 5 illustrates the dynamic-deformation process of C-S-H structures under
different particle velocities simulated by MD method. The black-dotted box in the figure indicates
C-S-H layer, and the plastic deformation is related to the densification of the C-S-H layers. Figure 5b
shows the C-S-H layer begins to compact, indicating that the system transits from elastic to plastic
at the particle velocity of 0.6 km/s. Figure 5d demonstrates that the system lost the layered C-S-H
morphology at the particle velocity of 3.0 km/s, and it is considered as structure collapse.

Figure 5. Illustration of the dynamic deformation of C-S-H under different particle velocities (vp):
(a) vp = 0.3 km/s, (b) vp = 0.6 km/s, (c) vp = 1.5 km/s, and (d) vp = 3.0 km/s [118].

Crack propagation mechanism in C-S-H gel is also studied via the MD method. Hou et al.
(2014) reported that the layered C-S-H gel shows dual types of crack growth natures under loading
conditions [100]. In the x–y plane, since the ionic-covalent bonds of Si-O and Ca-O are stable, cracks are
hardly coalesced in this direction, which may slow down the crack propagation and thus lead to
more ductile characteristic. On the other hand, in the z-direction, cracks could be propagated in the
interlayer region more frequently because of higher potential to break the H-bonds network under
loading, and this could be exhibited as a brittle behavior in macroscale. They also simulated the
development of crack under the tensile loading process in which a void is present at the center of
C-S-H. The void could be a natural pore having diameter of 0–50 Å generated within hydration process
rather than defects. Figure 6 demonstrates the crack evolution of C-S-H gel under the tensile load along
the x-direction simulated through MD method. Figure 6a–f represent the strain at 0, 0.08, 0.16, 0.2, 0.3,
and 0.4 Å/Å, respectively. As shown in Figure 6c, the crack is triggered from the boundary of central
void by dissociating Si-O and Ca-O bonds as strain increases from 0.08 to 0.16. Consequently, it could
be identified in Figure 6e that the cracks coalesce with small cracks and propagates to the direction of
around ±45◦ from the x-axis. This MD simulation provides considerable insight regarding the reduced
plastic deformation during the cracking process of C-S-H gel. First of all, water molecules hinder the
interflow of Ca and Si between adjacent calcium silicate sheets, thus weakens the plastic deformation
of the C–S–H gel. Next, the water molecules instantly spread out to bond to the non-bridging oxygen
site in the damaged region, and thus obstruct bridging by the interlayer calcium, resulting in the plastic
deformation due to the fact that Ca, Si, and O diffusion may be reduced [100].
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Figure 6. MD simulation of crack evolution of C-S-H gel under tensile load along the x-direction:
(a) ε = 0, (b) ε = 0.08, (c) ε = 0.16, (d) ε = 0.2, (e) ε = 0.3, and (f) ε = 0.4 [100].

4. MD Simulations on Nano-Engineered Cement Materials

4.1. Carbon-Based Nanomaterials

4.1.1. Carbon-Based Nanomaterials-Reinforced Cement Composite

It has been reported that carbon-based nanomaterials (e.g., carbon nanotubes/nanofibers
(CNTs/CNFs) and graphene/graphene oxide (GO)) could enhance mechanical properties such as
Young’s modulus (E) and tensile strength (ft); for instance, E = 10–950 GPa and ft = 11–150 GPa for
CNT, E = 25–600 GPa and ft = 7–30 GPa for CNF, E = 1.5–2.8 TPa and ft = 130–195 GPa for pristine
graphene, and E = 180–230 GPa and ft = 0.11–24 GPa for GO [119–127]. Cwirzen et al. indicated that
adding CNTs to the cement paste improved the workability and increased the compressive strength
up to 50% [128]. In addition, pristine CNTs could improve the flexural and compressive strength of
the cement composites about 10–20% [129]. One of the reasons for the improvement of mechanical
strengths is a nucleation effect of CNT allowing the growth of C-S-H gel in the early hydration
process reported by Makar and Chan [130] (Figure 7a). They confirmed the CNT’s nucleation effect by
measuring the decrement of Ca(OH)2 during the hydration process for the CNT-containing cement
paste. A “bridging effect” of CNTs in the cement matrix is considered as another mechanism for the
strength enhancement, which could increase the tensile strength of C-S-H as they can bridge the micro
and nanocracks in the C-S-H (Figure 7b) [131–133], and hence can be termed as “bridging material”
hereafter. Numerical investigation of Eftekhari et al. [134,135] presented that the addition of CNTs
to the cement mixtures could significantly increase the fracture energy and tensile strength of the
CNT-reinforced cement and delay the crack propagation. Manzur [136] addressed that the strength
improvement could be adjusted by the CNT’s specific surface area based on experimental results that
the compressive strength of CNT–cement composite increases at the larger specific surface area of CNT,
and this could be supported by that COOH or C-OH groups on the surface of CNT allow a possible
interaction with C-S-H gel [137].
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Figure 7. (a) Nucleation effect of CNT: increased thickness of C-S-H on CNT bundles as hydration
proceeds. Reproduced from [130], with permission from Wiley Online Library, 2009; and (b) bridging
effect of CNT bundles at cracks in C-S-H [132].

