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Chemical patents represent a valuable source of information about new chemical

compounds, which is critical to the drug discovery process. Automated information

extraction over chemical patents is, however, a challenging task due to the large volume

of existing patents and the complex linguistic properties of chemical patents. The

Cheminformatics Elsevier Melbourne University (ChEMU) evaluation lab 2020, part of

the Conference and Labs of the Evaluation Forum 2020 (CLEF2020), was introduced

to support the development of advanced text mining techniques for chemical patents.

The ChEMU 2020 lab proposed two fundamental information extraction tasks focusing

on chemical reaction processes described in chemical patents: (1) chemical named

entity recognition, requiring identification of essential chemical entities and their roles in

chemical reactions, as well as reaction conditions; and (2) event extraction, which aims

at identification of event steps relating the entities involved in chemical reactions. The

ChEMU 2020 lab received 37 team registrations and 46 runs. Overall, the performance

of submissions for these tasks exceeded our expectations, with the top systems

outperforming strong baselines. We further show the methods to be robust to variations

in sampling of the test data. We provide a detailed overview of the ChEMU 2020

corpus and its annotation, showing that inter-annotator agreement is very strong. We

also present the methods adopted by participants, provide a detailed analysis of their

performance, and carefully consider the potential impact of data leakage on interpretation

of the results. The ChEMU 2020 Lab has shown the viability of automated methods to

support information extraction of key information in chemical patents.

Keywords: named entity recognition, event extraction, information extraction, chemical reactions, patent text

mining, cheminformatics
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1. INTRODUCTION

Discovery and development of new drugs is continually needed
by our society. New drugs are required by our healthcare systems
to address unmet medical needs, and pharmaceutical industries
strive to bring better drugs to market. However, the development
of new drugs is an expensive process, which may take more than
10 years and cost more than 2.6 billion dollars, with a success rate
of <12%1. In order to accelerate the process, reduce the overall
cost, and improve the success rate of novel formulations, there
has been an increasing interest in leveraging artificial intelligence
techniques for drug discovery (Smalley, 2017; Mak and Pichika,
2019).

Artificial intelligence techniques may benefit the drug
development process in various ways. One active research area
is the development of information extraction tools over chemical
literature. Chemical literature contains valuable information
about the latest advancements in the chemistry domain that
is important to make findable and accessible. However, due to
the rapid growth in chemical literature, new discoveries are
easily missed while manual extraction of this information is
increasingly infeasible (Muresan et al., 2011). Therefore, the
development of automatic information extraction systems over
chemical literature has attracted extensive research interest. The
main idea in this work is to leverage natural language processing
(NLP) techniques to build systems that can automatically and
effectively process lengthy chemical texts, including scientific
literature or patents, in order to extract key information out of
them. The extracted information can be used directly for related
research, such as drug target ranking (Hamed et al., 2021), or to
construct a structured knowledge base that can be searched.

Chemical patents are acknowledged as a critical source of
information about new discoveries in chemistry. Discoveries of
new chemical compounds are typically disclosed in chemical
patents (Bregonje, 2005; Senger et al., 2015) and patents may
lead other chemical literature, such as scientific journals by up
to 3 years. Moreover, some information about new chemical
compounds, e.g., their detailed synthesis processes, is exclusively
provided in chemical patents. These details are important for
understanding the compound prior art, and provide a means for
novelty checking and validation (Akhondi et al., 2014, 2019).

Due to the significant value of information in chemical
patents, many research efforts have been made toward
the development of more effective information extraction
systems specifically for chemical patents (Parapatics and
Dittenbach, 2011; Akhondi et al., 2014; Chen et al., 2020).
Several fundamental information extraction tasks, such as
named entity recognition (NER) (Zhai et al., 2019), and
relation extraction (Peng et al., 2018) have been extensively
investigated. There also exist several shared tasks that focus
on information extraction in the chemistry domain, such as
ChemDNER (Krallinger et al., 2015a,b).

The ChEMU (Cheminformatics Elsevier Melbourne
University) lab is an initiative to encourage research on
methods for automated information extraction from chemical

1https://www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-
drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html.

patents. As a first running of ChEMU, ChEMU2020 lab focused
on extraction of chemical reactions from patents (He et al., 2020a;
Nguyen et al., 2020). We prepared two fundamental information
extraction tasks. Task 1—named entity recognition (NER)—
focused on identifying the set of named entities that are essential
to describe chemical reaction process. Task 2—event extraction
(EE)—addressed identifying the sequence of event steps in a
chemical reaction which transforms the starting material to the
reaction compound. Compared with existing shared tasks, such
as BioNLP, we primarily focus on information extraction in
the context of chemical patents rather than scientific literature,
which introduces some challenges due to the complex linguistic
properties of patents (Zhai et al., 2019). Compared with the
shared task ChemDNER (Krallinger et al., 2015a), which also
addressed chemical named entity recognition, we go beyond the
scope of entity mentions and chemical entity passage detection,
and require the identification of the specific roles of chemical
entities within reactions, such as whether the chemicals serve as
starting materials or products. Moreover, we consider data from
full patent texts in our task, instead of solely focusing on titles
and abstracts of patents.

A high-quality new corpus was made publicly available to
support the two tasks in ChEMU2020 lab. The corpus was
prepared using 1,500 text segments sampled from 180 English
patents from the European Patent Office and the United States
Patent and Trademark Office. Three chemical experts were hired
to manually annotate the corpus, labeling named entities and
event steps in these text segments. Two of them reviewed all
text segments independently and the third annotator acted as
an adjudicator who resolved their disagreements and merged
their annotations into the final gold-standard corpus. The inter-
annotator-agreement (IAA) score reaches 0.9760 and 0.9506 for
the two tasks, respectively.

The ChEMU2020 lab was held during April to June 2020.
Three tracks were made available to participants: one track each
for the NER and EE tasks individually, and a third track for
end-to-end systems which address both tasks simultaneously.We
received registrations of 37 teams from 13 countries in total.
We received 26 runs (including one post-evaluation run) from
11 teams in Task 1, 10 runs from five teams in Task 2, and
10 runs from four teams in the third track. In this paper, we
provide a detailed overview of the activities within ChEMU2020
lab, including the new ChEMU corpus, the tasks, the evaluation
framework, the evaluation results, and a summary of participants’
approaches. This paper is an extension of our previous overview
papers (He et al., 2020a,b) and thereby the task descriptions
(section 4) and core evaluation results (section 5) are repeated
here from those papers. Our focus is to provide additional detail
about the preparation of the corpus we developed (section 3) and
to provide more comprehensive analysis of the evaluation results.
The corpus is available for use (Verspoor et al., 2020); the test data
can be submitted for evaluation through the shared task website
at http://chemu2020.eng.unimelb.edu.au/.

2. RELATED WORK

To assess and advance the natural language processing (NLP)
techniques in the biochemical domain, many shared tasks/labs
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have been organized, including n2c22, TREC3, BioCreative4,
BioNLP5, and CLEF workshops6. These shared tasks have
covered a range of benchmark text mining tasks: information
retrieval, such as document retrieval [CLEF eHealth 2014 (Kelly
et al., 2014)] and text classification [CoNLL 2010 (Farkas
et al., 2010)]; word semantics, such as named entity recognition
[BioCreative II (Morgan et al., 2008) Task 1] and mention
normalization [BioCreative III (Arighi et al., 2011; Lu et al.,
2011) Gene Normalization Task]; relation semantics, such as
event extraction [GENIA Event Extraction (Kim et al., 2013)]
and interaction extraction [Drug-Drug Interaction (Herrero-
Zazo et al., 2013)]; and high-level applications, such as question
answering [Semantic QA (Tsatsaronis et al., 2012)] and
document summarization [Biomed-Summ (Jaidka et al., 2016)].

Nevertheless, most of these shared tasks/labs did not focus
on the domain of chemical patents. These shared tasks mainly
focused on the text mining over biomedical texts (e.g., scientific
literature, such as PubMed abstracts) or clinical data (e.g., clinical
health records). Text mining techniques that are developed
for biomedical or biochemical texts, such as scientific journals
and clinical records may not be effective for chemical patents.
This is because their purpose is distinct—chemical patents
are written for protection of intellectual property related to
chemical compounds—and their content has different scope and
characteristics, including variations in linguistic structures. Thus,
it is critical to develop text mining techniques that are tailored for
chemical patents.

Only two shared tasks have previously considered chemical
patents. TREC 2009 (Lupu et al., 2009) provided a chemical
information retrieval track for the tasks of ad hoc retrieval
of chemical patents and prior art search. However, this track
differs significantly from the subtasks in our ChEMU lab: it
addresses document-level retrieval and relevance to queries
instead of considering the detailed content of each document.
The ChemDNER-patents task (Krallinger et al., 2015c) at the
BioCreative V workshop was the task that is most similar
with ours. It aimed at detection of chemical compounds and
genes/proteins in patent text. However, the ChemDNER-patents
task only considered entity detection within patent abstracts
while we consider data extracted from the full texts of patents.
Moreover, our definition of chemical compound entities is much
richer as our label set defines not only that a chemical or drug
compound is mentioned, but also what its specific role is with
respect to the chemical reaction that it is related to in the
description, e.g., starting material, catalyst, or product.

ChEMU lab 2020 also contributes a new corpus on
chemical text mining for the research community7. Most
existing benchmark datasets for biochemical text mining focus
on biomedical texts, i.e., texts that consider the interaction
of chemicals with molecular biology or human disease.

2https://n2c2.dbmi.hms.harvard.edu/.
3https://trec.nist.gov/.
4https://biocreative.bioinformatics.udel.edu/.
5https://2019.bionlp-ost.org/.
6https://sites.google.com/site/clefehealth/.
7https://chemu.eng.unimelb.edu.au/.

CHEMProt (Krallinger et al., 2017a) consists of 1,820 PubMed8

abstracts with chemical-protein interactions, DDI extraction
2013 corpus (Herrero-Zazo et al., 2013) is a collection of 792 texts
selected from the DrugBank database9 and other 233 PubMed
abstracts, and BC5CDR is a collection of 1,500 PubMed titles
and abstracts selected from the CTD-Pfizer corpus, just to give
a few examples.

The number of public datasets that focus on the chemistry
domain is limited. Further, several existing chemical datasets
are based on structured/semi-structured texts rather than free,
natural language, texts. For example, the ZINC 15 250k corpus10

is a collection of 250,000 molecules with their Simplified
Molecular Input Line Entry System (SMILES) strings. The
Tox21 dataset contains roughly 7,000 molecules and typical 120
characteristics, such as atomic number, aromicity, donor status.
There are two datasets that are constructed from free patent
texts: (1) the dataset released by the ChemDNER patents task
and (2) the dataset created by Akhondi et al. (2014). However,
these two datasets only contain entity annotations. Our chemical
reaction corpus is further enriched by the relations between the
annotated entities.

Despite the limited number of shared tasks on chemical
patent mining, there is an increasing interest in developing
information extraction models for patents in general research
communities (Tseng et al., 2007; Akhondi et al., 2019; Yoshikawa
et al., 2019). Various text mining techniques have been proposed
for information extraction over chemical patents (Krallinger
et al., 2017b), addressing fundamental NLP tasks, such as
named entity recognition and relation extraction (Tseng et al.,
2007; Vazquez et al., 2011; Akhondi et al., 2016; Zhai et al.,
2019). Early techniques for chemical text mining, such as
dictionary-based methods (Rebholz-Schuhmann et al., 2007;
Hettne et al., 2009; Akhondi et al., 2016) and grammar-
based methods (Narayanaswamy et al., 2002; Liu et al., 2012;
Akhondi et al., 2015), heavily rely on expert knowledge in the
chemical domain. Recently, machine learning-based techniques
have reported state-of-the-art effectiveness in chemical text
mining (Hemati and Mehler, 2019; Zhai et al., 2019). However,
such techniques require a large amount of annotated text data,
which still remains limited. Thus, ChEMU lab 2020 was hosted to
provide an opportunity for NLP experts to develop information
extraction systems over chemical patents. The new ChEMU
reaction corpus was also made publicly available to all researchers
as an important benchmark dataset for future research in this
domain (Verspoor et al., 2020).

3. THE ChEMU CHEMICAL REACTION
CORPUS

3.1. Data Selection
The ChEMU chemical reaction corpus was built with the aid of
Elsevier Reaxys R© database. Reaxys is a rich information resource

8https://pubmed.ncbi.nlm.nih.gov/.
9https://go.drugbank.com/.
10https://github.com/aspuru-guzik-group/chemical_vae/tree/master/models/
zinc.
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TABLE 1 | Statistics of the selected snippets.

