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A parallel integrated learning 
technique of improved particle 
swarm optimization and BP neural 
network and its application
Jingming Li1*, Xu Dong1, Sumei Ruan2 & Lei Shi1

Swarm intelligence algorithm has attracted a lot of interest since its development, which has been 
proven to be effective in many application areas. In this study, an enhanced integrated learning 
technique of improved particle swarm optimization and BPNN (Back Propagation Neural Network) is 
proposed. First, the theory of good point sets is used to create a particle swarm with a uniform initial 
spatial distribution. So a good point set adaptive particle swarm optimization (GPSAPSO) algorithm 
was created by using a multi-population co-evolution approach and introducing a function that 
dynamically changes the inertia weights with the number of iterations. Sixteen benchmark functions 
were used to confirm the efficacy of the algorithm. Secondly, a parallel integrated approach combining 
the GPSAPSO algorithm and the BPNN was developed and utilized to build a water quality prediction 
model. Finally, four sets of cross-sectional data of the Huai River in Bengbu, Anhui Province, China, 
were used as simulation data for experiments. The experimental results show that the GPSAPSO-
BPNN algorithm has obvious advantages compared with TTPSO-BPNN, NSABC-BPNN, IGSO-BPNN 
and CRBA-BPNN algorithms, which improves the accuracy of water quality prediction results and 
provides a scientific basis for water quality monitoring and management.

With the advancement of current science and technology, optimization problems have developed rapidly and 
penetrated into a number of application areas, including financial  investment1, engineering  technology2, artificial 
 intelligence3, pattern  recognition4, and so on. However, the swarm intelligence algorithm has been extensively 
studied and developed, and it has been utilized to solve a number of optimization problems drawn from real-
world issues with favorable outcomes, such as Genetic Algorithm (GA)5, Particle Swarm Optimization (PSO)6, 
Glowworm Swarm Optimization (GSO)7, Artificial Bee Colony (ABC)8, Invasive Weed Optimization (IWO)9, 
Cuckoo Search (CS)10, Bat Algorithm (BA)11, Fruit Fly Optimization (FOA)12, Whale optimization algorithm 
(WOA)13, Grey Wolf Algorithm (GWO)14, Ant Lion Optimization (ALO)15, Salp Swarm Algorithm (SSA)16, But-
terfly Optimization Algorithm (BOA)17, Harris Hawk Optimization (HHO)18, Slime Mould Algorithm (SMA)19. 
Most of these swarm intelligence algorithms are generated by simulating the biological information system in the 
natural world. They have the characteristics of exploratory and development stages. To solve the optimization 
problem, they iteratively update existing solutions until they find the best one in the solution space. The main 
contributions of this paper are as follows.

• A new and improved adaptive particle swarm optimization algorithm based on good point set, adaptive 
inertia weight and multiple population co-evolution strategies is presented.

• A parallel integrated learning technique using the GPSAPSO algorithm and BPNN is proposed in order to 
create a water quality prediction model.

• By optimizing sixteen objective functions of various unimodal and multimodal types, the GPSAPSO algo-
rithm’s effectiveness has been measured.

• To evaluate water quality prediction model based on parallel integrated learning technique of GPSAPSO algo-
rithm and BPNN, its performance has been compared with four well-known algorithms including TTPSO-
BPNN, NSABC-BPNN, IGSO-BPNN and CRBA-BPNN.
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The research in this paper mainly consists of the following contents: In the “Related works” section, BPNN, 
as one of the most commonly used machine learning algorithms, has many advantages and disadvantages. To 
address the shortcomings of BP neural network, it is proposed to optimize its network by using various swarm 
intelligence algorithms to improve the classification ability. Further, the particle swarm algorithm is introduced, 
and various improvement strategies of the particle swarm algorithm are presented to derive the research content 
of this paper; In the “Improved particle swarm algorithm” section, the traditional particle swarm algorithm is 
firstly introduced, and then an improved particle swarm algorithm based on good point set, adaptive inertia 
weight and multiple swarm co-evolution strategies is proposed; In the “Algorithm test” section, the performance 
of the improved particle swarm algorithm is tested by sixteen benchmark functions, and the effectiveness of 
the improved algorithm is further verified by comparing it with four swarm intelligence algorithms, namely, 
GPSAPSO, TTPSO, NSABC, IGSO and CRBA; In the “Algorithm application” section, the improved algorithm 
is used to optimize the BPNN and build a GPSAPSO-BPNN parallel integrated learning water quality prediction 
model for the Huai River; Finally, the “Conclusion” section summarizes the whole paper.

Related works
Swarm intelligence algorithm serves as a useful model for further optimizing and enhancing the conventional 
machine learning algorithm. Machine learning, as the most widely used technology in the twenty-first century, 
has been favored by more and more scholars and has been employed in fields such as  medical20,  education21, 
 industry22,  finance23 and so on. For example, multilayer Long Short Term Memory (LSTM) networks are used 
for demand forecasting to address the high volatility of demand  data24; Random Forest (RF) and Support Vector 
Machines (SVM) are also used for predictive mapping of aquatic  ecosystems25; The dissolved oxygen in urban 
rivers is predicted and analyzed by Extreme Learning Machine (ELM) and Artificial Neural Network (ANN)26; 
BP Neural Network (BPNN) is used to establish the evaluation model of software enterprise  risk27.

Among the machine learning algorithms, BPNN has become an important classification algorithm in the field 
of artificial intelligence because of its early development. It is also a widely used network model with strong non-
linear mapping ability, generalization ability and fault tolerance  ability28. It is worth noting that many parameters 
of traditional machine learning algorithms have a large impact on performance. For example, BPNN is limited 
by initial weight and threshold size, resulting in its shortcomings of local optimal solution and poor prediction 
 accuracy29. Therefore, many scholars have conducted a lot of research on the optimization and application of 
BP neural networks with the help of swarm intelligence algorithms. Grey Wolf algorithm (GWO)30, is used to 
optimize BPNN to predict short-term traffic flow; The improved fruit fly algorithm (FOA)31 is used to optimize 
the BPNN, and then predict the air quality and verify the superiority of the improved algorithm; The optimiza-
tion algorithm ABC-BPNN is used to predict rock blasting and  crushing32; GA-BPNN algorithm is used to test 
the  materials33.