Graphene oxide (GO) has been considered as a viable alternative for reinforcing cementitious
matrices with better economic advantages than CNT [138–140]. The interfacial strength of pristine
graphene with –OH, –COOH and –NH2 functionalized groups in the cement composites have been
studied by AlKhateb et al., and the results presented that the electrostatic forces of the functional
groups play a roles in determining the strength of GO-reinforced cement composites [141]. In addition,
it is reported that the functionalized surface of GO may act as a seeding material accelerating the
hydration process, thus contributing to increase the amount of C-S-H gel in the matrix [142–146].
Consequently, previous studies have shown the positive effects of GO on mechanical properties of the
cementitious composites. In summary, for the cement paste and mortar, 0.02–0.08% of GO by weight
of cement increased the compressive strength by 29–46% and flexural strength by 26–61% [147–155].
Moreover, Lv et al. performed advanced mechanical testing and reported the GO nanosheets
significantly affect to reduce brittleness and enhance toughness of the cement based materials [156].
Effectivereinforcement potential was also investigated in nanoscale showing mitigation of crack
propagation and lead to less sudden failure [157–159], and enhancement of Young’s modulus of the
GO-reinforced cement composites was evaluated [160,161]. The accelerated C-S-H formation due to
GOs may also reduce porosity and hinder the ingress of water and chloride ions, which subsequently
improve its durability [122,162]. For the unhardened fresh state of the GO-mixed cement mixtures, it is
generally known that the GOs noticeably reduce the fluidity and viscosity of cement paste and mortar
mixtures, and this is understood by the fast early cement hydration process due to the functionalized
surface of GO [121,163].

In recent, a low-cost GO, edge oxidized graphene oxide (EOGO), has been introduced [164]
and relevant investigations on both rheological and mechanical aspects (including long-term fatigue
behavior) of GO–cement and concrete composites have been performed; the result demonstrated
that the EOGO could improve not only static compressive/flexural strength but also flexural fatigue
characteristics (i.e., fatigue life and ductility) [165–167]. The results also indicated the plastic strain
of the GO-reinforced cement mortar increased under flexural cyclic loading condition, and this was
interpreted as the EOGOs helped prevent or delay internal damage propagation in the material.
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In addition, EOGO was also mixed with steel fibers in cement concrete mixtures, and the results
showed the 0.1% GO by weight of cement improve the energy absorption capability of about 30% in
the range of elastic behavior under the static flexural loading condition. It is assumed that the GOs
extend the range of elasticity and “interact” with steel fibers in cement paste [168,169].

4.1.2. MD Simulation on CNT/Graphene/GO-Reinforced C-S-H

Eftekhari and Mohammadi (2016) studied the mechanical properties of CNT-reinforced C-S-H
by MD simulation (see Figure 8) [170]. The MD model is firstly processed by that a hollow cylinder
was placed in the C-S-H structure and expanded up to the CNT’s diameter using “fix indent cylinder”
function of LAMMPS. This pushes C-S-H atoms back without the breakage of their bonds. CNT was
embedded in the hollow hole, and the C-S-H and CNT was then linked by Lennard-Jones (L-J)
potential. After the system equilibrium, the interlayer space between C-S-H and carbon atoms by
the L-J interaction was set as about 2.7 A. The simulation results confirm that the CNT embedment
enhances diverse mechanical properties of C-S-H. The tensile strength of the CNT-reinforced C-S-H is
substantially improved along the direction of CNTs. Especially the CNT increased the tensile strength
along the Z direction (perpendicular to the silicate layer) up to 6 GPa. The results also demonstrated
that the CNTs play a role in efficiently bridging (“bridge effect”) cracks of C-S-H (see Figure 8b).
In addition, the pullout simulation of CNT estimated the bilinear force-displacement response model,
which can provide a viable mechanism to be used for the understanding of crack propagation and
bridging effects at macro-scale.

Figure 8. Schematic representation of (a) construction of CNT-reinforced C–S–H and (b) CNT’s crack
bridging behavior. Reproduced from [170], with permission from Elsevier, 2016.