Feature Total Min Max Median Mean

# Sentence 7,402 1 46 4 5.0

# Word 252,459 35 1,275 157 168.3

for chemical reactions, which contains detailed descriptions of
chemical reactions that are extracted via an “excerption” process
(Lawson et al., 2011), i.e., manual selection of information from
literature sources, such as patents and scientific publications. We
selected 180 English patents from the European Patent Office
and the United States Patent and Trademark Office, for which
information had been included in the Reaxys database. From
these patents, 1,500 text segments were sampled from chemical
reaction descriptions pre-identified by expert domain annotators,
available as a product of the process used to populate information
in Reaxys. We refer to each text segment as a patent “snippet”
and use the two expressions interchangeably in the remainder
of this paper. The key statistics of the sampled snippets are
summarized in Table 1, including the total numbers of words
and sentences in all snippets (Total), and the minimum (Min),
maximum (Max), median (Median), and mean (Mean) of the
number of words/sentences per snippet. Note that the numbers
of words and sentences are computed using the NLTK tool11.

Figure 1 depicts an example of an extracted
patent snippet in the ChEMU corpus. This example
snippet describes the synthesis process of the chemical
compound “N-(3-chloro-4-fluorophenyl)-N-(2-fluoro-4-
(hydrazinecarbonyl)benzyl)tetrahydro-2H-thiopyran-4-
carboxamide 1,1-dioxide.” The described reaction process
consists of five event steps:

• Methyl 4-((N-(3-chloro-4-fluorophenyl)-1,1-
dioxidotetrahydro-2H-thiopyran-4-carboxamido)methyl)-3-
fluorobenzoate and hydrazine monohydrate were dissolved in
ethanol at room temperature.

• The solution was stirred at 80◦ for 5 h.
• The solution was cooled to room temperature.
• The reaction mixture was concentrated.
• The title compound of 1.180 g, 95.2% was used without

further purification.

Given the patent snippet in Figure 1, the ChEMU lab 2020
aims at identification of these five event steps, and our ChEMU
chemical reaction corpus is constructed to support this target.
Therefore, all patent snippets were annotated to label three types
of information: (1) named entities, e.g., chemical compounds
participating in these event steps; (2) trigger words signaling
the occurrences of event steps; and (3) relations between trigger
words and named entities that reflect how entities are involved
in event steps. The first type of annotations were used to support
Task 1, serving as the ground-truth entities in our evaluation. The
next two types of annotations were used to support Task 2, which
form the ground-truth events.

11https://www.nltk.org/api/nltk.tokenize.html.

3.2. Annotation Guidelines
In order to obtain high-quality and consistent annotations,
comprehensive annotation guidelines were prepared before the
official annotation started (Verspoor et al., 2020).

3.2.1. Named Entity Annotation Guidelines
As discussed, our NER task requires not only detection of
named entities, but also the assignment of correct labels for
detected named entities according to their roles in chemical
reactions. Four categories of entities are defined: (1) chemical
compounds; (2) reaction conditions; (3) yields; and (4)
example labels. Furthermore, ten entity labels are defined
under the four categories. In particular, five labels are defined
for chemical compound entities: STARTING_MATERIAL,
REAGENT_CATALYST, REACTION_PRODUCT, SOLVENT,
and OTHER_COMPOUND. Two labels are defined for reaction
conditions: TIME and TEMPERATURE, two labels for yields:
YIELD_PERCENT and YIELD_OTHER, and another label for
example labels: EXAMPLE_LABEL. The detailed definitions of
the ten labels are presented in Entity Annotations in Table 2.

In addition to label definitions, more detailed instructions on
annotations are provided in the annotation guidelines including:
(1) how to correctly identify the text spans of named entities;
and (2) how to assign correct labels to entities where there
is ambiguity; and (3) annotation decisions for problematic
examples encountered during the annotation process.

3.2.1.1. Text span identification
Detailed instructions are given in the annotation guidelines on
how to determine the text spans of entities. For example, when
annotating an EXAMPLE_LABEL entity, only the actual example
index should be annotated, and any word preceding the index,
such as “Example,” “Step,” or “Intermediate” should be excluded.
In our example snippet Figure 1, “[Step 3]” indicates an example
label, but only “3” should be annotated as an EXAMPLE_LABEL
entity.

3.2.1.2. Label assignment
Label definitions in Table 2 should be used to choose the correct
label for each entity. In addition,more detailed rules have been set
out to cover the cases where annotators may have disagreement.
These additional rules are especially important since we have
the label “OTHER_COMPOUND” which covers all chemical
compounds that do not belong to the other four compound
labels. Thus, the decision boundaries between the compound
labels need to be rigorously defined. One example of such rules is
that solvents that are used in work-up procedures should not be
annotated as SOLVENT but rather as OTHER_COMPOUND.

3.2.2. Event Annotation Guidelines
A chemical reaction process is usually a sequence of steps,
and these steps can be categorized into two types: (1) reaction
steps, i.e., the steps required to convert the starting materials
to the target reaction product; and (2) work-up steps, i.e., the
manipulations required to purify or isolate a chemical product.
For example, in Figure 1, the step of stirring the solution at 80◦

is a reaction step while the step of concentrating the reaction
mixture is a work-up step.
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FIGURE 1 | An example of one patent snippet in ChEMU chemical reaction corpus.

TABLE 2 | Definitions of entity, trigger word, and relation types, i.e., labels.

Label Definition

Entity annotations

STARTING_MATERIAL A substance that is consumed in the course of a

chemical reaction providing atoms to products is

considered as starting material.

REAGENT_CATALYST A reagent is a compound added to a system to cause or

help with a chemical reaction.

REACTION_PRODUCT A product is a substance that is formed during a

chemical reaction.

SOLVENT A solvent is a chemical entity that dissolves a solute

resulting in a solution.

OTHER_COMPOUND Other chemical compounds that are not the products,

starting materials, reagents, catalysts and solvents.

TIME The reaction time of the reaction.

TEMPERATURE The temperature at which the reaction was carried out.

YIELD_PERCENT Yield given in percent values.

YIELD_OTHER Yields provided in other units than %.

EXAMPLE_LABEL A label associated with a reaction specification.

Trigger annotations

REACTION_STEP An event within which starting materials are converted

into the product.

WORKUP An event step which is a manipulation required to isolate

and purify the product of a chemical reaction.

Relation annotations

Arg1 The relation between an event trigger word and a

chemical compound.

ArgM The relation between an event trigger word and a

temperature, time, or yield entity.

In our corpus, events are quantified by two types of
information: the trigger words that flag the occurrences of event
steps, and the relations between named entities and trigger
words that tell us how entities are involved in event steps. Two
labels of trigger words, WORKUP and REACTION_STEP are
defined for the two types of event steps, respectively. To capture
the relationships between trigger words and named entities, we
adapt semantic argument role labels Arg1 and ArgM from the
Proposition Bank (Palmer et al., 2005) to label relations. The
label Arg1 represents argument roles, a.k.a. thematic roles, being
causally affected by another participant in the event (Jurafsky

and Martin, 2009), and is therefore used to label the relation
between a trigger word and a chemical compound. The label
ArgM represents adjunct roles with respect to an event, and
thus, is used to label the relation between a trigger word and a
temperature, time or yield entity. The definitions of trigger word
types and relation types are summarized in Table 2.

3.3. Annotation Process
To facilitate the annotation process, a silver standard set was first
prepared based on information captured in the Elsevier Reaxys R©

database.12 The extracted records from Reaxys are linked to the
IDs of their source patents. However, the precise locations of the
key entity and relation information in these records in source
patents are needed to construct the gold-standard corpus. The
silver-standard dataset was prepared by automatically mapping
elements of the records in the Reaxys database to the source
patents from which the records were extracted. This mapping
process was performed by scanning patent texts and searching
for excerpted entity mentions.

Three chemical experts were hired to prepare the gold
standard corpus. They manually reviewed all texts and pre-
annotations in the silver-standard dataset to add or correct
precise locations of the relevant entities and relations in the
texts, according to annotation guidelines in section 3.2.1. Two of
the experts first independently reviewed and updated the silver
standard annotations. Then, a third chemical expert served as an
adjudicator who resolved their disagreements to produce the final
gold-standard corpus. See section 3.5 for further details on corpus
statistics and data quality.

The annotation process was conducted using the BRAT
annotation tool,13 which is an interactive web-based tool for
adding annotations to input texts. Continuing with the example
snippet shown in Figure 1, a visualization of the snippet
after annotation is presented in Figure 2. The visualization of
our sample dataset, which is a subset of ChEMU chemical
reaction corpus and consists of 50 snippets, is available in a
dedicated website14.

12https://www.reaxys.com Reaxys R© Copyright ©2020 Elsevier Limited except
certain content provided by third parties. Reaxys is a trademark of Elsevier Limited.
13http://brat.nlplab.org/.
14https://chemu.eng.unimelb.edu.au/brat/index.xhtml#/chemu_sample/.
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FIGURE 2 | Visualization of the annotations in the snippet in Figure 1.

3.4. Data Format
The ChEMU chemical reaction corpus is delivered in the BRAT
standoff format (Stenetorp et al., 2012). For each snippet, two
files were generated by the BRAT annotation tool: a text file
(.txt) for the plain text in the snippet, and an annotation file
(.ann) consisting of all the annotated entities and events. In the
annotation file, each entity/trigger word is represented with a 5-
tuple 〈ID, label, s, e, text〉. Here, ID represents the index of the
annotation, and s and e represent the offset (position relative
to the first character in the snippet) of the starting and ending
character of the entity, respectively. Each relation is represented
with a 4-tuple: 〈ID, label, Arg1, Arg2〉, where ID represents the
index of the annotation, and Arg1 and Arg2 correspond to the
IDs of the two entities linked by this relation.

To give an example, the annotation file for the snippet in
Figure 1 is presented in Figure 3. Note that in Figure 3, the
texts of the two entities T8 and T9 are abbreviated for ease
of presentation.

3.5. Annotated Corpus Statistics
3.5.1. Overall Statistics
The overall statistics of our annotated corpus are presented in
Table 3. In the 1,500 selected patent snippets, 26,857 entities
and 11,236 trigger words were annotated, with 23,445 relations
identified between them. The numbers of instances annotated for
each label defined in Table 4 are summarized in Table 2.

3.5.2. Inter-Annotator Agreement
We measure the inter-annotator agreement (IAA) of our corpus
using two metrics: (1) Cohen’s Kappa (Cohen, 1960) and (2) F1-
scores. Cohen’s Kappa is a standard metric for the evaluation of
inter-annotator agreement. But for the tasks in ChEMU 2020
lab, i.e., named entity recognition (NER) and event extraction

(EE), Cohen’s Kappa score may not the best metric to quantify
the extent of agreement between annotators (Hripcsak and
Rothschild, 2005; Grouin et al., 2011). This is because the
computation of Kappa requires the number of negative cases to
be known, which is not explicitly given in the tasks of NER or EE.
Thus, the pairwise F1-scores are also commonly used to measure
the IAA scores. In this paper, we report the IAA scores using
both metrics. In the computation of Cohen’s Kappa scores, we
only consider the set of entities that are annotated by at least
one annotator. The IAA scores in both metrics are summarized
in Table 5. Note that in this table, “anno3” represents the third
annotator (the adjudicator) as discussed in section 3.3 and thus,
the annotations by “anno3” are the same as the annotations in
gold-standard corpus.

3.6. Data Partitions
The ChEMU chemical reaction corpus was randomly partitioned
into train/development/test splits with the ratio of 0.6/0.15/0.25.
The training and development sets were released to participants
for model development and the test set was withheld for use in
the evaluation stage.

To ensure a fair split of data, two statistical tests on the
resultant train/dev/test splits were conducted. The distributions
of entity labels (10 entity labels plus two trigger word labels in
Table 2) in train/dev/test sets are presented in Figure 4. As shown
in this figure, the distributions over entity labels on train/dev/test
sets are quite similar. Specifically, only slight fluctuations in label
distributions (≤0.004) are found across the three splits.