As a swarm intelligence algorithm proposed for a long time, the particle swarm algorithm has been applied 
and improved by many scholars during these years of development. An improved particle swarm algorithm 
based on the principle of clonal selection is proposed to force particles to jump out from stagnation by putting 
a hybrid mutation scheme, which in turn continues to search for optimal  solutions34; Different location update 
strategies are used, and mutation operator is introduced to avoid falling into local optimal solution and enhance 
the ability of space  development35; local best information is introduced in addition to personal and global best 
information, which in turn increases the diversity of the  population36; Using the idea of system entropy (SR), a 
new iteration method of inertia weights and a local jump optimization strategy are introduced into the particle 
swarm optimization algorithm, and six high-dimensional functions are used to test the performance of the 
algorithm, and to verify the effectiveness of the optimization  strategy37.

Considering that most of the improvements made by these scholars focus on the improvement of the particle 
swarm search process, which often greatly increases the complexity of the algorithm. Since the initial solutions 
of traditional particle swarm algorithm are not uniformly distributed in the solution space, it easily leads to 
the problems of instability and low computational accuracy of the algorithm. Then, the theory of good point 
set and variable inertia weight strategy are employed to improve the traditional particle swarm algorithm, and 
multi-population co-evolution strategy is also used to build a GPSAPSO algorithm based on good point and 
variable inertia weight. GPASPSO algorithm was tested with sixteen benchmark functions and compared with 
 TTPSO38,  NSABC39,  IGSO40 and  CRBA41 algorithms, the results show that GPSAPSO algorithm is superior to 
other algorithms in terms of optimal value, worst value, average value and variance.

Then, the improved GPSAPSO algorithm is used to optimize the parameters of BPNN, construct the parallel 
ensemble learning algorithm of GPSAPSO-BPNN, and apply it to the water quality prediction modeling of Huai 
River, so as to construct the Huai River water quality prediction model based on GPSAPSO-BP algorithm, and 
carry out the simulation experiment with the water quality sample data of Huai River from January to October 
2021. The experimental results show that the classification accuracy of GPSAPSO-BPNN algorithm is greatly 
improved compared with traditional BPNN and other algorithms. Therefore, the GPSAPSO algorithm proposed 
in this paper is an effective and practical optimization algorithm.

Improved particle swarm optimization algorithm
Basic particle swarm optimization. The main idea of PSO algorithm is to regard each bird in the space 
as a particle of candidate solution, and find the optimal value of the individual by tracking the flight (motion) of 
the particle to find the optimal solution of the population, i.e., the information is shared and exchanged by each 
individual in the whole population so that the population position approaches the optimal position from the 
initial distribution position of the solution space and the optimal solution of the problem is obtained.

The core of the PSO algorithm is the speed and position update formula:
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In the formula, d is the current iteration number, pbest is the current optimal particle position, w is the inertial 
weight, which is used to maintain the influence of particle speed. gbest is the historical optimal particle location, 
c1 , c2 are the individual and social learning factors, v(d + 1) is the particle speed of the d + 1 iteration, x(d) is the 
particle location of the d iteration, r1 and r2 are the random numbers in (0, 1).

According to the above formula, the PSO algorithm records the historical optimal position of each particle 
and the historical optimal position of the whole particle population in the process of searching for the optimal 
solution, calculates the corresponding fitness value, compares the current fitness value with the historical optimal 
fitness value of the individual or population by continuously updating the particle position and velocity, and 
records the optimal value according to the objective function. Finally, the ideal individual positions and fitness 
values are generated.

Algorithm improvement strategy. Good point set theory. The theory of good point set was proposed 
by Hua Luogeng and Wang  Yuan42, its core ideas can be described as: Let Gd be a unit cube in D-dimensional 
Euclidean space, if r ∈ Gd , then:

{r(n)d × k} in Eq. (3) takes the fractional part of {} and its error satisfies Eq. (4), where C(r, ε) is a constant 
related only to r and ε , and is called Good Point Set (GPS). r is the good point, taken from Eq. (5). Where p satis-
fies the minimum prime number of (p− 3)/2 ≥ d . A good point set is generated by exponential series method 
in this paper, that is, by r = {ej , 1 ≤ j ≤ d} , r is also a good point.

Based on the above theory, a two-dimensional initial particle swarm distribution with a certain initial size is 
generated as shown below. Figure 1 is the initial population distribution generated by random mode, and Fig. 2 
is the initial population distribution generated by good point set. It is obvious that the population generated by 
good point set is more uniform than that generated by random mode at the same initial population size, and the 
distribution of the initial population generated by good point set is determined in different experiments. It has 
been proved that it has sufficient stability. At the same time, in the solution of high-dimensional problems, the 
initial position is generated independently of the dimension, which ensures that it is more suitable for solving 
high-dimensional problems.

Adaptive inertia weight. The inertia weight in the PSO algorithm is a significant variable that reflects the sys-
tem’s ability to conduct both local and global searches. The larger inertia weight improves the global search 
ability, and the corresponding smaller inertia weight has strong local search ability, but it may fall into the 

(1)v(d + 1) = wv(d)+ c1r1(pbest(d)− x(d))+ c2r2(gbest(d)− x(d))

(2)x(d + 1) = x(d)+ v(d + 1)

(3)Pn(k) = ({r(n)1 × k}, {r(n)2 × k}, ...,{r(n)d × k}) (k = 1, 2, ... , n)

(4)φ(n) = C(r, ε)n−1+ε

(5)r = {2 cos(2πk/p), 1 ≤ k ≤ d}

Figure 1.  Random initialization.
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local optimal solution. In the later stage, the smaller inertia weight is adopted to search the optimal value more 
accurately. The adaptive inertia weight strategy not only ensures the operation efficiency of the algorithm, but 
also improves the optimization ability of the algorithm. Then the speed update formula of GPSAPSO algorithm 
becomes Eq. (6), and the position update formula also changes with the speed update formula.

