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Abstract

Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian
host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate
growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins
that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that
expression of the operon is elevated at 23uC and is repressed in the presence of the alternative sigma factor RpoS,
suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in
the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate
dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression
of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane
chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-
type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25uC.
glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to
significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding
nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick
transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during
the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.
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Introduction

Borrelia burgdorferi is the spirochetal agent of Lyme disease, the

most frequently reported vector-borne disease in the United States

[1]. In the Northeastern United States, B. burgdorferi is transmitted

between mammalian hosts by the bite of the black legged deer tick,

Ixodes scapularis, with the white-footed mouse (Peromyscus leucopus)

serving as the primary reservoir host [2,3]. The transmission cycle

is as intricate as the life of the tick itself. B. burgdorferi are acquired

by uninfected larvae feeding on an infected small mammal [4].

This is essential for the continued maintenance of B. burgdorferi in

nature, since there is no transovarial transmission in Ixodes spp.

[5,6]. The bacteria remain in the midgut of engorged larval ticks

through the molt. The infected nymph will take a blood meal on a

mammal, at which point B. burgdorferi multiply and begin their

migration from the tick midgut to the salivary glands from which

they are transmitted to a mammalian host [7–9], thereby

completing the enzootic cycle.

B. burgdorferi must adjust its gene expression program in response

to the different physiological cues encountered during the natural

enzootic cycle. In bacteria, regulation of gene expression in

response to environmental cues is often mediated by two-

component systems (TCS) and/or alternative sigma factors

[10,11]. The B. burgdorferi genome encodes only two alternative

sigma factors and two TCS [12,13]. Thus, B. burgdorferi must

orchestrate its complex expression programs with a limited

repertoire of known transcriptional regulators. Studies by Norgard

and co-workers demonstrated a link between one TCS, Hk2-Rrp2,

and the alternative sigma factors RpoN and RpoS [14,15]. The

expression of several virulence genes, including ospC, dbpA and

bbk32, are dependent on RpoS [14,16,17]. RpoS is also essential

for repression of genes whose expression is required during the tick

phase, but not in the mammalian host [17,18]. BB0647 (BosR,

Fur) has also been shown to play a role in RpoN-dependent

expression of rpoS [19–21]. Less is currently known regarding the

second TCS, consisting of Hk1 and Rrp1, but recent studies have

begun to elucidate the processes that are regulated by this TCS

[22–24]. In particular, Rrp1 has been shown to be responsible for

production of bis-(39-59)-cyclic dimeric guanosine monophosphate

(c-di-GMP) and mutagenesis of Rrp1 results in alteration of
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expression for a substantial number of genes, including those

involved in uptake and dissimilation of glycerol [22,23,25].

Different carbohydrates are selectively available to B. burgdorferi

during its enzootic cycle. Glucose is the primary carbohydrate

constituent in mammalian blood [26,27] and B. burgdorferi can use

glucose to support growth [28]. Ticks rely on a high concentration

of carbohydrates and other nutrients available in the blood meal

for molting and successful oogenesis [29,30]. During feeding, ticks

create a peritrophic matrix above the epithelial cell layer, which

serves both as a compartment to trap the blood meal and as a

barrier to prevent invasion by microorganisms that accompany the

blood meal. However, the peritrophic matrix is permeable to

hexose sugars [29,31]. Once hexoses permeate across the matrix,

they are sequestered by midgut epithelial cells during larval

feeding [29,31]. Consequently, nutrients present in the blood meal

are rapidly depleted during larval feeding and are likely non-

existent in an unfed nymphal midgut. Therefore, spirochetes

resident in the midgut must identify and utilize alternative

carbohydrates until the unfed nymph takes its next blood meal.