We further compare the train/dev/test splits in terms of
the International Patent Classifications (IPCs)15 of their source
patents. The IPC information of a patent reflects its application

15https://www.wipo.int/classifications/ipc/en/.
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FIGURE 3 | The annotation file for the patent snippet in Figure 1. Entities and trigger words are indexed from T0 to T16, and relations are indexed from R0 to R10.

category. For example, the IPC code “A61K” is assigned to
patents for preparations for medical, dental, or toilet purposes.
Since patents with different IPCs may differ in the vocabulary
and linguistic properties, we want to make sure that the patent
snippets in the train, dev, and test set have similar distributions
over IPCs. For each patent snippet, we extract the primary IPC
of its corresponding source patent, and summarize the IPC
distributions of the snippets in train/dev/test sets in Figure 5. As
shown in Figure 5, the IPC distributions across the three splits
are also similar.

4. THE TASKS

We provided two tasks in ChEMU lab: Task 1—Named
Entity Recognition (NER), and Task 2—Event Extraction (EE).
We also hosted a third track where participants can work
on development of end-to-end systems which address both
tasks jointly.

TABLE 3 | Overall statistics of the annotated corpus.

Feature Value

# Patent snippets 1,500

# Total entities 26,857

# Trigger words 11,236

# Relations 23,445

4.1. Overview of Tasks
4.1.1. Task 1: Named Entity Recognition (NER)
The first task aims to identify named entities that occur in
the descriptions of chemical reactions. The task requires (1)
detection of text spans of named entities and (2) assigning the
correct labels to detected entities from the set of labels defined
in Table 2. For example, in Figure 1, the entity “hydrazine
monohydrate” (line 4) needs to be detected and assigned with
the label REACTION_CATALYST, according to its role in the
chemical reaction.
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TABLE 4 | Number of instances for each label defined in Table 2.

Label # Instances

STARTING_MATERIAL 2,878

REAGENT_CATALYST 2,074

REACTION_PRODUCT 3,413

SOLVENT 1,818

OTHER_COMPOUND 7,651

TIME 1,763

TEMPERATURE 2,473

YIELD_PERCENT 1,572

YIELD_OTHER 1,762

EXAMPLE_LABEL 1,453

REACTION_STEP 6,210

WORKUP 5,026

Arg1 15,865

ArgM 7,580

TABLE 5 | Summary of inter-annotator agreement scores.

Metric anno1 vs. anno2 anno1 vs. anno3 anno2 vs. anno3

Named entities

Cohen’s Kappa 0.9070 0.9515 0.9539

F1 score 0.9505 0.9747 0.9760

Events

Cohen’s Kappa 0.6513 0.8035 0.8068

F1 score 0.8985 0.9496 0.9506

4.1.2. Task 2: Event Extraction (EE)
A chemical reaction usually consists of an ordered sequence
of event steps that transforms a starting material into an end
product, such as the five reaction steps for the example snippet
in Figure 1. The event extraction task (Task 2) targets identifying
these event steps.

Similar with conventional event extraction problems (Kim
et al., 2009), Task 2 involves three subtasks: (1) trigger word
prediction and (event) typing; (2) argument prediction; and
(3) semantic role typing. First, it requires the identification of
trigger words. For each trigger word detected, one label out
of the trigger labels defined in Table 2 needs to be assigned.
Second, it requires the determination of argument entities that
are associated with the trigger words, i.e., which entities identified
in Task 1 participate in event or reaction steps. This is done by
labeling the connections between event trigger words and their
arguments. Finally, Task 2 requires the assignment of correct role
types (Arg1 or ArgM) to each of the detected relations.

4.1.3. Task 3: End-to-End Systems
The third track allows participants to develop end-to-end systems
that address both tasks simultaneously, i.e., the extraction of
reaction events including their constituent entities directly from
chemical patent snippets. This is a more realistic scenario for an

event extraction system to be applied for large-scale annotation
of events.

4.1.4. Workflow of the Three Tracks
The workflows of the three tracks is illustrated in Figure 6, where
the input and output of each track is illustrated using a the last
sentence in Figure 1 as an example. The input of Task 1 NER
is the plain text of the snippet. Participants need to identify
entities defined in Table 2, e.g., the text span “title compound”
need to be identified as “REACTION_PRODUCT.” The input
of Task 2 EE is the plain text plus the ground-truth named
entities. Participants are required to firstly identify the trigger
words and their types (e.g., the text span “used” is identified as
“REACTION_STEP”) and then identify the relations between the
trigger words and the provided entities (e.g., a directed link from
“used” to “title compound” is added and labeled as “Arg1”). In
the track of end-to-end systems, participants are only provided
with the plain text. They are required to identify both the entities
and the trigger words, and predict the event steps directly from
the text.

4.2. Organization of Tracks
4.2.1. Training Stage
The training and development data sets were released to all
participants for model development. Two different versions of
training data, namely Data-NER and Data-EE, were provided.
Data-NER was prepared for participants in Task 1, where the
gold-standard entities were included. Data-EE was prepared for
Tasks 2 and 3, where both the gold-standard entities, trigger
words and entity relations were included.

4.2.2. Testing Stage
Since the gold-standard entities of the test set needed to be
provided to participants in Task 2, the testing stage of Task 2 was
delayed until after the testing of Tasks 1 and 3 are completed, so
as to prevent data leakage.

Therefore, our testing stage consists of two phases. In the
first phase, the text (.txt) files of all test snippets were released.
Participants in Task 1 are required to use the released patent texts
to predict the entities. Participants in Task 3 were required to also
predict the trigger words and entity relations.

In the second phase, the gold-standard entities of all test
snippets were released. Participants in Task 2 can use the released
gold-standard entities, along with the text files released in the first
phase, to predict the event steps in test snippets.

4.2.3. Submission Website
A submission website was developed and maintained, which
allows participants to submit their runs during the testing stage.16

In addition, the website offers several other important functions
to facilitate organization of the lab.

First, it hosts the download links for the training,
development, and test data sets so that participants can
access the data sets conveniently. Second, it allows participants
to test the performance (against the development set) of their
models before the testing stage starts, which also offers a chance

16http://chemu.eng.unimelb.edu.au/.
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FIGURE 4 | Distributions of entity labels on the training/development/test data splits. The labels are indexed according to their order in Table 4.

FIGURE 5 | Distributions of IPCs on the training/development/test data splits. Only dominating IPC groups that take up more than 1% of at least one data split are

included in this figure. Other IPCs are grouped as “Other”.
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FIGURE 6 | Illustration of the three tasks. Shaded text spans represent annotated entities or trigger words. Arrows represent relations between entities.

for participants to familiarize themselves with the evaluation
tool BRATEval17 (detailed in section 5). The website also hosts a
private leaderboard for each team that ranks all runs submitted
by each team, and a public leaderboard that ranks all runs that
have been made public by teams.

4.2.4. Timeline
The timeline of each stage is summarized as follows.

• Release of sample data: 09 March 2020
• Release of training data: 10 April 2020
• Testing stage (phase 1): 22 May 2020–28 May 2020
• Testing stage (phase 2): 29 May 2020–3 June 2020
• End of evaluation cycle and feedback to participants: 05

June 2020

5. EVALUATION FRAMEWORK

In this section, we describe the evaluation framework of the
ChEMU lab. We introduce three baseline algorithms for Task 1,
Task 2, and end-to-end systems, respectively.

5.1. Evaluation Methods
We use BRATEval to evaluate all the runs that we receive.
Three metrics are used to evaluate the performance of all
the submissions for Task 1: Precision, Recall, and F1-score.
Specifically, given a predicted entity and a ground-truth entity,
we treat the two entities as a match if (1) the types associated with
the two entities match; and (2) their text spans match. The overall
Precision, Recall, and F1-score are computed by micro-averaging
all instances (entities).

In addition, we exploit two different matching criteria, exact-
match and relaxed-match, when comparing the texts spans of two
entities. Here, the exact-match criterion means that we consider

17https://bitbucket.org/nicta_biomed/brateval/src/master/.

that the text span of an entity matches with that of another entity
if both the starting and the end offsets of their spans match. The
relaxed-match criterionmeans that we consider that the text span
of one entity matches with that of another entity as long as their
text spans overlap.

The submissions for Task 2 and end-to-end systems are
evaluated using Precision, Recall, and F1-score by comparing
the predicted events and gold standard events. We consider two
events as a match if (1) their trigger words, event types and
semantic roles are the same; and (2) the entities involved in
the two events match. Here, we follow the method in Task 1 to
test whether two entities match. This means that the matching
criteria of exact-match and relaxed-match are also applied in the
evaluation of Task 2 and of end-to-end systems. Note that the
relaxed-match will only be applied when matching the spans of
two entities; it does not relax the requirement that the entity type
of predicted and ground truth entities must agree. Since Task 2
provides gold entities but not event triggers with their ground
truth spans, the relaxed-match only reflects the accuracy of spans
of predicted trigger words.

To somewhat accommodate a relaxed form of entity type
matching, we also evaluate submissions in Task 1—NER
using a set of high-level labels shown in the hierarchical
structure of entity classes in Figure 7. The higher-level labels
used are highlighted in gray. In this set of evaluations, given
a predicted entity and a ground-truth entity, we consider
that their labels match as long as their corresponding
high-level labels match. For example, suppose we get as
predicted entity “STARTING_MATERIAL, [335, 351),
boron tribromide” while the (correct) ground-truth entity
instead reads “REAGENT_CATALYST, [335, 351), boron
tribromide,” where each entity is presented in the form of
“TYPE, SPAN, TEXT.” In the evaluation framework described
earlier this example will be counted as a mismatch. However,
in this additional set of entity type relaxed evaluations we
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consider the two entities as a match, since both labels
“STARTING_MATERIAL” and “REAGENT_CATALYST”
specialize their parent label “COMPOUND.”

5.2. Baselines
We released one baseline method for each task as a benchmark
method. Specifically, the baseline for Task 1 is based on retraining
BANNER (Leaman and Gonzalez, 2008) on the training and
development data; the baseline for Task 2 is a co-occurrence
method; and the baseline for end-to-end systems is a two-stage
algorithm that first uses BANNER to identify entities in the input
and then uses the co-occurrence method to extract events.

5.2.1. BANNER
BANNER is a named entity recognition tool for biomedical
data. In this baseline, we first use the GENIA Sentence Splitter
(GeniaSS) (Sætre et al., 2007) to split input texts into separate
sentences. The resulting sentences are then fed into BANNER,
which predicts the named entities using three steps, namely
tokenization, feature generation, and entity labeling. A simple
tokenizer is used to break sentences into either a contiguous
block of letters and/or digits or a single punctuation mark.
BANNER uses a conditional random field (CRF) implementation
derived from the MALLET toolkit18 for feature generation
and token labeling. The set of machine learning features used
consist primarily of orthographic, morphological and shallow
syntax features.

5.2.2. Co-occurrence Method
This method first creates a dictionary De for the observed trigger
words and their corresponding types from the training and
development sets. For example, if a word “added” is annotated
as a trigger word with the label of “WORKUP” in the training
set, we add an entry 〈added,WORKUP〉 to De. In the case
where the same word has been observed to appear as both
types of “WORKUP” and “REACTION_STEP,” we only keep
as entry in D its most frequent label. The method also creates
an event dictionary Dr for the observed semantic roles in
the training and development sets. For example, if an event
〈ARG1, E1, E2〉 is observed where “E1” corresponds to trigger
word “added” of type “WORKUP” and “E2” corresponds to
entity “water” of type “OTHER_COMPOUND,” we add an entry
〈ARG1,WORKUP,OTHER_COMPOUND〉 to Dr .

To predict events, this method first identifies all trigger words
in the test set usingDe. It then extracts two events 〈ARG1, T1, T2〉
and 〈ARGM,T1, T2〉 for a trigger word “E1” and an entity “E2” if
(1) they co-occur in the same sentence; and (2) the relation type
〈ARGx, T1, T2〉 is included in Dr . Here, “ARGx” can be “ARG1”
or “ARGM,” and “T1” and “T2” are the entity types of “E1” and
“E2,” respectively.

5.2.3. BANNER + Co-occurrence Method
The above two baselines are combined to form a two-stage
method for end-to-end systems. This baseline first uses BANNER

18http://mallet.cs.umass.edu/.

to identify all the entities in Task 1. Then it utilizes the co-
occurrence method to predict events, except that gold standard
entities are replaced with the entities predicted by BANNER in
the first stage.

6. RESULTS

In total, 39 teams registered for the ChEMU shared task, of
which 36 teams registered for Task 1, 31 teams registered for
Task 2, and 28 teams registered for both tasks. The 39 teams
are spread across 13 different countries, from both the academic
and industry research communities. In this section, we report the
results of all the runs that we received for each task.