At present, there are several commonly used decreasing inertia weights: linear decreasing strategy (W3), 
linear differential decreasing strategy (W2 and W4) and decreasing strategy with disturbance term (W1). The 
process of these methods following the number of iterations is shown in Fig. 3 Compared with the ordinary linear 
decline strategy, the inertia weight of the linear differential decline strategy follows the decline of the number of 
iterations more smoothly and more stable. The inertia weight commonly used in particle swarm optimization 

(6)v(d + 1) = w(d) ∗ v(d)+ c1r1(pbest(d)− x(d))+ c2r2(gbest(d)− x(d))

(7)w(d) = ws − ((ws − we)/ger) ∗ d

(8)w(d) = ws − (ws − we) ∗ (d/ger)2

Figure 2.  Good point set initialization.

Figure 3.  Inertia weight strategy.
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algorithm is 0.9. In order to make the later search strategy more accurate, we choose the decreasing interval of 
inertia weight as [0.9, 0.001].

Multi‑population co‑evolution strategy. Numerous population co-evolutionary techniques are put forth in this 
research. The particle population is often divided into three subpopulations: (Base population), (Base popula-
tion), and (Comprehensive Population). When looking for the optimum option in the solution space, these three 
subpopulations cooperate and communicate while updating iterations using various speed and location update 
formulae. In order to maintain the exchange and cooperation among the three populations, the speed update of 
P3 in the integrated population depends on the speed and fitness value of P1 and P2 in the base population, and 
the location update also depends on the current and historical optimal location of the two base populations. The 
interaction and cooperation between these populations can be summarized in Fig. 4:

The P1 and P2 iteration equations for the base population are consistent with the above:

The iteration equation for the population P3 is as follows:

where, the speed update formula of integrated population P3 uses the base population P1 and P2 speeds, and 
the fitness values m1 and m2 . m is the sum of the current fitness of the two basic populations. Through Eq. (11), 
the basic population with better current fitness value has more influence on the integrated population. Equa-
tion (12) introduces the current optimal position pbest3id and the historical optimal position gbest on the basis 
of the original position update strategy. The reason is that the evolution mode of the particle swarm determines 
that the optimal position of the population plays a leading role in the flight of the particle swarm to the optimal 
solution. α1 , α2 and α3 are set to 1/6, 1/3 and 1/2 respectively as the influence factors. The greater the value of α , 
the greater the impact of this position on the comprehensive population position.

The algorithm test
Test functions. The effectiveness of the GPSAPSO algorithm will be examined in this section. To further 
highlight the performance of GPSAPSO, algorithm’s effectiveness is tested by using sixteen benchmark functions 
and comparing it to TTPSO, NSABC, IGSO and CRBA algorithms. The last eight functions are multidimen-
sional functions, while the first eight functions are two-dimensional functions. The specific function expressions 
are shown in Table 1. The sixteen functions in the experiment have minimal values, which are their ideal values.

Parameter setting. To better validate the performance of the GPSAPSO algorithm, improved algorithms 
of several traditional swarm intelligence  algorithms38–41. Were used to compare with GPSAPSO. These improved 
algorithms have been applied and published in the 2021 IEEE Congress on Evolutionary Computation (CEC) 

(9)v
1(2)
id (d + 1) = w(d) · v1(2)id (d)+ c1r1(pbest

1(2)
id (d)− x

1(2)
id (d))+ c2r2(gbest(d)− x

1(2)
id (d))

(10)x
1(2)
id (d + 1) = x

1(2)
id (d)+ v

1(2)
id (d + 1)

(11)
v3id(d + 1) = w(d) ·

(

m−m1

m
· v1id(d + 1)+

m−m2

m
· v2id(d + 1)+ v3id(d)

)

+ c1r1(pbest
3
id(d)− x3id(d))+ c2r2(gbest(d)− x3id(d))

(12)x3id(d + 1) = α1 · x3id(d)+ α2 · pbest3id(d)+ α3 · gbest(d)+ v3id(d + 1)

Figure 4.  Multi-population strategy.
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conference as well as in some journals, and have been reasonably validated by the proposers. Comparing them 
with our proposed GPSAPSO algorithm can better prove the value of our improved version and highlight the 
effectiveness of the GPSAPSO algorithm.

Table 2 are the parameter setting contents of the several algorithms used. Since the GPSAPSO algorithm is 
an improved algorithm from the original algorithm PSO, the parameter settings are consistent with the original 
algorithm except for the improved part, so they are not given again. In order to ensure the reasonableness of the 
algorithm test, the initial population size popsize is set to 100 for all algorithms, and the number of iterations 

Table 1.  Test functions.

Function expression Dim Range

f1 = x
2
1 + 2x22 − 0.3× cos (3πx1)× cos (4πx2)+ 0.3 2 |x| ≤ 10

f2 = 100× (x21 − x
2
2)+ (1− x1)

2 2 |x| ≤ 10

f3 = 0.26× (x21 + x
2
2)− 0.482x1x2 2 |x| ≤ 10

f4 = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 |x| ≤ 10

f5 = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2 2 |x| ≤ 10

f6 = x
2
1 + x

2
2 + 25(sin2 x1 + sin2 x2) 2 |x| ≤ 2π

f7 = (|x1| − 5)2 + (|x2| − 5)2 2 |x| ≤ 10

f8 = 0.5+ sin2
√

x
2
1+x

2
2−0.5

[1.0+0.0001(x21+x
2
2 )]2

2 |x| ≤ 10

f9 =
d
∑

i=1

(x1)
2 + 10 cos(2πxi)

2 + 10 20 |x| ≤ 5.12

f10 =
d−1
∑

i=1

100× (xi+1 − x
2
i
)2 + (1− xi)

2 20 |x| ≤ 10

f11 =
d
∑

i=1

(x2
i
)+

(

d
∑

i=1

0.5ixi

)2

+

(

d
∑

i=1

0.5ixi

)4

20 |x| ≤ 10

f12 = (1/4000)
∑

d

i=1 (x
2)+

∏

d

i=1 cos(xi/i
1/2)+ 1 20 |x| ≤ 60

f13 =
d
∑

i=1

(x2
i
) 20 |x| ≤ 10

f14(x) = −20 exp

(

−0.2

√

1
n

n
∑

i=1

x
2
i

)

− exp

(

1
n

n
∑

i=1

cos(2πxi)

)

+ 20+ e 20 |x| ≤ 32

f15(x) =
n
∑

i=1

|xi | +
n
∏

i=1

|xi | 20 |x| ≤ 10

f16(x) =
n
∑

i=1

(|xi + 0.5|)2 20 |x| ≤ 10

Table 2.  Parameter setting.