Glycerol, a diffusible carbohydrate, is a readily available

nutrient in the tick. Glycerol is produced by Ixodes spp. and serves

as a colligative antifreeze for tick survival during the winter [32–

34]. B. burgdorferi encodes a putative glycerol utilization operon

consisting of three genes. glpF (bb0240) encodes a putative

transmembrane facilitator protein that mediates the entry of free

glycerol into the cell. glpK (bb0241) encodes a putative kinase that

would produce glycerol 3-phosphate (G3P) which would be the

substrate for glycerol 3-phosphate dehydrogenase (G3PDH), an

enzyme putatively encoded by the third gene in the operon,

bb0243. The resulting product, dihydroxyacetone phosphate, can

enter glycolysis through the action of triose phosphate isomerase

and ultimately result in the net production of one ATP molecule

per original glycerol molecule [12,28]. Alternatively, G3P may be

converted to phosphatidic acid through the action of two enzymes,

BB0327 (G3P acyltransferase) and BB0037 (Lysophosphatidic acid

acyltransferase); this pathway is required for phospholipid

biosynthesis and production of new cell membrane [12] (Figure 1).

Three lines of evidence suggest that glycerol utilization may be

important during the vector phase of the enzootic cycle. Ojaimi

et al. reported that all genes of the glycerol utilization operon are

more highly expressed during in vitro growth in BSK-II medium

at 23uC as compared to growth at 35uC [35]. Caimano et al.

demonstrated that repression of glp operon expression is dependent

on RpoS within the mammalian host [17]. Moreover, constitutive

expression of the glp operon partially restores the ability of Rrp1-

deficient B. burgdorferi to survive within feeding ticks [23].

In order to elucidate the role of glycerol uptake and utilization

by B. burgdorferi during its natural life cycle and the regulatory

events that govern glp operon expression, the gene predicted to

encode G3PDH (bb0243) was disrupted and the effects of

mutagenesis were evaluated in vitro and during infection of ticks

or mice. The results demonstrate that the ability to utilize glycerol

as a carbohydrate for use in the glycolytic pathway during the tick

phase of the infectious cycle is critical for maximal B. burgdorferi

fitness.

Results

Bioinformatic analysis of B. burgdorferi glycerol 3-
phosphate dehydrogenase

The B. burgdorferi G3PDH genomic sequence has been

annotated to putatively encode the anaerobic form of the enzyme

based on its similarity to the anaerobic G3PDH ortholog of

Haemophilus influenzae strain Rd (glpA) [12]. Other organisms

containing an anaerobic GlpA (such as E. coli) contain two

additional subunits as part of the functional G3PDH enzyme;

GlpB, a subunit involved in FMN binding [36] and GlpC, a small

membrane anchoring subunit [37]. Together, the individual

protein molecules form a functional GlpABC heterotrimer [36].

Whole genome sequencing of B. burgdorferi failed to reveal putative

genes with homology to any known glpB or glpC orthologs [12].

Further, BLASTP analysis revealed no orthologs in B. burgdorferi

with similarity to either E. coli strain K12 or H. influenzae strain Rd

GlpB or GlpC.

The tertiary structure of B. burgdorferi G3PDH was predicted

using the SWISS-MODEL server [38–40] by comparison to E. coli

K12 aerobic GlpD and anaerobic GlpA, as well as H. influenzae

strain Rd anaerobic GlpA. B. burgdorferi G3PDH autoaligned with

E. coli aerobic GlpD (PDB 2QCU), but not with E. coli GlpA [41]

(Figure 2). E. coli anaerobic GlpA and H. influenzae GlpA auto-

aligned to the anaerobic GlpA of Bacillus halodurans (PDB 3DA1)

[42] (Figure 2). The modeling predicts that B. burgdorferi G3PDH

and E. coli aerobic GlpD share similar tertiary structures. Yeh et al.

have described 14 amino acid residues that participate in the E. coli

GlpD active site based on a 1.75 Å structural model [41]. B.

burgdorferi G3PDH contains conserved residues at 12/14 positions,

in contrast to the E. coli and H. influenzae GlpA proteins (9/14).