6.1. Task 1—Named Entity Recognition
Task 1 received considerable interest with the submission of
25 runs from 11 teams. The 11 teams include one team
from Germany (OntoChem), three teams from India (AUKBC,
SSN_NLP, and JU_INDIA), one team from Switzerland (BiTeM),
one team from Portugal (Lasige_BioTM), one team from Russia
(KFU_NLP), one team from the United Kingdom (NextMove
Software/Minesoft), two teams from theUnited States of America
(Melaxtech and NLP@VCU), and one team from Vietnam
(VinAI). We evaluate the performance of all 25 runs, comparing
their predicted entities with the ground-truth entities of the
patent snippets in the test set. We report the performances of
all runs under both matching criteria in terms of three metrics,
namely Precision, Recall, and F1-score.

We report the overall performance of all runs in Table 6. The
baseline of Task 1 achieves 0.8893 in F1-score under exact match.
Nine runs outperform the baseline in terms of F1-score under
exact match. The best run was submitted by team Melaxtech,
achieving a high F1-score of 0.9570. There were sixteen runs with
an F1-score >0.90 under relaxed-match. However, under exact-
match, only seven runs surpassed 0.90 in F1-score. This difference
between exact-match and relaxed-match may be related to the
long text spans of chemical compounds, which is one of the main
challenges in NER tasks in the domain of chemical documents.

Next, we evaluate the performance of all 25 runs using the
high-level labels in Figure 7 (highlighted in gray). We report
the performances of all runs in terms of Precision, Recall, and
F1-score in Table 7.

6.2. Task 2—Event Extraction
We received ten (10) runs from five (5) teams. Specifically, the
five teams include one team from Portugal (Lasige_BioTM),
one team from Turkey (BOUN_REX), one team from the
United Kingdom (NextMove Software/Minesoft) and two
teams from the United States of America (Melaxtech and
NLP@VCU). We evaluate all runs using the metrics Precision,
Recall, and F1-score. Again, we utilize the two matching
criteria, namely exact-match and relaxed-match, when
comparing the trigger words in the submitted runs and
ground-truth data.
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FIGURE 7 | Illustration of the hierarchical NER class structure used in evaluation.

The overall performance of each run is summarized in
Table 8.19 The baseline (co-occurrence method) scored relatively
high in Recall, i.e, 0.8861. This was expected, since the co-
occurrence method aggressively extracts all possible events
within a sentence. However, the F1-score was low due to its low
Precision score. Here, all runs outperform the baseline in terms
of F1-score under exact-match. Melaxtech ranks first among all
official runs in this task, with an F1-score of 0.9536.

6.3. End-to-End Systems
We received 10 end-to-end system runs from four teams. The
four teams include one team from Germany (OntoChem), one
team from Portugal (Lasige_BioTM), one team from the United
Kingdom (NextMove Software/Minesoft), and one team from the
United States of America (Melaxtech).

The overall performance of all runs is summarized in Table 9

in terms of Precision, Recall, and F1-score under both exact-
match and relaxed-match.20 Since gold entities are not provided
in this task, the average performance of the runs in this task are
slightly lower than those in Task 2. Note that the Recall scores of
most runs are substantially lower than their Precision scores. This
may reveal that the task of identifying a relation from a chemical
patent is harder than the task of typing an identified relation. The
first run fromMelaxtech team ranks best among all runs received
for this task.

19The run that we received from team Lasige_BioTM is not included in the table
due to a technical issue found in this run.
20The run that we received from the Lasige_BioTM team is not included in
the table as there was a technical issue in this run. Two runs from Melaxtech,
Melaxtech-run2 and Melaxtech-run3, had very low performance, due to an error
in their data pre-processing step.

7. PARTICIPANTS’ APPROACHES

We received paper submissions from eight teams include team
BiTeM, VinAI, BOUN-REX, NextMove/Minesoft, NLP@VCU,
AU-KBC, LasigBioTM, and Melaxtech. The tasks that the eight
teams have participated in are summarized in Table 10. In this
section, we compare and summarize how the eight teams address
these tasks. More details are available in the CLEF2020 workshop
papers (He et al., 2020b).

7.1. BiTeM (Copara et al., 2020b)
The BiTeM team participated in Task 1. They explored
various popular structures including Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al.,
2019) and its variants, such as ChemBERTa model,21 and
Convolutional Neural Network (CNN) (Lecun, 1989). Their
best system is an ensemble created using a majority vote
strategy (Copara et al., 2020a) of three models: the BERT-base-
cased model, BERT-base-uncased model, and a CNNmodel. The
BiTeM submitted three runs to Task 1, and their best run was
ranked the 7-th among all 26 runs.

7.2. VinAI (Dao and Nguyen, 2020)
The VinAI team participated in Task 1. They addressed this task
utilizing the BiLSTM-CNN-CRF model (Ma and Hovy, 2016)
and further leveraged the CHELMO word embeddings released
by Zhai et al. (2019). CHELMO is a contextualized ELMo language
model trained from scratch with a corpus of 84K chemical
patents. A Word2vec skip-gram model trained on the same

21https://github.com/seyonechithrananda/bert-loves-chemistry.
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TABLE 6 | Overall performance of all runs in Task 1—Named entity recognition.

Run
Exact-match Relaxed-match

P R F P R F

Melaxtech-run1 0.9571 0.9570 0.9570 0.9690 0.9687 0.9688

Melaxtech-run2 0.9587 0.9529 0.9558 0.9697 0.9637 0.9667

Melaxtech-run3 0.9572 0.9510 0.9541 0.9688 0.9624 0.9656

VinAI-run2∗ 0.9538 0.9504 0.9521 0.9737 0.9716 0.9726

VinAI-run1 0.9462 0.9405 0.9433 0.9707 0.9661 0.9684

Lasige_BioTM-run1 0.9327 0.9457 0.9392 0.9590 0.9671 0.9630

BiTeM-run3 0.9378 0.9087 0.9230 0.9692 0.9558 0.9624

BiTeM-run2 0.9083 0.9114 0.9098 0.9510 0.9684 0.9596

NextMove/Minesoft-run1 0.9042 0.8924 0.8983 0.9301 0.9181 0.9240

NextMove/Minesoft-run2 0.9037 0.8918 0.8977 0.9294 0.9178 0.9236

Baseline 0.9071 0.8723 0.8893 0.9219 0.8893 0.9053

NLP@VCU-run1 0.8747 0.8570 0.8658 0.9524 0.9513 0.9518

KFU_NLP-run1 0.8930 0.8386 0.8649 0.9701 0.9255 0.9473

NLP@VCU-run2 0.8705 0.8502 0.8602 0.9490 0.9446 0.9468

NLP@VCU-run3 0.8665 0.8514 0.8589 0.9486 0.9528 0.9507

KFU_NLP-run2 0.8579 0.8329 0.8452 0.9690 0.9395 0.9540

NextMove/Minesoft-run3 0.8281 0.8083 0.8181 0.8543 0.8350 0.8445

KFU_NLP-run3 0.8197 0.8027 0.8111 0.9579 0.9350 0.9463

BiTeM-run1 0.8330 0.7799 0.8056 0.8882 0.8492 0.8683

OntoChem-run1 0.7927 0.5983 0.6819 0.8441 0.6364 0.7257

AUKBC-run1 0.6763 0.4074 0.5085 0.8793 0.5334 0.6640

AUKBC-run2 0.4895 0.1913 0.2751 0.6686 0.2619 0.3764

SSN_NLP-run1 0.2923 0.1911 0.2311 0.8633 0.4930 0.6276

SSN_NLP-run2 0.2908 0.1911 0.2307 0.8595 0.4932 0.6267

JU_INDIA-run1 0.1411 0.0824 0.1041 0.2522 0.1470 0.1857

JU_INDIA-run2 0.0322 0.0151 0.0206 0.1513 0.0710 0.0966

JU_INDIA-run3 0.0322 0.0151 0.0206 0.1513 0.0710 0.0966

Here, P, R, and F represents the Precision, Recall, and F1-score, respectively. For each

metric, we highlight the best result in bold and the second best result in italic. The results

are ordered by their performance in terms of F1-score under exact-match.
∗This run was

received after evaluation phase and thus was not included in official results.

corpus being used in the input layer of CHELMO.22 The VinAI
team submitted two runs to Task 1 including one post-evaluation
run, and their post-evaluation run was ranked the 4-th among all
26 runs.

7.3. BOUN-REX (Köksal et al., 2020)
The BOUN-REX team participated in Task 2. The team broke
the task into two steps: (1) trigger word detection; and (2)
determination of trigger type/event type (The event type is
determined by trigger type). The team modeled the first step as
a question-answering problem, which aims to find the starting
and ending index of trigger word spans. The second step was
modeled as a classification problem. BERT structures were used
to convert input texts into deep latent features, and an objective
function that jointly considers the loss w.r.t. the two steps was
used in fine-tuning. Various BERT architectures were explored,
including BioBERT, BERT-large-uncased, and BERT-large-cased.

22https://github.com/zenanz/ChemPatentEmbeddings.

TABLE 7 | Overall performance of all runs in Task 1—Named entity recognition

where the set of high-level labels in Figure 7 is used.

Run
Exact-match Relaxed-match

P R F P R F

Melaxtech-run1 0.9774 0.9774 0.9774 0.9906 0.9901 0.9903

Melaxtech-run2 0.9789 0.9732 0.9760 0.9910 0.9849 0.9879

Melaxtech-run3 0.9775 0.9714 0.9744 0.9905 0.9838 0.9871

VinAI-run2∗ 0.9704 0.9670 0.9687 0.9920 0.9901 0.9911

Lasige_BioTM-run1 0.9571 0.9706 0.9638 0.9886 0.9943 0.9915

VinAI-run1 0.9635 0.9579 0.9607 0.9899 0.9854 0.9877

Baseline 0.9657 0.9288 0.9469 0.9861 0.9519 0.9687

BiTeM-run1 0.9573 0.9277 0.9423 0.9907 0.9770 0.9838

NextMove/Minesoft-run2 0.9460 0.9330 0.9394 0.9773 0.9611 0.9691

NextMove/Minesoft-run1 0.9458 0.9330 0.9393 0.9773 0.9610 0.9691

BiTeM-run2 0.9323 0.9357 0.9340 0.9845 0.9962 0.9903

NextMove/Minesoft-run3 0.9201 0.8970 0.9084 0.9571 0.9308 0.9438

NLP@VCU-run1 0.9016 0.8835 0.8925 0.9855 0.9814 0.9834

NLP@VCU-run2 0.9007 0.8799 0.8902 0.9882 0.9798 0.9840

NLP@VCU-run3 0.8960 0.8805 0.8882 0.9858 0.9869 0.9863

KFU_NLP-run1 0.9125 0.8570 0.8839 0.9911 0.9465 0.9683

BiTeM-run3 0.9073 0.8496 0.8775 0.9894 0.9355 0.9617

KFU_NLP-run2 0.8735 0.8481 0.8606 0.988 0.9569 0.9722

KFU_NLP-run3 0.8332 0.8160 0.8245 0.9789 0.9516 0.9651

OntoChem-run1 0.9029 0.6796 0.7755 0.9611 0.7226 0.8249

AUKBC-run1 0.7542 0.4544 0.5671 0.9833 0.5977 0.7435

AUKBC-run2 0.6605 0.2581 0.3712 0.9290 0.3612 0.5201

SSN_NLP-run2 0.3174 0.2084 0.2516 0.9491 0.5324 0.6822

SSN_NLP-run1 0.3179 0.2076 0.2512 0.9505 0.5304 0.6808

JU_INDIA-run1 0.2019 0.1180 0.1489 0.5790 0.3228 0.4145

JU_INDIA-run2 0.0557 0.0262 0.0357 0.4780 0.2149 0.2965

JU_INDIA-run3 0.0557 0.0262 0.0357 0.4780 0.2149 0.2965

Here, P, R, and F represents the Precision, Recall, and F1-score, respectively. For each

metric, we highlight the best result in bold and the second best result in italic. The results

are ordered by their performance in terms of F1-score under exact-match.
∗This run was

received after evaluation phase and thus was not included in official results.

The BOUN-REX team submitted one run to Task 2, which was
ranked the 6-th among all 11 runs.