Algorithm Parameter content Parameter setting

GPSAPSO

Inertia weight ws,we ws = 0.9, we ∈ [ 0.001,0.4]

Self-learning factor c1 c1 = 1.4995

Social-learning factor c2 c2 = 1.4995

TTPSO

Branching factor d d ≥ 2

Topology Tournament

Inertia weight w w = 0.9

NSABC

Control parameter limit = 100

Index of selected neighbor k = 10

Parameter upper limit C = 1.5

IGSO

Initial fluorescein l0 l0 = 5

Initial step size s s = 0.5

Fluorescein volatilization factor ρ ρ = 0.4

Fluorescein renewal rate γ γ = 0.6

Field change rate β β = 0.08

CRBA

Iteration parameter τ τ  = 2.3

Pulse loudness value R0 R0 = 0.7

Initial loudness A0 A0 = 0.9



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19325  | https://doi.org/10.1038/s41598-022-21463-2

www.nature.com/scientificreports/

ger is set to 100 generations. The effectiveness of the improved GPSAPSO algorithm was verified by comparison 
experiments.

Experimental result. The five algorithms, GPSAPSO, TTPSO, NSABC, IGSO and CRBA, are tested with 
sixteen benchmark functions, and 30 independent iterations are run for each algorithm in this section. The 
optimal value, the worst value, the mean and the variance of these sixteen functions are obtained as the main 
indicators of the superiority or inferiority of the two algorithms. At the same time, the convergence curves of 
the sixteen standard functions during the finite iterations are also recorded. The performance testing of the 
GPSAPSO algorithm is divided into two parts according to the types of low-dimensional and high-dimensional 
test functions. In addition to the parameter settings specified before the experiments, some parameters of the 
five algorithms need to be dynamically adjusted during the experiments according to the different test functions, 
so that the results of the test functions show the optimal effect. For example, the parameter we of the GPSAPSO 
algorithm has an important impact on the accuracy of the GPSAPSO algorithm for finding the best and the con-
vergence speed, therefore, in order to balance the accuracy and convergence, a larger value of the parameter we 
between [0.001, 0.4] is chosen for the low-dimensional test function relative to the high-dimensional function.

Similarly, for the IGSO and GSO algorithms, the decision radius is also a parameter that has an important 
impact on the algorithm results. In the experimental process, according to the references and experimental 
experience, the appropriate decision radius is adjusted for different test functions, such as 2.448( f1 ), 2.548( f2 ), 
…, 30.048( f12 ), …, 32.048( f16 ). Finally, the five algorithms are tested in order of low-dimensional and high-
dimensional test functions and obtained the final experimental results.

Low dimensional test function. The results of low dimensional test functions are shown in Fig. 5 and Table 3. 
For low dimensional f1 to f3 , f5 to f8 , the average values obtained by running GPSAPSO algorithm 30 times are 
3.70E − 18, 5.82E − 17, 1.43E − 19, 6.13E − 21, 1.92E − 24, 1.57E − 18 and 6.60E − 04 respectively, which are better 
than the average values obtained by TTPSO, NSABC, IGSO and CRBA, and the optimal value, worst value and 
variance are also better than the above algorithms, especially for f2 , f5 and f6 , running 30 times results are much 
better than other algorithms. However, for f4 , the average running value of NSABC algorithm is 6.73E − 22, 
which is better than 3.37E − 21 of GPSAPSO algorithm. Through Fig. 5 and Table 3, it can be seen that GPSAPSO 
algorithm has great advantages in solution accuracy and stability compared with the other three algorithms.

Generally speaking, in terms of low dimensional function, GPSAPSO algorithm is much better than TTPSO, 
IGSO and CRBA algorithm, and has obvious advantages in four aspects: optimal value, worst value, average 
value and variance. Compared with the NSABC algorithm, except that the GPSAPSO algorithm is inferior to 
the NSABC algorithm in f4 , the performance of the GPSAPSO algorithm is still superior in the other 7 low-
dimensional test functions.

High dimensional test function. The results of high-dimensional test functions are shown in Fig. 6 and Table 4. 
It can be seen that the performance of GPSAPSO algorithm on high-dimensional functions is significantly 
improved compared with TTPSO, NSABC, IGSO and CRBA algorithms. The average values of GPSAPSO 
algorithm running 30 times on high-dimensional test functions f9 to f16 are 1.71E − 01, 1.65E − 23, 1.19E − 28, 
2.64E − 05, 3.12E − 06, 1.20E − 05, 4.21E − 03 and 3.90E − 03 respectively. For f9 , f12 and f16 , the performance 
of GPSAPSO algorithm is better than that of TTPSO, NSABC, IGSO and CRBA algorithm, and the variance 
is smaller, which proves that it has better stability; For f10 , f11 , f13 , f14 and f15 , the performance of GPSAPSO 
algorithm is significantly improved compared with other algorithms in several indicators.

Figure 6 shows the iterative curves of GPSAPSO, TTPSO, NSABC, IGSO, and CRBA, and it is obvious that 
GPSAPSO has a large advantage over the other algorithms in terms of accuracy and convergence speed. Com-
pared with the performance of low dimensional functions, it can be seen that GPSAPSO algorithm has greater 
advantages in solving high-dimensional function problems.