The study of MD simulation on graphene–cement composite was pioneered by Sanchez and
Zhang [171], investigating the molecular-scale energetic, structural, and dynamic properties of
the interface between the surface-functionalized graphitic structures and C-S-H. In this study,
six types of functional groups on the surface of carbon nanosheet were considered: hydroxyl (OH),
carboxyl (COOH), carboxylate (COO−), carbonyl (CO), and amine (NH2) groups. As a C-S-H model,
9 Å tobermorite structure was used. The simulation results demonstrate that electrostatic forces
play a pivotal role in interfacial interactions between the functionalized carbon sheet and C-S-H
(i.e., 9 Å tobermorite). It was also identified that the polarity of functionalized groups could be used
as an indicator of affinity for C-S-H. Later on, Alkhateb et al. investigated the interfacial strength
between C-S-H and graphene nanoplates functionalized by different chemical groups, and the results
presented that the functional groups such as OH, NH2, and COOH on the graphene nanoparticles
enhance the interfacial strength of 13.5 GPa, 6.1 GPa, and 11.8 GPa, respectively, depending on the
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electrostatic forces of the functional groups, compared to that of the unfunctionalized graphene
showing 1.2 GPa [141]. Another study investigating tensile and shear properties of 14 Å tobermorite
reinforced with a pure graphene sheet (with no functional groups) [172] indicates that the graphene
sheet contributes to the improvement of XY-plane tensile strength of 180–360% and shear strength of
90–225% and also increases stiffness and toughness of the graphene-reinforced tobermorite structures.
In the meantime, water interface enhances intermolecular friction forces between graphene and C-S-H,
resulting in improved tensile strength and toughness but lower shear toughness than that of the dried
surface condition.

MDs has been used to investigate mechanical behavior of GO-reinforced cement composites,
particularly looking into the interaction between the GOs and C-S-H phases. Hou et al. [173] investigated
the effects of GO on the microstructure of hydrated cement and the corresponding mechanism. The test
results showed that the GO increased flexural strength about 11.62%. The simulation studies indicated
GOs enable greater hydration and cause nano-filling and crack-bringing effects (see Figure 9a).
The functional hydroxyl groups in GOs provide non-bridging oxygen (NBO) sites that accept three
types of hydrogen-bonds (i.e., C-O–OH-Si, C-OH–C-OH, and C-OH–OH-Ca) of interlayer water
molecules in the C-S-H; thus, this may change polarity of GO surface and enhances the bonding with
neighboring phases (see Figure 9b). Furthermore, Ca2+ and Al3+ ions near the surface of C-S-H help
bridge the GO-silicate chains, thus a length of the silicate chain is increased (see Figure 9c,d). As a
result, the defective GO structure is healed. It was also addressed that the aluminate-silicate chains,
calcium ions, and functional hydroxyl groups in the cement matrix could establish stabilized connections
between C-S-H and GOs. Kai et al., (2019) investigated chemical reactions, mechanical behaviors,
and interfacial sliding of C-S-H and GO via MD simulation [174]. The simulation showed that
chemical reactions such as turning epoxides into carbonyls and hydroxyls and deprotonating or
detaching hydroxyls occur at the interface between GO and C-S-H matrices, resulting in high interfacial
interaction energy and mechanical interlocking. Subsequently, mechanical test simulations showed
that Young’s modulus and strength of C-S-H are enhanced by 31.6–52.6% and 17.5–23.3%, respectively.
Hou et al., (2018) explained more in-depth strengthening mechanisms of C-S-H and GO in molecular
level [175]. This study investigated the structure, reactivity and interfacial bonding of C-S-H and
GO, and the results showed that most COOH groups in GO nanosheet were de-protonated to COO-
groups, which forms stable COO-Ca bonds with neighboring Ca ions. The de-protonated COO- groups
could also generate H bonds from Si-OH in the C-S-H gel, which improves the interfacial connection.
Moreover, uniaxial tensile testing simulation demonstrated that C-S-H reinforced with GO-COOH and
GO-OH had increased interfacial cohesive strength and ductility.

In addition, Yang et al. reported the decrement of failure strength of C-S-H and GO composite
under moisture condition [176]. The study investigated the effect of water molecules on the bonding
in the interlayer region between C-S-H and GO nanosheet functionalized by deprotonated carboxyl
(COO), hydroxyl (COH), epoxy (COC) groups. The results indicate that the interlayer bonds are
weakened by water molecules as the moisture content increases, resulting in decreased tensile strength
of the GO/C-S-H composite.