7.4. NextMove Software/Minesoft (Lowe
and Mayfield, 2020)
The NextMove Software/Minesoft team participated in
all three tasks. They employed the open source tool
ChemicalTagger (Hawizy et al., 2011) to detect chemical
reactions from patent texts, which directly provides information
on chemical entities, chemical properties, trigger words, and
Part-of-Speech (PoS) information within input texts. They
further adapted ChemicalTagger for tasks in ChEMU lab 2020
in several ways : (1) LeadMine (Lowe and Sayle, 2015) was used
to recognized chemicals, i.e., ChemicalTagger’s tokenization
was adjusted accordingly such that all LeadMine entities were
treated as single tokens; and (2) Rules were used to cover the
differences between the annotation guidelines of ChEMU and
outputs of ChemicalTagger, e.g., the definitions of “catalyst.”
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TABLE 8 | Overall performance of all runs in Task 2—Event extraction.

Run
Exact-match Relaxed-match

P R F P R F

Melaxtech-run1 0.9568 0.9504 0.9536 0.9580 0.9516 0.9548

Melaxtech-run2 0.9619 0.9402 0.9509 0.9632 0.9414 0.9522

Melaxtech-run3 0.9522 0.9437 0.9479 0.9534 0.9449 0.9491

NextMove/Minesoft-run1 0.9441 0.8556 0.8977 0.9441 0.8556 0.8977

NextMove/Minesoft-run2 0.8746 0.7816 0.8255 0.8909 0.7983 0.8420

BOUN_REX-run1 0.7610 0.6893 0.7234 0.7610 0.6893 0.7234

NLP@VCU-run1 0.8056 0.5449 0.6501 0.8059 0.5451 0.6503

NLP@VCU-run2 0.5120 0.7153 0.5968 0.5125 0.7160 0.5974

NLP@VCU-run3 0.5085 0.7126 0.5935 0.5090 0.7133 0.5941

Baseline 0.2431 0.8861 0.3815 0.2431 0.8863 0.3816

Here, P, R, and F represent the Precision, Recall, and F1-score, respectively. For each

metric, we highlight the best result in bold and the second best result in italics. The results

are ordered by their performance in terms of F1-score under exact-match.

TABLE 9 | Overall performance of all runs in end-to-end systems.

Run
Exact-match Relaxed-match

P R F P R F

Melaxtech-run1 0.9201 0.9147 0.9174 0.9319 0.9261 0.9290

NextMove/Minesoft-run1 0.8492 0.7609 0.8026 0.8663 0.7777 0.8196

NextMove/Minesoft-run2 0.8486 0.7602 0.8020 0.8653 0.7771 0.8188

NextMove/Minesoft-run3 0.8061 0.7207 0.7610 0.8228 0.7371 0.7776

OntoChem-run1 0.7971 0.3777 0.5126 0.8407 0.3984 0.5406

OntoChem-run2 0.7971 0.3777 0.5126 0.8407 0.3984 0.5406

OntoChem-run3 0.7971 0.3777 0.5126 0.8407 0.3984 0.5406

Baseline 0.2104 0.7329 0.3270 0.2135 0.7445 0.3319

Melaxtech-run2 0.2394 0.2647 0.2514 0.2429 0.2687 0.2552

Melaxtech-run3 0.2383 0.2642 0.2506 0.2421 0.2684 0.2545

Here, P, R, and F represent the Precision, Recall, and F1-score, respectively. For each

metric, we highlight the best result in bold and the second best result in italics. The results

are ordered by their performance in terms of F1-score under exact-match.

TABLE 10 | The task participation of the 8 teams BiTeM, VinAI, BOUN-REX,

NextMove/Minesoft, NLP@VCU, AU-KBC, LasigBioTM, and Melaxtech.

Team Task 1 Task 2 Task 3

BiTeM X

VinAI X

BOUN-REX X

NextMove/Minesoft X X X

NLP@VCU X X

AU-KBC X

LasigBioTM X X X

Melaxtech X X X

The NextMove Software/Minesoft team submitted three runs,
two runs, and three runs to Tasks 1–3, respectively. Their best
run for each task was ranked the 8-th, 4-th, and 2-nd in Tasks
1–3, respectively.

7.5. NLP@VCU (Mahendran et al., 2020)
The NLP@VCU team participated in two tasks: Task 1 and Task
2. The team utilized a BiLSTM-CRF model in Task 1, with a
concatenated input of pre-trained word embeddings (Mikolov
et al., 2013) and character embeddings. In Task 2, the team
proposed two models to identify relations between the trigger
words and the entities. Their first approach is a rule-based
method, which connects a named entity with its closest trigger
word within the same sentence. Their second approach is a CNN-
based model, which performs a binary classification to determine
if a given trigger-entity pair is related or not. The NLP@VCU
team submitted three runs to Task 1 and 2, respectively. Their
best run for Task 1 was ranked the 11-th among all 26 runs, and
their best run for Task 2 was ranked the 7-th among all 11 runs.

7.6. AU-KBC (Pattabhi et al., 2020)
The AU-KBC team participated in Task 1. They investigated
two different model architectures to address this task: (1) a CRF
model; and (2) an Multi-Layer Perceptron (MLP) model. The
inputs of their systems are the syntactic features extracted from
patent texts, such as PoS and Phrase Chunk information (noun
phrase, verb phrase). Then a CRF model and an MLP model
were used to learn to map these input features to desired target
outputs, which resulted in the two runs submitted by AU-KBC.
They have shown that the CRF model is more effective in terms
of capturing contextual information in the inputs, compared with
the MLP model. The AU-KBC team submitted two runs to Task
1, and their better run was ranked the 20-th among all 26 runs.

7.7. LasigBioTM (Ruas et al., 2020)
The LasigBioTM team participated in all three tasks. Their system
for Task 1 was developed by fine-tuning the BioBERTNERmodel
using the training set plus half of the development set, and using
the rest of the dev set as validation set for hyper-parameter
tuning. For Task 2, they combined the BioBERT NER model and
BioBERT Relation Extraction (RE) model, where the NER model
was used for trigger word detection and BioBERT RE model was
used for classifying relations between trigger words and named
entities. The LasigBioTM team submitted three runs, one run for
each task. Their run for Task 1 was ranked the 5-th among all 26
runs. Their runs submitted for Tasks 2 and 3 had technical issues
and were not included in the final leaderboard, unfortunately.

7.8. Melaxtech (Wang et al., 2020)
The Melaxtech team participated in all three tasks. Their systems
for all tasks were based on the same core model, named
Patent_BERT. The Patent_BERTmodel is a BioBERT pre-trained
language model that was trained further using the patent snippets
released by ChEMU on the task of masked language modeling.
For Task 1, they fine-tuned Patent_BERT using the Bi-LSTM-
CRF (Ma and Hovy, 2016) model. For Task 2, they adopted a
two-staged approach: they first followed the approach for Task
1 to detect trigger words. Afterwards, another binary classifier
was built by fine-tuning Patent_BioBERT to determine relations
between event triggers and named entities in the same sentence.
For Task 3, they combined their models in Tasks 1 and 2 to form
a pipeline system to produce end-to-end predictions. Melaxtech
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submitted three runs to each task. They were ranked the 1-st in
all three tasks.

7.9. Summary of Participants’ Approaches
Different approaches were explored by the participating teams.
In Table 11, we summarize the key strategies in terms of three
aspects: tokenization method, token representations, and core
model architecture.

For teams who participated in Tasks 2 and 3, a common two-
step strategy was adopted for relation extraction: (1) identify
trigger words; and (2) extract the relation between identified
trigger words and entities. The first step is essentially an NER
task, and the second step is a relation extraction task. As such,
NER models were used by all these teams for Tasks 2 and 3 as
well as by the teams participating in Task 1. Therefore, in what
follows, we first discuss and compare the approaches of all teams
without considering the target tasks, subsequently considering
relation extraction approaches.

7.9.1. Tokenization
Tokenization is an important data pre-processing step that splits
input texts into words/subwords, i.e., tokens. We identify three
general types of tokenization methods used by participants:
(1) rule-based tokenization; (2) dictionary-based tokenization;
and (3) subword-based tokenization. Specifically, rule-based
tokenization applies pre-defined rules to split texts into tokens.
The rules applied can be as simple as “white-space tokenization,”
but can also be a complex mixture of a set of carefully designed
rules (e.g., based on language-specific grammar rules and
common prefixes). Dictionary-based tokenization requires the
construction of a vocabulary and the text splitting is performed
by matching the input text with the existing tokens in the
constructed vocabulary. Subword-tokenization allows a token
to be a sub-string of a word, i.e., subword units, and thus
provides a way of handling out-of-vocabulary words. A subword
tokenizer learns a set of common subwords based on the word
distribution of the training corpus. Thereafter, it can encode rare
words by splitting them into meaningful subword units. Popular
subword tokenizationmethods includeWordPiece (Schuster and
Nakajima, 2012) and Byte Pair Encoding (BPE) (Radford et al.,
2019). For each participating team, we consider whether their
approach belong to one or multiple of the three categories, and
summarize our findings in Table 11. Finally, we also indicate
whether their tokenization methods consider domain-specific
knowledge in Table 11.

Four teams utilized tokenization methods that are purely
rule-based. Specifically, VinAI used the Oscar4 tokenizer (Jessop
et al., 2011). This tokenizer is particularly designed for chemical
texts, and is made up of a set of pattern matching rules (e.g.,
prefix matching) that are designed based on domain knowledge
from chemical experts. NLP@VCU used spaCy tokenizer,23

which consists of a collection of complex normalization and
segmentation logic and has been proven to work well with
general English corpus. NextMove/Minesoft used a combination
of the Oscar4 and LeadMine (Lowe and Sayle, 2015) tokenziers.

23https://spacy.io/api/tokenizer.

LeadMine was first run on untokenized text to identify entities
using auxiliary grammars or dictionaries. Oscar4 was then used
for general tokenization but is adjusted so that each entity
recognized by LeadMine corresponds to exactly one token.
Four teams, BiTeM, BOUN-REX, LasigBioTM, and Melaxtech,
chose to leverage the pre-trained model BERT (or variants of
BERT) to address our tasks, and thus, the four teams used
the subword-based tokenizer, WordPiece, that is built-in within
BERT. BOUN-REX, LasigBioTM, and Melaxtech used BioBERT
model which is language model pre-trained on biomedical
texts. Since this model is a continual training based on the
original BERT model, the vocabulary used in BioBERT does
not differ from BERT, i.e., domain-specific tokenization is not
used. However, since Melaxtech performed a pre-tokenization
using a toolkit CLAMP (Soysal et al., 2018), we consider
their approach as domain-specific, since CLAMP is tailored
for clinical texts. BiTeM used the model ChemBERTa that is
pre-trained on the ZINC corpus. It is unclear yet whether the
tokenization is domain-specific due to the lack of documentation
of ChemBERTa. Finally, since WordPiece needs an extra pre-
tokenization step, we consider it as a hybrid of rule-based and
subword-based method.

7.9.2. Representations
When transforming tokens into machine-readable
representations, two types of methods are used: (1) feature
extraction that represents tokens with their linguistic
characteristics, such as word-level features (e.g., morphological
features) and grammatical features (e.g., PoS tags); and (2)
embedding methods in which token representations are
randomly initialized as numerical vectors (or initialized from
pre-trained embeddings) and then learned (or fine-tuned) from
provided training data. Two teams, NextMove/Minesoft and
AU-KBC adopted the first strategy and the other teams adopted
the second strategy. Among the teams that used embeddings
to represent tokens, two teams, VinAI and NLP@VCU further
added character-level embeddings to their systems. All of these
six teams used pre-trained embeddings, and five teams used
embeddings that are pre-trained for related domains: VinAI
and NLP@VCU used the embeddings that are pre-trained
on chemical patents (Zhai et al., 2019), BOUN-REX and
LasigBioTM used the embeddings from BioBERT that are pre-
trained on PubMed corpus. MexlaxTech also used embeddings
from BioBERT, but they further tuned the embeddings using the
patent documents released in the test phase.

7.9.3. Model Architecture
Various architectures were employed by participating teams.
Four teams, BiTeM, BOUN-REX, LasigBioTM, and Melaxtech,
developed their systems based on transformers (Vaswani et al.,
2017). BiTeM submitted an additional run using an ensemble
of a Transformer-based model and a CNN-based model. They
also had a third run that is built based on CRF. The other two
teams Melaxtech and BOUN-REX added rule-based techniques
into their systems. Melaxtech added several pattern-matching
rules in their post-processing step. BOUN-REX focused on
Task 2 and their system used rule-based methods to determine
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TABLE 11 | Summary of participants’ approaches.