Statistical analysis. After testing the performance of the proposed GPSAPSO algorithm through sixteen 
low and high dimensional test functions, statistical analysis of the search results is required to ensure that the 
obtained results are statistically significant and to prove statistically the significance of the advantage of the 
GPSAPSO algorithm in the face of these selected competing algorithms.

The Wilcoxon rank sum  test43 was used to implement the requirement for validating the effectiveness of the 
algorithm. The Wilcoxon rank sum test enabled the determination of the p-value between GPSAPSO and several 
other competing algorithms, and the improved algorithm was usually chosen to have a significant advantage 
over several competing algorithms when p < 0.05.

Tables 5 and 6 show the average ranking of the five algorithms and the simulation results of the Wilcoxon rank 
sum test, respectively. The smaller the average ranking in Table 5 proves that the algorithms perform better, and 
the results show that the GPSAPSO algorithm achieves the best performance compared with other algorithms in 
both low-dimensional and high-dimensional functions. The p-value between GPSAPSO and other algorithms is 
less than 0.05 for both low-dimensional and high-dimensional functions, which proves that GPSAPSO algorithm 
performs significantly better than TTPSO, NSABC, IGSO and CRBA.

According to the above content, GPSAPSO algorithm should show higher stability than the basic particle 
swarm optimization algorithm, and the stable initial position uniformly generated through the good point set 
is more dominant in solving high-dimensional problems. These characteristics are reflected in the iterative pro-
cess, optimal value and variance in Figs. 5, 6, Tables 3 and 4. At the same time, we also use Wilcoxon rank sum 
test to further prove the statistical advantages of GPSAPSO algorithm over several competitive algorithms. As 
a result, the GPSAPSO algorithm significantly outperforms the classic PSO algorithm in terms of performance.
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Algorithm application
BP neural network. BPNN typically have three layers: an input layer, an output layer, and a hidden layer. 
It takes the data into the network, analyzes each layer, and then calculates the discrepancy between the output 
expected and the output actually produced. This discrepancy is then used to estimate the output layer’s previous 
layer’s mistake and to update the previous layer’s error (input layer). This method yields the error estimation for 
each layer of the neural network structure. Finally, until the best output result is attained, the network’s weight 
and threshold are adjusted once again. The structure of BP neural network is shown in Fig. 7, and the core for-
mula is as follows:

(13)Zk = f1

(

n
∑

i=1

wkixi + θk

)

k = 1, 2, . . . , r

(14)yj = f2

(

n
∑

k=1

vjkzk + γj

)

j = 1, 2, . . . ,m

Figure 5.  Iterative process of low dimensional function.
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Table 3.  Results of 30 runs of low dimensional functions.