4.2. Cement–Polymer Nanocomposite

Polymers are widely used in cementitious materials to alter and/or improve the structures of
cement matrix; thus improve mechanical and durability performance of the composites under severe
environment [177–180]; thus, MDs have been used to understand chemical interactions between diverse
types of polymers and cement hydrates. Hou et al., (2019) investigated the interfacial interaction
between C-S-H and polymers, looking into structure, dynamics, energetics, and mechanical properties
of the cement–polymer nanocomposite [181]. Polyethylene glycol (PEG), polyvinyl alcohol (PVA),
and polyacrylic acid (PAA) were selected and simulated, and mechanical properties were computed
for those polymer- C-S-H nanocomposites. In the MD model (see Figure 10a,b), Hop, Hcp, and Hsp

denote hydrogen atoms in hydroxyl groups, connected to carbon atoms, and in –COOH carboxyl
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groups, respectively. Ohp, Ofp, Odp, and Osp mean oxygen atoms in hydroxyl groups, in –CH2–,
double-bonded in –COOH carboxyl groups, and single-bonded in the carboxyl groups, respectively.
The simulation results show the Ca2+ near the surface of C-S-H connects the functional groups in
the polymers to oxygen in the silicate chains by forming Os-Ca-Op bond (where, Os and Op denote
oxygen in silicate and polymer, respectively). In addition to the ionic bonding, functional groups in the
polymers (i.e., bridging oxygen (C-O-C) in the PEG, hydroxyl (C-OH) in the PVA and carboxyl groups
(-COOH) in the PAA) supply oxygen sites for the formation of H-bonds, which also enhances the
connectivity of the interlayer region in C-S-H. Moreover, the computation results show that introducing
polymers to C-S-H improves the H-bonds in the interface and heals defective silicate chains, resulting
in delaying the propagation of crack under loading and ultimately enhancing cohesive strength and
ductility of the C-S-H gels. Table 4 summarizes the results of MD simulations for the scenarios of PEG,
PVA, and PAA. The PAA the most largely enhances the Young’s modulus, tensile strength, and failure
strain of C-S-H to 22.3%, 19.2%, and 66.7%, respectively, and the PVA and PEG followed. This result
corresponds to the rank of interfacial binding energy (E), which follows the order of E(PAA) > E(PVA)
> E(PEG).

Figure 9. MD simulation of (a) GO-reinforced C-S-H, (b) three types of H-bonds, (c) O-Ca-O connection,
and (d) O-Al-O connection [173].

Figure 10. MD simulation of cement–polymer composite; (a) polymer chains in interlayer of C-S-H
under tensile process, and (b) structures of polymers (PEG, PVA, PAA) with functional groups
connecting to C-S-H. Reproduced from [181], with permission from Elsevier, 2019.
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Table 4. Mechanical properties of polymer-C-S-H nanocomposites. Reproduced from [181],
with permission from Elsevier, 2019.

Property C-S-H C-S-H/PEG C-S-H/PVA C-S-H/PAA

Young’s modulus (GPa) 37.59 37.83 41.52 45.96
Tensile strength (GPa) 1.77 1.80 1.97 2.11

Failure strain 0.21 0.25 0.30 0.35

Polymer-modified cement composite significantly improves adhesion in the interface between
layers, which is a good alternative for 3D printing concrete industry. The benefits of 3D cement/concrete
printing include energy-saving and material-efficient construction methods. Wang et al., (2020) used
the MD and examined the interfacial mechanical properties of polymer-modified mortar layers that
is used for 3D printing [182]. In this study, epoxy resin and chloroprene latex were adopted for
enhancing the interlayer bonding. Direct tensile and shear strengths of the polymer-modified cement
paste were evaluated by both experimental and MD numerical methods. The results show that weak
interlaminar bonding derived from water molecules is offset and can be overcome by the electrostatic
interaction (Coulomb force) between the epoxy resin and Ca2+ from C-S-H. Consequently, enhancement
of 219.55% and 201.41% of tensile and shear strengths were reported, respectively. Hosseini et al.,
(2019) introduced a new polymer-sand composites for enhancing the interface bonding of 3D printed
cement layers [183]. They synthesized sulfur-black carbon (SBC) polymer as a binder and then mixed
sulfur-black carbon-sand (SBCS) mortar for the interlayer bonding. This polymer–cement composite
was evaluated by both experimental and MD methods. The results demonstrated that the CSH-CSH is
mainly bonded by Van der Waals forces in the interlayer region but the CSH- SBC (mortar-SBCS-mortar)
is bonded by electrostatic forces between Ca2+ from C-S-H and the negatively charged SBC polymer.
This different chemical bonding mechanism explains that the interlayer bonding strength of CSH-SBC
is enhanced by more than 100% than that of CSH-CSH. A graphical summary of experimental and
MD simulation studies performed by Hosseini et al. is presented in Figure 11. It is important to note
that the MD method may help find out a practical feasible material solution to advance 3D concrete
printing technology.