Characteristics (Copara et al.,

2020b)

(Dao and

Nguyen, 2020)

(Köksal et al.,

2020)

(Lowe and

Mayfield, 2020)

(Mahendran

et al., 2020)

(Pattabhi

et al., 2020)

(Ruas et al.,

2020)

(Wang et al.,

2020)

TOKENIZATION

Rule-based

Dictionary-based

Subword-based

Chemistry domain-specific

REPRESENTATION

Embeddings

Character-level

Pre-trained

Chemistry domain-specific

Features

PoS

Phrase

MODEL ARCHITECTURE

Transformer

Bi-LSTM

CNN

MLP

CRF

FSM

Rule-based

BiTeM (Copara et al., 2020b); VinAI (Dao and Nguyen, 2020); BOUN-REX (Köksal et al., 2020); NextMove/Minesoft (Lowe and Mayfield, 2020); NLP@VCU (Mahendran et al., 2020);

AU-KBC (Pattabhi et al., 2020); LasigBioTM (Ruas et al., 2020); and Melaxtech (Wang et al., 2020).

the event type of each detected event. Two teams, VinAI and
NLP@VCU, used the architecture of BiLSTM-CNN-CRF for Task
1. NLP@VCU also participated in Task 2 and they proposed two
systems based on rules, and a CNN architecture, respectively.
NextMove/Minesoft utilized Chemical Tagger (Hawizy et al.,
2011), a model based on Finite State Machine (FSM), and a set
of comprehensive rules are applied to generate predictions. AU-
KBC proposed two systems for Task 1, based on multi-layer
perceptron and CRF, respectively.

7.9.4. Approaches to Relation Extraction
Four of the above teams participated in Task 2 or Task 3.
As mentioned before, these teams utilized their NER models
for trigger word detection. Thus, here, we only discuss their
approaches for relation extraction assuming that the trigger
words and entities are known.

NextMove/Minesoft again made use of ChemicalTagger for
event extraction. ChemicalTagger is able to recognize WORKUP
and REACTION_STEP words, thus, assignment of relationships
was achieved by associating all entities in a ChemicalTagger
action phrase with the trigger word responsible for the action
phrase. A set of post-processing rules were also applied to
enhance the accuracy of ChemicalTagger.

LasigBioTM, NLP@VCU, and Melaxtech formulated the task
of relation extraction as a binary classification problem. That
is, given each candidate pair of trigger word and named entity
that co-locate within an input sentence, the goal of the task is
to determine whether the candidate pair of entities are related
or not.

LasigBioTM developed a BioBERT-based model to
accomplish this classification. The input of BioBERT is the
sentence containing the candidate pair but the trigger word
and named entity of the candidate pair were replaced with
the tags “@TRIGGER$” and “@LABEL$,” respectively. The
output of BioBERT is modified as a binary classification
layer which aims to predict the existence of relation for the
candidate pair.

NLP@VCU proposed two systems for relation extraction.
Their first system is a rule-based system. Given a named entity,
a relation is extracted between the named entity and its nearest
trigger word. Their second system is developed based on CNNs.
They split the sentence containing the candidate pair into
five segments: the sequence of tokens before/between/after the
candidate pair, the trigger word, and the named entity of the
candidate pair. Separate convolutional units were used to learn
the latent representations of the five segments, and a final output
layer was used to determine if the candidate pair is related or not.
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Melaxtech continued the use of the BioBERTmodel re-trained
on the patent texts released during the test phase. Similar to
LasigBioTM, the input to their model is the sentence containing
the candidate pair but only the candidate named entity is
generalized by its semantic type in the sentences. Furthermore,
rules were also applied in the post-processing step to recover
long distance relations, including relations across clauses and
across sentences.

7.10. Summary of Observations
The various approaches adopted by teams and the resulting
performances have provided us with valuable experiences in how
to address the tasks and what choices of methods are more
suitable for our tasks.

7.10.1. Tokenization
In general, domain-specific tokenization tools perform better
than tokenizationmethods that work for general English corpora.
This is as expected since the vocabulary of chemical patents
contains a large number of domain-specific terminology, and a
machine can better understand and learn the characteristics of
input texts if the texts are split into meaningful tokens. Another
observation is that subword-based tokenization may contribute
to overall accuracy. Chemical names are usually long, which
make subword-based tokenization a suitablemethod for breaking
down long chemical names. But further investigation is needed to
support this claim.

7.10.2. Representation
Pre-trained embeddings are shown to be effective in enhancing
system performances. Specifically, the Melaxtech and
Lasige_BioTM systems are based on BioBERT (Lee et al.,
2020) and ranked the first and third place in Task 1. The
VinAI system leveraged embeddings pre-trained on chemical
patents (Zhai et al., 2019) and ranked second place. Character-
level embeddings are also beneficial, shown by the ablation study
in Dao and Nguyen (2020) and Mahendran et al. (2020).

7.10.3. Model Architecture
The most popular choice of model is BERT (Devlin et al., 2019),
which is based on Transformer (Vaswani et al., 2017). The model
has demonstrated its effectiveness in sequence learning again.
The Melaxtech system adopted this architecture and ranked first
place in all three tasks. However, it is also worthwhile to note that
the architecture of BiLSTM-CNN-CRF is still very competitive
w.r.t. BERT. The VinAI system ranked the first place in F1-score
when relaxed-match is used.

8. ERROR ANALYSIS

We perform an error analysis on the test set to understand
common errors in different tasks.

8.1. Task 1—NER
To understand the errors in Task 1—NER, we use the top-
ranking system as an example. We present the confusion
matrix of the top system on the test set in Figure 8. The figure
shows that the ambiguity between chemical entities is much

higher than non-chemical entities. Considering the predicted
entities that have labels in the ground-truth set, 141 chemical
entities are assigned with wrong labels, while none of non-
chemical entities are assigned with wrong labels. In particular,
we find it most difficult for the system to tell the differences
between STARTING_MATERIAL and REAGENT_CATALYST,
REACTION_PRODUCT and OTHER_COMPOUND, and
SOLVENT and REAGENT_CATALYST, which correspond to
47 (28 + 19) errors, 32 (20 + 12) errors, and 18 (8 + 10) errors
out of the total 141 errors. Next, we present some examples of
these errors.

8.1.1. STARTING_MATERIAL vs.

REAGENT_CATALYST
An example of the system misclassifying
STARTING_MATERIAL as REAGENT_CATALYST is shown
in Figure 9. The snippet in this figure describes the synthesis
process of the reaction product “3-[1-(2-hydroxyacetyl)-
piperidin-4-yl]-3,4-dihydro-1H-quinazolin-2-one.” Given that
the chemical expression of the reaction product contains the
subword “hydroxyacetyl,” it can be deducted that “hydroxyacetic
acid” (line 3) is the starting material since it provides atoms to the
reaction product. However, the system labels hydroxyacetic acid
as REAGENT_CATALYST.

8.1.2. REACTION_PRODUCT vs.

OTHER_COMPOUND
We present an example of the misclassification between
REACTION_PRODUCT as OTHER_COMPOUND in
Figure 10. The title of this snippet is the name of the
chemical compound N6-(piperidin-4-yl)-N4-(3-chloro-4-
fluorophenyl)-7-methoxyquinazoline-4,6-diamine, but the
following chemical reaction describes the synthesis process for
preparing the trifluoroacetate of the title compound. Thus, in
this chemical reaction, the reaction product is no longer the
title compound but the trifluoroacetate of the title compound.
As such, the text span “N6-(piperidin-4-yl)-N4-(3-chloro-4-
fluorophenyl)-7-methoxyquinazoline-4,6-diamine” in the first
line should be labeled as OTHER_COMPOUND. The system
made two mistakes: (1) mislabeled the title compound as
REACTION_PRODUCT; and (2) failed to identify the correct
span of the reaction product. Both mistakes show that the
system is not able to understand the word “trifluoroacetate”
correctly. Here, “trifluoroacetate” is not an independent chemical
compound but an adjective implying that a different variant of
the title compound is obtained. Thus, the word “trifluoroacetate”
should not be labeled as an independent reaction product. The
word also implies that the actual reaction product is different
from the title compound. Thus, the title compound should not
be labeled as REACTION_PRODUCT.

8.1.3. SOLVENT vs. REAGENT_CATALYST
We present an example of the systemmisclassifying SOLVENT as
REAGENT_CATALYST in Figure 11. In most training instances,
the role of SOLVENT is implied by expressions, such as “A
dissolved in B” or “a solution of A in B.” In this figure, however,
the sentence structure changes slightly: the solute (HCI) and
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FIGURE 8 | Confusion matrix of the top system on Task 1—NER. NEG (negative entity): ground-truth (or predicted) entities whose text spans are not annotated as

entities in the predicted (or ground-truth) set. This confusion matrix is computed under the scenario of exact span-matching.

solvent (aqueous) are consecutive words with no preposition
phrases (e.g., in) between them. The role of SOLVENT is instead
implied by the expression within the brackets, i.e., “26 mL of a 8
M solution.” In this case, the system failed to understand the role
of “Aqueous” and mislabels it as REAGENT_CATALYST.

8.2. Task 2—EE
Most teams broke down this task to two sub-tasks: trigger word
identification and predicting relations between trigger words and
entities. We first investigate the typical errors for trigger word
prediction in Task 2. We present the confusion matrix of the top
ranking system in Figure 12. The figure shows that more errors
(154 errors) are related to trigger word detection and a relatively
smaller number of errors (32 errors) are related to trigger word
classification. Next we present some examples of different types
of errors.

8.2.1. Trigger Word Classification
We present an example, where the system misclassified a
REACTION_STEP as a WORKUP in Figure 13. In this figure,
the word “added” (line 6) is predicted as REACTION_STEP
but its true label is WORKUP. If we look at its next sentence,
we can see that the action of adding sodium thiosulphate
solution and hydrochloric acid solution is to dissolve the
material so that the desired components can be filtered out.
Thus, the word “added” is part of the procedure to isolate
the product, and needs to be labeled as WORKUP. We
suspect that this error was caused by sentence segmentation
in data preprocessing, since the information needed to make
correct decision is only provided by the next sentence. If
the two sentences were separated and were not fed into
the system simultaneously, the system could not make the
correct prediction.
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FIGURE 9 | An example of the system misclassifying STARTING_MATERIAL as REAGENT_CATALYST.

FIGURE 10 | An example of misclassification between REACTION_PRODUCT and OTHER_COMPOUND.

8.2.2. Trigger Word Detection
We present an example of false positives/negatives in trigger
word detection in Figure 14. In this chemical reaction, the
starting material 2-(2-bromophenyl)acetic acid was dissolved
in DCM, and the solution was added with three chemicals:
(1) DCC; (2) DMAP; and (3) N-(3,5-dimethyl-1-phenyl-1 H-
pyrazol-4-yl)-2-hydroxyacetamide. Here, the three chemicals
should be all associated with the reaction step “added” and the
expression “followed by” is only to describe the order of the
three chemicals being added. However, the system mislabels
the word “followed” as a REACTION_STEP, leading to a false

positive error. The work-up procedure for purifying the chemical
compounds contains two steps. First, the obtained suspension
was filtered. Then the filtrate was purified. The system fails to
detect the first step, leading to a false negative error.

8.2.3. Relation Prediction
The most significant challenge in relation prediction lies in the
fact that many related entities are distant to each other. Figure 15
gives an example. The word “synthesized” (line 2) is related with
the chemical “45” (line 2) and the yield entities “0.83 g,” “0.72
mmol,” and “46%” (line 6). However, the system only discovered
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FIGURE 11 | An example of the system misclassifying REAGENT_CATALYST as SOLVENT.

FIGURE 12 | Confusion matrix of the top system for trigger word prediction in

Task 2—EE. WU: WORKUP. RS: REACTION_STEP. NEG (negative trigger

word): ground-truth (or predicted) trigger words whose text spans are not

annotated as trigger words in the predicted (or ground-truth) set. This

confusion matrix is computed under the scenario of exact span-matching.

the relation between “synthesized” and “45” and missed all other
three relations, since the three yield entities are very far from the
word “synthesized.”

9. DISCUSSION OF RESULTS

The ChEMU2020 workshop at CLEF was held during 22–26
September 2020. Worldwide participants attended the workshop
and presented their systems for the tasks. During the discussion
session, the Nextmove Software/Minesoft team contributed an
important observation: some pairs of training and test snippets

are sampled from the same source document, which results in
high similarity in their contents.

In the meantime, the issue of “data leakage” in existing NLP
shared tasks and benchmark datasets has been raised in the NLP
community. The data leakage here is not limited to direct leakage
of training data, where training instances are repeated in the
test set, but is extended to include those more general scenarios
where testing instances have significant overlap with the training
instances, e.g., the overlap due to the same source documents.