TTPSO NSABC IGSO CRBA GPSAPSO

f 1

Worst 2.267721E − 05 2.553513E − 14 9.418810E − 02 8.178217E − 09 5.551115E − 17

Best 4.414684E − 08 1.110223E − 16 1.905193E − 05 1.156780E − 11 0

Mean 4.666975E − 06 2.967996E − 15 1.833889E − 02 1.384278E − 09 3.700743E − 18

Std 4.482296E − 11 2.677574E − 29 7.338375E − 04 3.271468E − 18 1.983486E − 34

Rank 4 2 5 3 1

f 2

Worst 1.637812E − 04 3.355315E − 04 1.086430E − 03 1.826331E − 06 4.739494E − 16

Best 4.531961E − 07 4.877187E − 08 1.086968E − 07 3.515622E − 10 6.102963E − 19

Mean 3.282511E − 05 1.535623E − 05 2.495193E − 04 4.888582E − 07 5.823536E − 17

Std 1.443323E − 09 3.713633E − 09 1.076127E − 07 3.217606E − 13 1.383771E − 32

Rank 4 3 5 2 1

f 3

Worst 6.997039E − 07 4.253731E − 09 1.336978E − 04 1.342945E − 09 2.699281E − 18

Best 1.069105E − 10 8.570840E − 12 9.207510E − 09 2.497696E − 12 9.769277E − 22

Mean 6.226152E − 08 6.990252E − 10 1.687869E − 05 1.852653E − 10 1.432911E − 19

Std 1.816296E − 14 6.807405E − 19 1.015946E − 09 7.165292E − 20 2.375116E − 37

Rank 4 3 5 2 1

f 4

Worst 7.080420E − 06 2.914983E − 21 2.358705E − 03 5.513886E − 07 3.123659E − 20

Best 2.044078E − 08 1.184143E − 23 6.723772E − 07 4.005156E − 10 4.410329E − 24

Mean 8.480835E − 07 6.733416E − 22 2.940743E − 04 7.065048E − 08 3.365373E − 21

Std 1.962630E − 12 5.699855E − 43 3.152841E − 07 1.111447E − 14 4.558172E − 41

Rank 4 1 5 3 2

f 5

Worst 2.072685E − 05 8.239942E − 08 2.776058E − 03 1.234201E − 07 6.379623E − 20

Best 2.887694E − 08 6.585241E − 11 1.626089E − 07 7.338608E − 12 4.779711E − 24

Mean 3.096056E − 06 1.491255E − 08 1.286446E − 04 2.189552E − 08 6.131498E − 21

Std 2.544625E − 11 2.800000E − 16 2.591209E − 07 8.247456E − 16 1.509203E − 40

Rank 4 2 5 3 1

f 6

Worst 5.778872E − 05 2.648856E − 14 5.862035E − 02 4.453918E − 17 3.500164E − 23

Best 1.170544E − 08 6.036982E − 18 4.322043E − 06 3.434451E − 20 3.447365E − 27

Mean 6.491699E − 06 2.026135E − 15 1.017376E − 02 8.332784E − 18 1.923361E − 24

Std 1.317390E − 10 6.155858E − 30 2.112588E − 04 1.046490E − 34 4.083310E − 47

Rank 4 2 5 3 1

f 7

Worst 7.264868E − 06 7.424328E − 08 3.368981E − 06 2.263041E − 08 1.268035E − 17

Best 1.526670E − 08 4.168165E − 13 1.539421E − 08 2.329014E − 11 2.869042E − 20

Mean 6.582430E − 07 5.756695E − 09 6.240637E − 07 4.049678E − 09 1.566034E − 18

Std 1.710319E − 12 2.118486E − 16 5.952302E − 13 2.573063E − 17 7.020742E − 36

Rank 5 3 4 2 1

f 8

Worst 9.855165E − 04 9.854326E − 04 9.865543E − 04 9.854327E − 04 9.854029E − 04

Best 2.463412E − 06 5.079149E − 07 9.854029E − 04 9.515640E − 04 1.665335E − 16

Mean 8.143831E − 04 8.599449E − 04 9.854420E − 04 9.842819E − 04 6.602198E − 04

Std 1.264072E − 07 1.062356E − 07 4.413118E − 14 3.818545E − 11 2.016311E − 07

Rank 2 3 5 4 1

Sum rank 31 19 39 22 9

Mean rank 3.875 2.375 4.875 2.75 1.125

Total rank 4 2 5 3 1
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Table 4.  Results of 30 times of high-dimensional function operation.

TTPSO NSABC IGSO CRBA GPSAPSO

f 9

Worst 6.289205E + 01 8.124867E + 01 9.702472E + 01 1.092325E + 02 3.282714E + 01

Best 1.494779E + 01 2.778917E + 01 8.563365E + 01 2.617890E + 01 9.248632E + 00

Mean 2.932179E + 01 4.825447E + 01 9.117730E + 01 6.658759E + 01 1.709459E + 01

Std 1.403382E + 02 1.614690E + 02 2.217917E + 01 4.616491E + 02 2.694716E + 01

Rank 2 3 5 4 1

f 10

Worst 2.815665E − 03 3.843360E − 04 2.249157E + 00 1.373550E − 04 1.974942E − 22

Best 2.112196E − 06 1.418602E − 07 7.441240E − 05 1.151703E − 07 4.142979E − 26

Mean 4.862784E − 05 5.370253E − 05 4.989150E − 01 2.463714E − 05 1.649918E − 23

Std 6.634009E − 08 7.924844E − 09 9.600330E − 01 8.167195E − 10 1.535172E − 45

Rank 3 4 5 2 1

f 11

Worst 1.147669E − 08 3.258578E − 07 8.826070E − 13 3.358709E − 10 1.802463E − 27

Best 0 5.086384E − 12 2.011935E − 18 1.530601E − 11 0

Mean 1.896004E − 09 4.428299E − 09 2.198771E − 14 2.496341E − 11 1.193353E − 28

Std 9.729818E − 18 8.582472E − 16 1.442906E − 25 4.444196E − 21 1.265816E − 55

Rank 4 5 2 3 1

f 12

Worst 4.907317E − 02 1.013322E + 00 3.851482E − 02 1.028376E + 00 1.252613E − 05

Best 9.577764E − 04 1.214192E − 02 1.507777E − 02 5.251707E − 01 5.579148E − 07

Mean 2.001901E − 02 5.164110E − 01 2.939266E − 02 8.635266E − 01 2.640530E − 05

Std 1.225827E − 04 2.061647E − 01 8.171326E − 05 2.107291E − 02 1.117796E − 08

Rank 2 4 3 5 1

f 13

Worst 4.280576E − 03 1.097016E + 00 5.685581E + 00 2.250238E + 00 1.317134E − 05

Best 5.556189E − 05 2.949492E − 01 4.321669E + 00 2.927199E − 02 3.171975E − 07

Mean 1.095807E − 03 6.564266E − 01 4.820608E + 00 3.321092E − 01 3.121793E − 06

Std 1.138349E − 06 5.705649E − 02 2.893478E − 01 1.879548E − 01 1.187090E − 11

Rank 2 4 5 3 1

f 14

Worst 3.225701E + 00 5.213369E + 00 3.701980E + 00 5.005182E + 00 2.288036E − 03

Best 1.158318E + 00 2.597105E + 00 3.161258E + 00 1.069870E + 00 4.914404E − 04

Mean 2.174902E + 00 3.837696E + 00 3.332169E + 00 2.336646E + 00 1.195734E − 03

Std 3.140219E − 01 4.970029E − 01 4.865447E − 02 8.365261E − 01 1.581415E − 07

Rank 2 5 4 3 1

f 15

Worst 5.023287E + 00 3.860776E + 00 1.165920E + 01 1.060255E + 01 2.036341E − 02

Best 1.731815E − 01 8.435587E − 01 7.927882E + 00 3.089337E − 01 3.702918E − 04

Mean 1.174665E + 00 1.936924E + 00 9.444504E + 00 1.603112E + 00 4.213966E − 03

Std 7.353417E − 01 7.053028E − 01 2.486917E + 00 4.061240E + 00 5.598226E − 05

Rank 2 4 5 3 1

f 16

Worst 9.431983E − 01 2.580797E + 00 6.463993E + 00 3.874423E + 00 9.578559E − 02

Best 3.790485E − 02 2.170260E − 01 2.769268E + 00 9.917564E − 02 2.480810E − 04

Mean 2.832213E − 01 7.399041E − 01 5.035652E + 00 6.792702E − 01 3.904931E − 03

Std 4.871374E − 02 1.801368E − 01 2.289568E + 00 7.346642E − 01 6.014328E − 03

Rank 2 4 5 3 1

Sum rank 19 33 34 26 8

Mean rank 2.375 4.125 4.25 3.25 1

Total rank 2 4 5 3 1
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Figure 6.  Iterative process of high-dimensional function.

Table 5.  Mean ranking values of different algorithms.

Algorithms

Mean ranking

Low dimensional test function High dimensional test function

TTPSO 3.875 2.375

NSABC 2.375 4.125

IGSO 4.875 4.25

CRBA 2.75 3.25

GPSAPSO 1.125 1
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Equation (13) is the output of the k-th node of the implied layer, where wkixi + θk is the input of information 
xi at the k-th node and Zk is the input information of the output layer. The output of the j-th node of the output 
layer is like a Eq. (14), where vjkzk + γj is the input of input information Zk at the j-th node of the output layer. 
The error function E of the expected output and the true output of the sample network is the Eq. (15), where 
T = (t1, t2, ...tm)

T is the true output of the network and e = (e1, e2, ..., em)
T is the error vector.