4.3. Chloride Ion Binding on Cement Hydrates

Chloride intrusion in concrete material is one of the primary deterioration mechanisms that result
in corrosion of reinforcement steels in concrete infrastructure. If not well attended and maintained,
it may lead to catastrophic failure. C-S-H and CH possess a diverse microstructural array which
allows to compose a favorable pore networks for chloride ions to intrude concrete structures [18,19],
and surface physico-chemical characteristics of these cement hydrates could potentially interact with
chloride ions [79]. Pan et al., (2010) [79] simulated the chloride transport phenomenon through
portlandite, tobermorite, and jennite channels filled with water molecules. The simulation found that
the adsorption forces from solid surface could significantly reduce the movement rate of chloride ions
in the near-surface domains. It was concluded that although portlandite strongly adsorbed the chloride
ions through H-bonding, the C-S-H phases did not show noteworthy binding phenomena of the
chloride ions due to lower oxygen atoms. Meanwhile, Zhou et al., (2018) investigated the chloride-ion
adsorption capability of the C-S-H phases at variable Ca/Si ratios [184]. They reported that higher Ca/Si
condition can provide more favorable environment for binding more chloride ions. Two potential
mechanisms are addressed; (1) due to the H-bond network with –OH groups, water molecules may
accumulate near the surface of C-S-H, which is beneficial for the Cl− adsorption, and (2) Ca2+ ions
are stably present in the interface layer, which can also promote the Cl− adsorption. Figure 12a
shows experimental result of Cl− adsorption under different Ca/Si ratio of C-S-H, and Figure 12b
illustrates the MD simulation of tobermorite model with aqueous solutions constituted of water
molecules, chloride and calcium ions developed in the study [184]. The number of water molecules
was determined based on a standard density of water (1 g/cm3), and the concentration of chloride was
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selected as 0.44 mol/L that is the upper limit for the pore solution. This MD simulation results may be
applied to provide a foundation to develop chemical additives and processing technology to slower
the transport rate and adsorption of chlorides in reinforced concrete structures exposed to the marine
environment by increasing Ca/Si ratio of the concrete mixture for the improvement of design.

Figure 11. Schematic program of C-S-H/SBCS composite study; (a) experimental outline for tensile
strength test, (b) interlayer strength of mortar-mortar and mortar-SBCS-mortar systems, (c) absorption
process of Ca2+ on the SBC polymer, (d) SBC polymer MD model, and (e) C-S-H MD model. Reproduced
from [183], with permission from Elsevier, 2019.

Figure 12. (a) Experimental result of Cl− adsorption under different Ca/Si ratio of C-S-H, and (b) MD
simulation of tobermorite with aqueous solutions constituted of water molecules, chloride and calcium
ions; chloride ions can be bound in the interlayer of C-S-H, and the binding capacity is affected by Ca/Si
ratio. Reproduced from [184], with permission from Elsevier, 2018.
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5. Conclusions and Recommendations

This paper presents a comprehensive review on MD modeling on C-S-H and its applications in
the nano-engineered cement composites. The MD is a promising tool for exploring new nano-additives
because it can investigate and visualize fundamentals in a molecular level, which is difficult to be
characterized by experimental methods. For instance, the MD can visually show the “bridging” effect
of carbon-based nanomaterial (CNT, GO) and compute the bonding with C-S-H while experimental
methods provide indirectly supporting results. The negative effect of water on the interlayer bonding
between GO and C-S-H could be also investigated by the MD. For the cement–polymer nanocomposite,
the MD enabled to identify the types of linking mechanisms between C-S-H and polymers; thus,
computing the interfacial binding energy of polymers (i.e., PAA > PVA > PEG) was possible, which is
matched well with the experimental result. The MD technique was even applied to the area of 3D-printed
concrete research, and the simulation results well represented the experimental results. Lastly, the MD
simulation could be effectively used in designing and assessing behaviors of chemical additives and
treatment agents for the durability enhancement of cement composites under environmentally harsh
conditions such as coastal areas. As nanomaterials and nanotechnology is becoming more popular
and common in cement/concrete industry, the emergence of more efficient computational methods
and tools capable of simulating at nanoscale are inevitable; therefore, the MD method will be an
effective tool.
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