Solutions for controlling data leakage are still under
exploration. However, the extent of data leakage needs to be taken
into consideration when we interpret our evaluation results. That
is, when there is significant similarity between train and test data,
models that have huge capacity to memorize training instances
are more advantageous than others. On the contrary, a test set
that has low similarity with the training set will promote those
models that go deep in the training data and learn the knowledge
required to generalize. Elangovan et al. (2021) present a study
on the data leakage issue in various existing benchmark datasets,
including the ChEMU2020 data, and show that unconscious data
leakage may lead to inflated evaluation results, i.e., inadvertently
interpreting a model’s ability to memorize as the ability to
generalize.

In this section, we provide an extensive study on the train-test
overlaps in our ChEMU chemical reaction corpus, and its impact
on our evaluation results in Task 1. We investigate three forms
of data leakage: (1) leakage caused by texts being from the same
source patents; (2) leakage caused by similar text inputs; and (3)
leakage caused by similar target entities.

9.1. Impact of Source Patents
Patent snippets extracted from the same source patent may be
more similar in terms of linguistic properties, such as their
vocabulary, sentence structures, and topical distributions. The
snippets in our corpus are sampled from a relatively small set
of source patents: 1,500 snippets sampled from 180 patents. The
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unique source patents that are used in the training, development
and test sets are summarized in Figure 16. There are 180 unique
source patents used in the training set, out of which 101 overlap
with the test set, 81 overlap with the development set, and 69
overlap with both the test and development sets. There are 13
source patents in the test set that have not been used in either the
train or dev snippets. These 13 source patents have been used to
generate 14 patent snippets in the test set.

Let Tnew represents the set of 14 patent snippets with new
source patents. We evaluate all runs on Task 1 using Tnew and
report their F1-scores in the column “F” of Table 12. We also
evaluate the runs by only considering the compound entities in
Tnew and report their F1-scores in the column “F∗.” We also
present their performance change on Tnew compared with those
on the original test set by measuring their (columns “1F,” “1F∗,”
“%,” and “%∗”).

As shown by the column“1F”, most runs are found to have
drops in performance. But the general trend is that the runs with
higher rankings are more robust on the new test set compared
with those with lower rankings. The top five runs show a fairly
consistent drop in F1-score of ∼0.08 (a ratio of ∼8.0%). The
lower ranking runs seem to have much higher variances, and the
maximum change observed reaches more than 100%. There are
some runs that do not follow this trend, for example, the runs
submitted by KFU_NLP, SSN_NLP, and NextMove/Minesoft.
The runs submitted by KFU_NLP show very small performance
changes (<5%), and so do SSN_NLP runs. The runs submitted
by NextMove/Minesoft were found to have more performance
changes on Tnew, considering their ranking in Table 6. But
more investigations are needed to confirm the reasons behind
these observations.

9.2. Impact of Input Text Similarity
The vocabulary similarity between train and test instances in
terms of the input text also impact model performances. Models
with high memorization capacity may gain more benefits when
the input texts of test instances are significantly similar with
those of training instances. Herein, we investigate the impact
of text similarity by dividing the original test set into several
subsets, each of which has a different level of similarity with
the training set, and observe the performances of all runs on
these subsets.

9.2.1. Text Similarity Computation
For each test snippet, we choose the training snippet that is
most similar with the test snippet, and use similarity between
the two snippets to represent the similarity of the test snippet
with the entire training set. To quantify the similarity between
two snippets, we convert their input texts into their bag-of-
words vector representations. Then the similarity is computed
as the cosine similarity between the two bag-of-words. As a
result, the similarity value between two snippets is within the
range [0, 1] and higher value indicates higher similarity between
two snippets.

We split the test snippets into four groups Q1 to Q4, where the
snippets within each group have a similarity of [0.0, 0.25), [0.25,
0.5), [0.5, 0.75), and [0.75, 1.0], respectively. Thus, Q1 represents

the set of test snippets that are most different from the training
set, andQ4 represents the set of test snippets that are most similar
to the training set. We find that 10% of test snippets belong to
Q2, 60% belong to Q3 and 30% belong to Q4. There are no test
snippets with <0.25 similarity with the training set, and thus, Q1
is empty.

The performances on each resultant group are summarized
in Table 13. For ease of comparison, for each run, we present
its absolute change in F1-score on each group of test snippets
compared with the original test set, and the percentage of such
change. We also present their maximum changes in F1-scores
across different groups.

The average change in F1-scores across Q2-4 (i.e., average
value of column “1”) is 0.0659. Only the teams NLP@VCU,
NextMove/Minesoft, OntoChem, and AUKBC have slightly
greater fluctuations across different quartiles. On average,
NLP@VCU has a change of 0.0871, NextMove/Minesoft has
a change of 0.0739, OntoChem has a change of 0.0920,
and AUKBC has a change of 0.0827. But in general, the
fluctuations of all runs across different subsets are similar and
relatively small.

The results in Table 13 show that different runs have different
trends in F1-scores across Q2-4. In general, we expect that
a machine learning method will benefit from the train-test
similarity and there may be consistent increase in F1-scores when
the test set is switched fromQ2 to Q3, and then Q3 to Q4. Indeed,
this phenomenon is observed on most runs. However, there are
also a few teams that do not follow this distribution. The teams
NextMove/Minesoft, KFU_NLP, and OntoChem achieve their
best accuracy on Q3.

9.3. Impact of Entity Similarity
The overlap between target entities in the test set may also have
influence on model performances. In an extreme case where the
target entities in the test set are identical with the entities in the
training set, a model can perform well by simply memorizing
the entities in the training set and performing dictionary look-
up when predicting. Therefore, a test set where the entities highly
overlap with the training set will promote the models that are
powerful in memorization, and misinterpret their capabilities of
memorization as their capabilities of capturing deep contextual
information in the input.

To quantify the train-test overlap in terms of target entities,
a straightforward method is to find out the entities that appear
in both training and test set and treat these overlapped entities
as “easy entities” that are predictable simply by memorization.
However, if an overlapped entity occurs multiple times in
the training set and is assigned with different labels in these
multiple occurrences, the entity may not be easy to predict by
memorization. For example, if an entity “water” occurs 10 times
in the training set, and five of them are tagged as “SOLVENT” and
the others as “O” (none-entity token in the BIO scheme), simply
memorizing the entity “water” is not enough to predict its label.
Thus, we quantify the entity predictability w.r.t. memorization by
computing the information-theoretic entropy of an entity in the
training set.
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FIGURE 13 | An example of misclassifying WORKUP as REACTION_STEP.

9.3.1. Computation of Entity Entropy
For each entity in the training set, we compute a probability
distribution of it being tagged with the 10 entity labels (Table 2).
Given an entity e with a probability distribution p(e) =

[p1, . . . , ll] where pi represents the probability of e being tagged as
the ith label, the entropy E(e) of e is computed as follows, where l
represents the total number of labels:

E(e) = −

i=l∑

i=1

pi log10 pi (1)

The entropy value range of an entity is [0.0, 1.0]. The entropy
value of 0.0 refers to the case where the entity is always tagged
with the same label, and the entropy value of 1.0 refers to the case
where the label of an entity is extremely random. If an entity in
the test set does not occur in the training set, we set its entropy
as 1.0 since we cannot obtain any information about the entity by
memorizing its occurrence(s) in the training set.

We compute the entropy of entities in both the training,
development, and test sets. Note that when computing the

entropy of all entities, we only consider their occurrences in the
training and development set, since we aim to understand the
predictability of these entities by memorizing their occurrences
in the training and development sets.

There are 2,393 unique entities in the test set, and 1,160 of
them do not appear in the training or test set. Among the rest
of the entities, 238 of them have an entropy value ranging within
[0.25, 1.0), 310 of them have an entropy value ranging within (0.0,
0.25), and 685 of them have the entropy value equal to 0.

Among the entities with an entropy of 0, the entity
“title compound” appears as most frequent in the training
and development set: all its 388 occurrences are labeled as
REACTION_COMPOUND. Another example is the entity
“brine,” which occurs 216 times and is always labeled as
OTHER_COMPOUND. The entity “methanol” appear a lot in
the training and development set, but is much harder to predict
(entropy of 0.542), since the diversity of its labels is quite high:
125 of its occurrences are labeled as OTHER_COMPOUND, 66
are labeled as SOLVENT, 37 are labeled as “O” (none-entity),
11 as STARTING_MATERIAL, 10 as REAGENT_CATALYST.
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FIGURE 14 | False positive and false negative examples.

FIGURE 15 | An example of errors in relation prediction. Only the ground-truth labels are included in the figure. In terms of relation prediction, the top ranking system

misses three relations: (1) synthesized → 0.83 g; (2) synthesized → 0.72 mmol; (3) synthesized → 46%.

Another example is the entity “aqueous” with entropy of 0.412:
261 of its occurrences are labeled as OTHER_COMPOUND, 123
as “O,” 42 as “SOLVENT” and 6 as REAGENT_CATALYST.

We split the entities in the test set into four sets S1 to S4. Set S1
contains the entities with an entropy value of 0.0, S2 contains the

entities whose entropy value is within (0.0, 0.25), S3 contains the
entities whose entropy value is within [0.25, 1.0), and S4 contains
the entities whose entropy value is equal to 1.0. We evaluate all
runs on these the four sets. Suppose we are evaluating a model
using S1. In this case, we only use the entities in S1 when counting
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FIGURE 16 | Number of unique source patents in training, development, and

test set. Each number represents the number of unique source patents within

the sector partitioned by the gray circle boundaries.

TABLE 12 | Evaluation results on Tnew.

Run F 1F % F∗
1F∗ %∗

Melaxtech-run1 0.8777 −0.0793 8.3 0.8672 −0.0766 8.1

Melaxtech-run2 0.8721 −0.0837 8.8 0.8521 −0.0903 9.6

Melaxtech-run3 0.8777 −0.0764 8.0 0.8672 −0.0732 7.8

VinAI-run2 0.8696 −0.0825 8.7 0.8477 −0.0932 9.9

VinAI-run1 0.8644 −0.0789 8.4 0.8448 −0.0903 9.7

LasigBioTM-run1 0.8525 −0.0867 9.2 0.8333 −0.0859 9.3

BiTeM-run3 0.8517 −0.0713 7.7 0.8238 −0.0689 7.7

BiTeM-run2 0.8345 −0.0753 8.3 0.8163 −0.0587 6.7

NextMove/Minesoft-run1 0.7652 −0.1331 14.8 0.7277 −0.1373 15.9

NextMove/Minesoft-run2 0.7652 −0.1325 14.8 0.7277 −0.1365 15.8

NLP@VCU-run1 0.7729 −0.0929 10.7 0.7744 −0.0940 10.8

KFU_NLP-run1 0.8242 −0.0407 4.7 0.8338 −0.0398 4.6

NLP@VCU-run2 0.7698 −0.0904 10.5 0.7629 −0.0982 11.4

NLP@VCU-run3 0.7941 −0.0648 7.5 0.8052 −0.0539 6.3

KFU_NLP-run2 0.8036 −0.0416 4.9 0.8040 −0.0397 4.7

NextMove/Minesoft-run3 0.6717 −0.1464 17.9 0.6296 −0.1451 18.7

KFU_NLP-run3 0.7957 −0.0154 1.9 0.8041 0.0042 0.5

BiTeM-run1 0.6984 −0.1072 13.3 0.6275 −0.1074 14.6

OntoChem-run1 0.5446 −0.1373 20.1 0.4615 −0.1520 24.8

AUKBC-run1 0.5188 0.0103 2.0 0.5439 −0.0815 13.0

AUKBC-run2 0.3654 0.0903 32.8 0.3846 0.0253 7.0

SSN_NLP-run1 0.2203 −0.0108 4.7 0.2746 −0.0080 2.8

SSN_NLP-run2 0.2159 −0.0148 6.4 0.2736 −0.0090 3.2

JU_INDIA-run1 0.2393 0.1352 >100 0.2963 0.1580 >100

JU_INDIA-run2 0.0450 0.0244 >100 0.0562 0.0265 89.2

JU_INDIA-run3 0.0450 0.0244 >100 0.0562 0.0265 89.2

F: F1-scores; 1F: change in F1-scores (compared with Table 6); %: percentage of

absolute change in F1-scores; F
∗: F1-scores on COMPOUND entities; 1F∗: change in

F1-scores on COMPOUND entities (compared with Table 6); %∗: percentage of absolute

change on COMPOUND entities.

true positives and false negatives. When counting false positives,
if an entity predicted by a submitted run has not appeared in the
test set, we compute its entropy on the fly. If its entropy lies within

TABLE 13 | F1 scores on Q2-4.