The classification accuracy of the BPNN is influenced by the initial weight and threshold because these 
parameters are often created at random. A local optimal solution is easily reached because the BPNN uses the 
gradient descent method as the update parameter. To create the prediction model of the simultaneous integrated 
learning of GPSAPSO and BPNN, we decided to introduce PSO method and improve the original PSO algorithm.

Parallel integrated learning algorithm based on GPSAPSO-BP neural network. Using 
GPSAPSO algorithm to optimize the weight and threshold parameters of BPNN, a parallel integrated learning 
algorithm based on GPSAPSO-BPNN is constructed. The idea is to determine the number of intermediate layer 
nodes of the network based on the input and output parameters and to obtain the number of ownership values 
and thresholds so as to determine the coding length of the individuals of the particle population, i.e., each indi-
vidual in the population contains all the weights and thresholds. The initial weights and thresholds of the whole 
network are obtained by decoding the individuals. The training sample data are used to train the network, while 
the test sample data are used to obtain the error values. The error values are the fitness values for the GPSAPSO 
algorithm. The GPSAPSO algorithm is then used to optimize the weights and thresholds of the BP neural net-
work, which results in a parallel interactive integrated learning algorithm of the two algorithms.

The logical structure of GPSAPSO-BPNN algorithm is shown in Fig. 8. The specific experimental steps are 
as follows:

Step 1 Input the original data (indicators and output results), and divide the test set and training set; Nor-
malize the data;

Step 2 Determine the number of nodes in the middle layer of BPNN, construct the structure of BPNN, ini-
tialize the weights and thresholds of BPNN, and generate individual population with uniform distribution by 
using good point set theory;

Step 3 GPSAPSO initialization: Determine the maximum number of iterations ger , population size popsize , 
individual and social learning factors c1 and c2 , and inertia weights w . The parameters are automatically adjusted 
with the number of iterations.

(15)E =
1

2

m
∑

j=1

(tj − yj)
2 =

1

2
(T − Y)T (T − Y) =

1

2
eTe

Table 6.  Results of Wilcoxon rank sum test.

Compared algorithms

Function type

Low dimensional test function High dimensional test function

GPSAPSO with TTPSO 6.9930E − 03 4.9883E − 02

GPSAPSO with NSABC 4.9883E − 02 1.4763E − 02

GPSAPSO with IGSO 2.9526E − 03 6.9930E − 03

GPSAPSO with CRBA 1.0412E − 02 2.0668E − 02

Figure 7.  BP neural network structure.
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Step 4 BPNN is optimized using GPSAPSO algorithm. Using the mean square error predicted by BP network 
as the optimization process, the mean square errors under different number of hidden layer nodes are compared, 
and the algorithm of GPSAPSO is executed through speed and position updates.

Step 5 The BPNN optimized by GPSAPSO is trained and predicted, and the predicted value of GPSPSO-
BPNN algorithm is compared with the true value.

Step 6 Determine whether the test error meets the target requirements, and if it meets the requirements, get 
the best BPNN weights and thresholds, produce output results, and end the algorithm; Otherwise, judge if the 
GPSAPSO algorithm has reached the maximum number of iterations, and turn to Step 4, if it has not reached 
the maximum number of iterations. Otherwise, the network weights and thresholds will be obtained, the output 
results will be generated, and the algorithm will be ended.

Data sampling and processing. The experimental data comes from the National Surface Water Qual-
ity Auto-monitoring Implementation Data Publishing System (www. cnemc. cn), which is collected by Qingyue 
(data.epmap.org). The experimental process chooses 12,138 data from all water quality monitoring sections of 
Huai River Basin in Bengbu City from January 1, 2021 to October 31, 2021.

The data are categorized for independent experiments according to various areas to ensure the accuracy 
and comparability of the results. Hugou, mohekou, longkang, guanzui, wuhe, bengbu zhashang, and bengbu 

Figure 8.  GPSAPSO-BPNN integrated algorithm flow chart.

Table 7.  Section classification and data volume.

Section name Data volume Amount of filtered data

Hu Gou 1782 260

Long Kang 1766 275

Guan Zui 1685 266

Five rivers 1791 284

Bengbu Guzhen 1780 273

Bengbu gate 1768 247

Total 12,138 1859

http://www.cnemc.cn


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19325  | https://doi.org/10.1038/s41598-022-21463-2

www.nature.com/scientificreports/

guzhen are the names of the data Regions on the water quality monitoring is kept every four hours, the details 
are shown in Table 7. As the experimental object, we decide to use the data at 12:00 every day between January 
1 and October31, 2021.

According to the environmental quality standard for surface water issued by the state and combined with the 
indicators provided by the water quality detection system, seven indicators ( X1–X7 ) including pH, dissolved oxy-
gen (mg/L), potassium permanganate index (mg/L), ammonia nitrogen (mg/L), total phosphorus (mg/L), total 
nitrogen (mg/L) and turbidity (NTU) are selected as the standards for water quality prediction and evaluation.

According to the standards issued by the state, the surface water quality can be divided into five grades: I, II, 
III, IV and V, those lower than the class V water quality standard are uniformly called inferior class V water. In 
order to verify the accuracy of the data, remove the monitoring data stored by the monitoring station and the 
date of certain lost data due to issues with monitoring station maintenance and data loss during the collection 
of original data; then, the data are tested and processed according to the triple standard deviation criterion to 
eliminate some abnormal values. The data is normalized because of the disparity in the dimensions and magni-
tude of the data. The water quality grade is replaced by Arabic numerals, and the inferior grade V is replaced by 
the number 6; the final raw data processed are shown in Tables 7 and 8 for the amount of data and partial data, 
independent experiments are carried out according to the section classification. Due to the limitation of space, 
it is only described through the section of Guzhen, Bengbu.