Run Q2 Q2 (%) Q3 Q3 (%) Q4 Q4 (%) 1

Melaxtech-run1 −0.0481 5.0 0.0008 0.1 0.0097 1.0 0.0578

Melaxtech-run2 −0.0462 4.8 −0.0013 0.1 0.0126 1.3 0.0588

Melaxtech-run3 −0.0482 5.1 0.0008 0.1 0.0094 1.0 0.0576

VinAI-run2 −0.0409 4.3 −0.0025 0.3 0.0132 1.4 0.0541

VinAI-run1 −0.0496 5.3 −0.0037 0.4 0.0187 2.0 0.0683

LasigBioTM-run1 −0.0451 4.8 0.0001 0.0 0.0106 1.1 0.0557

BiTeM-run3 −0.0457 5.0 −0.0043 0.5 0.0174 1.9 0.0631

BiTeM-run2 −0.0476 5.2 −0.0059 0.6 0.0209 2.3 0.0685

NextMove/Minesoft-run1−0.0668 7.4 0.0110 1.2 −0.0042 0.5 0.0778

NextMove/Minesoft-run2−0.0645 7.2 0.0105 1.2 −0.0036 0.4 0.0750

NLP@VCU-run1 −0.0594 6.9 −0.0086 1.0 0.0279 3.2 0.0873

KFU_NLP-run1 −0.0281 3.2 0.0239 2.8 −0.0367 4.2 0.0606

NLP@VCU-run2 −0.0638 7.4 −0.0098 1.1 0.0312 3.6 0.0950

NLP@VCU-run3 −0.0489 5.7 −0.0110 1.3 0.0300 3.5 0.0789

KFU_NLP-run2 −0.0188 2.2 0.0181 2.1 −0.0280 3.3 0.0461

NextMove/Minesoft-run3−0.0535 6.5 0.0154 1.9 −0.0147 1.8 0.0689

KFU_NLP-run3 −0.0088 1.1 0.0170 2.1 −0.0280 3.5 0.0450

BiTeM-run1 −0.0596 7.4 −0.0071 0.9 0.0248 3.1 0.0844

OntoChem-run1 −0.0632 9.3 0.0206 3.0 0.0288 4.2 0.0920

AUKBC-run1 −0.0067 1.3 0.0495 9.7 0.0782 15.4 0.0849

AUKBC-run2 0.0559 20.3 0.0080 2.9 0.0885 32.2 0.0805

SSN_NLP-run1 −0.0263 11.4 −0.0015 0.6 0.0090 3.9 0.0353

SSN_NLP-run2 −0.0255 11.1 −0.0036 1.6 0.0122 5.3 0.0377

JU_INDIA-run1 0.1432 137.6 −0.0031 3.0 −0.0238 22.9 0.1670

JU_INDIA-run2 0.0047 22.8 −0.0009 4.4 0.0058 28.2 0.0067

JU_INDIA-run3 0.0047 22.8 −0.0009 4.4 0.0058 28.2 0.0067

Q1 is omitted since it’s empty. Qi: change in F1-scores on set Qi; Qi(%): percentage of

absolute change on set Qi, where i ∈ [2, 4]. 1: maximum change in F1-scores across

Q2-4.

the entropy interval of S1, we include it as a false positive, and
ignore it otherwise.

The evaluation results of all runs are summarized in Table 14.
For ease of comparison, we only show the differences between the
F1-scores observed in this experiment and the scores reported
in Table 6. As shown in the table, the F1-scores of most runs
decrease as the test set changes from S1 to S4. There are not many
exceptions, and only AUKBC-run1 performs slightly better on
S3 than S2. This is as expected, since entities in S1 have lower
information entropy and are easier to predict compared those in
other sets.

The average change in F1-scores across S1–4 (i.e., average
value of column “1”) is 0.1367, which is much higher than the
average change of 0.0659 in Table 13. Many more teams have
higher fluctuations across S1 to S4 compared to the fluctuations
across Q2 to Q4. Moreover, the range of the fluctuations of
all teams is [0.0312, 0.2619], which is a much wider change
compared with Table 13. This may indicate that models are
more sensitive to what they need to predict, compared with
what they can use for prediction. The top five runs are relatively
more robust against the changes in test sets, given their small
fluctuations in both Tables 13, 14.
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TABLE 14 | F1 scores of all runs on S1 to S4.

Run S1 S2 S3 S4 1

Melaxtech-run1 0.0309 0.0084 −0.0047 −0.0329 0.0638

Melaxtech-run2 0.0286 0.0125 0.0003 −0.0424 0.0710

Melaxtech-run3 0.0287 0.0098 −0.0024 −0.0362 0.0649

VinAI-run2 0.0335 0.0101 −0.0066 −0.0359 0.0694

VinAI-run1 0.0384 0.0148 0.0006 −0.0536 0.0920

LasigBioTM-run1 0.0430 0.0251 0.0190 −0.0884 0.1314

BiTeM-run3 0.0345 0.0317 0.0043 −0.0764 0.1109

BiTeM-run2 0.0463 0.0371 0.0153 −0.1006 0.1469

NextMove/Minesoft-run1 0.0595 0.0233 −0.0283 −0.0521 0.1116

NextMove/Minesoft-run2 0.0601 0.0232 −0.0283 −0.0521 0.1122

NLP@VCU-run1 0.0792 0.0469 0.0043 −0.1186 0.1978

KFU_NLP-run1 0.0657 0.0358 −0.0308 −0.0640 0.1297

NLP@VCU-run2 0.0829 0.0495 0.0066 −0.1271 0.2100

NLP@VCU-run3 0.0861 0.0459 0.0026 −0.1203 0.2064

KFU_NLP-run2 0.0922 0.0571 −0.0035 −0.1269 0.2191

NextMove/Minesoft-run3 0.0541 0.0172 −0.0140 −0.0524 0.1065

KFU_NLP-run3 0.0832 0.0849 0.0349 −0.1727 0.2576

BiTeM-run1 0.0604 0.0949 0.0449 −0.2162 0.3111

OntoChem-run1 0.0589 0.0317 0.0050 −0.1062 0.1651

AUKBC-run1 0.0912 0.0426 0.0504 −0.1707 0.2619

AUKBC-run2 0.0611 0.0487 −0.0217 −0.0742 0.1353

SSN_NLP-run1 0.0382 0.0266 0.0439 −0.0500 0.0939

SSN_NLP-run2 0.0535 0.0211 0.0456 −0.0526 0.1061

JU_INDIA-run1 0.0330 0.0501 −0.0138 −0.0659 0.1160

JU_INDIA-run2 0.0071 0.0136 −0.0042 −0.0176 0.0312

JU_INDIA-run3 0.0071 0.0136 −0.0042 −0.0176 0.0312

Si: change in F1-scores on set Si, where i ∈ [1, 4]. 1: maximum change in F1-scores

across four sets.

9.4. Summary
In the above experiments, we generate stratified test sets with
controlled similarity over the training set. We use these test
sets to re-evaluate the runs we received in Task 1 NER and
investigate their capability of generalizing on new data. The above
experimental results show that the performances of different
systems do change significantly with the test sets. Most models
perform better on test sets that are more similar with the training
set. On the test set in which only the test instances from new
source documents are included, the top ten runs in Task 1 have
∼10-point drop on average in F1-scores compared with the
original test set. On the stratified test subsets where the input
text similarity is controlled within each subset, the top ten runs
have ∼6-point difference in F1-scores across all subsets. Similar
phenomena is also observed on the stratified subsets where the
similarity of target entities is controlled.

Although the absolute performances of different runs change
with the test set, the ranking of these runs does not change much.
For example, the top three teams in Task 1 remain the same
across Tables 12–14, with almost the same ranking. This shows
that the current test set still correctly reflect the ranking of how
each model generalize on new test data.

However, the strikingly different performances of the same
model on different test sets show that avoiding unconscious data
leakage is still important. We believe that controlling the source
documents of the test instances is crucial in our future shared
tasks, since a key feature of a good model is its ability to process
unseen documents. How to avoid other types of data leakage, e.g.,
train-test overlap in terms of input texts and target entities, and
to what extent we need to control such train-test overlaps, remain
a question to us. On one hand, having control over the train-
test overlaps is crucial when we interpret our evaluation results:
we want to know if a model can generalize well on new data.
But extreme elimination of train-test overlap may be infeasible
or unnecessary. Ultimately, machine learning models are trying
to learn representative distributions underlying the data by
capturing such similarities and correlations amongst the training
data. We are still exploring methods for mitigating/controlling
train-test overlaps. But we believe at least using stratified test
sets instead of a single test set will provide more comprehensive
evaluation results.

10. CONCLUSIONS

This paper presents an overview of the activities in the ChEMU
2020 evaluation lab.We introduced ourmotivation of hosting the
lab, the tasks provided by the lab, and the evaluation framework
used. We also summarized the evaluation results, discussed
participants’ approaches, and presented analysis of the results.

The ChEMU 2020 evaluation lab was hosted to provide tasks
that focus on information extraction over chemical patents. Two
key information extraction tasks were provided: named entity
recognition, which aims to identify chemical compounds and
their specific roles in chemical reactions, and event extraction,
which aims to identify the single event steps that form a chemical
reaction. A new high-quality chemical reaction corpus annotated
by chemical experts was made available to the public. The
corpus is annotated with fine-grained chemical entities and the
relations between reaction steps and these entities. Analysis of
the inter-annotator agreement demonstrates high reliability of
the annotation.

The task was held between April 2020 to June 2020. We
received registrations from 39 teams, 46 runs from 11 teams, and
8 paper submissions from 8 teams detailing their approaches to
address the various tasks. Many effective solutions were reported:
the best systems achieved up to nearly 0.98 macro-averaged
F1-score on the NER task (and up to 0.99 F1-score on a relaxed
match), 0.95 F1-score on the isolated relation extraction task, and
around 0.92 F1-score for the end-to-end systems. These results
strongly outperformed baselines.

Comparison of participants’ approaches to the tasks
confirmed the effectiveness of pre-trained models/embeddings,
and indicate that incorporation of domain-specific knowledge
is crucial to model performance. We found that the use of
domain-specific tokenizers, such as Oscar4 is beneficial to model
performance. We also found that systems that used domain-
specific embeddings, such as embeddings trained on biochemical
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texts performed better than those which used embeddings
trained on a general English corpus.

Finally, we investigated how the similarity between the
training and test sets affect our evaluation results. We
investigated three types of train-test similarities, including
similarity in source patents, similarity in the patent texts, and
similarity in the target entities.We found that train-test similarity
had observable influence on model performances. Most runs that
we received show a degradation in model performances when
the test set has lower similarity with the training set. However,
we observed that grammar-based models may behave differently
compared with machine learning models, which are purely data-
driven, with our results suggesting that manual tuning of rule-
basedmethods may result in some overfitting.We also confirmed
that the top ranking runs were the most robust against the
changes in the test set.

The ChEMU 2020 shared task makes an important
contribution to progressing the state of the art in automatic
extraction of reaction information in chemical patents, with
very strong performance exhibited on the key chemical entity
recognition and the relations connecting these entities. However,
certain limitations in the definition of the current task preclude
direct application to the broader full-text chemical patent
literature. One such limitation is the reliance on the pre-
identified reaction snippets, artificially eliminating significant
quantities of additional text in patents from analysis by the
model. This pre-segmentation of the full patents clearly
simplifies the task by identifying reaction descriptions, thereby
eliminating segments potentially confusing to the models. This
may explain the high performance of models in the shared task.
Another limitation is the restriction to consideration of explicitly
mentioned entities, when indirect or generic references abound
in these texts.

Both of these limitations will be addressed in the ChEMU
2021 shared task (He et al., 2021). The creation of a gold
standard data set of full patents annotated with reaction spans
and references between them, building on the work of Yoshikawa
et al. (2019), is underway to facilitate subsequent analysis of

reaction spans with the models developed for ChEMU 2020. The
ChEMU-Ref dataset (Fang et al., 2021b) is also in development

to support analysis of anaphoric relations that occur in the
reaction texts (Fang et al., 2021a). We are looking forward to
increased capabilities for text mining of chemical patents for
critical chemical reaction information.
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