Based on the above data processing, the above seven indicators are selected as the input layer of BP network 
by the water quality monitoring standard, that is, the number of input layer nodes m = 7 is determined, and the 
corresponding output layer nodes n = 1 is determined. The number of nodes in the hidden layer is set mainly 
according to the empirical formula:

By changing the value of a to test the training set, select the value with the lowest mean square error on the 
test set as the number of hidden layer nodes. The result of this experiment shows that the best number of hid-
den layer nodes is 10, and the corresponding mean square error is the lowest of 0.024789, then h = 10. Thus, a 
total of 80 ( m× h+ n× h ) weights and 11 ( h+ n ) thresholds are determined for the network, i.e. dim = 91 for 
the network parameters to be optimized (that is, the dimensions in the above algorithm). In this experiment, 
one-fourth of the samples are selected as the test set, while the rest of the samples are used as the training set 
and classified according to the section.

The learning factor of particle swarm algorithm has a great impact on the performance of the algorithm. By 
limiting the learning factor to [1, 2], running the algorithm 20 times while keeping other parameters unchanged, 
the number of times to obtain the optimal solution is taken as the evaluation criterion, and then the most appro-
priate learning factor is selected, as shown in Fig. 9.

Thus, the parameters of the GPSAPSO-BP algorithm are set as follows: the maximum number of evolutions 
ger = 50, the individual learning factor c1 = 1.4995, the social learning factor c2 = 1.4995, and the inertia weight 
as above is the adaptive weight.

Experimental results and discussion. Based on the above algorithm design and data collection and 
processing, the processed data are selected as the input data for the GPSAPSO-BPNN algorithm, of which 1/4 is 
used as the test set and the rest as the training set. The optimal threshold and weight values of the corresponding 
networks are obtained by running the algorithm. The fitness function is selected as the mean square error of the 
training and test sets, as described above.

At the same time, in order to increase the reliability of the experiment, the iterations of the traditional BPNN, 
TTPSO-BPNN, NSABC-BPNN, IGSO-BPNN, CRBA-BPNN, and GPSAPSO-BPNN algorithms were added 
process and test set mean square error comparison. The same data were used for the experiments, and the train-
ing results and iteration curves are shown in Table 9 and Fig. 10.

(12)h =
√
m+ n+ a

(

a take an integer of 1− 10
)

Table 8.  Partial sample data.

Sample

Water quality monitoring index Grade

X1 X2 X3 X4 X5 X6 X7 Y

S1 0.6860 0.7858 0.3997 0.0566 0.0677 0.3079 0.1852 4

S2 0.7616 0.7742 0.3388 0.0462 0.0342 0.3222 0.0949 3

S3 0.6860 0.7329 0.3436 0.0473 0.0366 0.2709 0.1250 3

S4 0.7442 0.7593 0.3404 0.1212 0.0748 0.2596 0.0565 3

S5 0.5233 0.1216 0.2007 0.4836 0.3662 0.1862 0.3045 5

S6 0.5756 0.0655 0.0558 0.2395 0.3851 0.1932 0.0000 6

S7 0.7616 0.7329 0.3372 0.0658 0.1011 0.2880 0.2412 3

S8 0.7500 0.7044 0.4286 0.0855 0.2398 0.3705 0.5556 4

… … … … … … … … …

Sn 0.6221 0.5732 0.0561 0.1435 0.1920 0.7289 0.2406 3
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In terms of training accuracy and convergence speed, the GPSAPSO-BP algorithm significantly outperforms 
other algorithms based on the aforementioned experimental results. It is easy to see that for the same number of 
iterations, the GPSAPSO-BPNN algorithm has lower mean square error values than the BPNN, TTPSO-BPNN, 
NSABC-BPNN, IGSO-BPNN, and CRBA-BPNN algorithms, and higher solution speed than the other eight 
algorithms. The comparison of the mean absolute error, mean square error, root mean square error and error 

Figure 9.  Influence of different learning factors on algorithm performance.

Table 9.  Error comparison of different algorithms.

Algorithm model MAE MSE RMSE MAPE (%)

BPNN 0.5127 0.3929 0.6268 13.1547

TTPSO-BPNN 0.1561 0.0815 0.2854 4.3648

NSABC-BPNN 0.3286 0.1967 0.4435 8.8151

IGSO-BPNN 0.2200 0.0977 0.3126 6.2861

CRBA-BPNN 0.2026 0.0788 0.2808 5.4772

GPSAPSO-BPNN 0.1447 0.0607 0.2465 3.7680

Figure 10.  Algorithm convergence curve.
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percentage of the algorithm is shown in Table 9. It can be seen that the GPSAPSO-BPNN algorithm has been 
improved on the basis of the original one, which proves the feasibility and advantages of the algorithm and can 
improve the accuracy of water quality prediction in Huai River.

Conclusion
The theory of good point sets is introduced, an initial particle swarm with uniform distribution in the solution 
space is built, adaptive inertia weights are used to dynamically adjust the size of inertia weights during iteration, 
and finally, a good point set and an improved GPSAPSO algorithm with adaptive inertia weights are obtained 
through a variety of cluster co-evolution strategies. The feasibility of the GPSAPSO algorithm is verified by 
comparing it with TTPSO, NSABC, IGSO and CRBA through sixteen standard test functions from two to high 
dimensions. Finally, a parallel integrated learning model for water quality prediction of the Huaihe River was 
established by combining the GPSAPSO algorithm with the traditional BPNN. TTPSO-BPNN, NSABC-BPNN, 
IGSO-BPNN and CRBA-BPNN algorithms were added to the actual water quality prediction of Huaihe River 
in order to compare with GPSAPSO-BP algorithm and further verify its efficacy, including faster convergence 
speed and higher accuracy. Therefore, the research results of this paper provide a scientific method and basis for 
the monitoring and management of water quality (“Supplementary information S1”).

Data availability
The data used in the article were obtained from the China General Environmental Monitoring Station www. 
cnemc. cn), collected by Qingyue Data (data.epmap.org), and the water quality data recorded at 12:00 daily were 
selected by the authors, and the final data used were obtained by removing missing values as well as filtering 
outliers under the principle of triple standard deviation.
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