Taken together, the bioinformatic analyses suggest that B.

burgdorferi G3PDH has greater similarity to aerobic forms of the

enzyme. We propose that annotation of bb0243 should be changed

to indicate that it putatively encodes an aerobic GlpD and B.

burgdorferi G3PDH is referred to as GlpD in the remainder of this

report.

B. burgdorferi glpD has elevated expression in ticks
The physical linkage of bb0240, bb0241, and bb0243 in the B.

burgdorferi chromosome suggests that these genes comprise an

operon [35]. RT-PCR analysis using RNA extracted from B.

burgdorferi strain B31-A3 revealed that these genes are transcribed

as a single operon (Figure 3). Ojaimi et al. reported that the B.

burgdorferi glycerol operon is more highly transcribed at 23uC
relative to transcript levels in cells grown at 35uC [35]. In order to

explore if this increased transcript level is reflected in protein,

strain B31-A3 whole cell lysate was tested to determine the protein

Author Summary

Borrelia burgdorferi is the vector-borne pathogen that
causes Lyme disease. It has a complex life cycle that
involves growth in a tick vector and a mammalian host —
two diverse environments that present B. burgdorferi with
alternative carbohydrate sources for support of growth.
Previous studies suggested that glycerol may be an
important nutrient in the tick vector. Here we show that
genes predicted to be involved in glycerol metabolism
have significantly elevated expression during all tick
stages. Repression of expression in the mammalian host
is dependent on the alternative sigma factor, RpoS. A
mutant that cannot convert glycerol into dihydroxyace-
tone phosphate to support glycolysis was able to infect
mice. In contrast, the mutant was present at significantly
lower levels in nymphal ticks, its replication was delayed
during nymphal feeding and longer feeding times were
required for transmission from nymph to mouse. The
results demonstrate that the ability to utilize glycerol as a
carbohydrate source for glycolysis during the tick phase of
the infectious cycle is critical for maximal B. burgdorferi
fitness.

B. burgdorferi Requires Glycerol During Tick Phase
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expression levels at these two temperatures. Immunoblot analysis

revealed that when B. burgdorferi strain B31-A3 was grown at 25uC,

7-fold more GlpD was generated compared to the level in cells

grown at 37uC (Figure 4).

To explore the possibility that expression may be differentially

regulated in vivo, glp transcript levels were measured in infected

ticks or mouse joints by real time RT-PCR; transcription of ospA

and ospC was monitored as a control. Expression of the latter genes

followed the expected pattern; ospA was expressed exclusively in

ticks and ospC transcript was detected only in feeding nymphs and

mouse joints (Figure 5). glpD expression was substantially higher

during all tick stages (fed larvae, 3.6862.72 copies/10 copies of

flaB; unfed nymphs, 5.3164.42; fed nymphs, 4.9760.74) than in

mouse joints (1.4561.98 copies/10 copies of flaB). A similar

expression pattern was observed for glpF, the first gene in the

operon (fed larvae, 4.4261.07 copies/10 copies of flaB; unfed

nymphs, 1.4860.61; fed nymphs, 3.7061.89; mouse joint,

0.1360.23) (Figure 5). Caimano et al. showed that transcription

of glp operon genes is subject to RpoS-dependent repression [17].

This was confirmed at the protein level for GlpD as shown in

Figure 6. Wild-type or RpoS mutant cells were grown in vitro at

either 23uC or 37uC or in dialysis membrane chambers (DMCs)

implanted in rat peritoneal cavities. Induction of OspC expression

and repression of OspA expression in DMCs confirmed that B.

burgdorferi attained the host-adapted state and abrogation of these

changes in expression in the RpoS mutant showed that these

alterations were dependent on RpoS, as expected. GlpD

expression was virtually abolished in wild-type B. burgdorferi grown

in DMC and this effect was not observed in the RpoS mutant cells

(figure 6).

Construction of a B. burgdorferi glpD mutant
To study the role of glycerol utilization in B. burgdorferi, glpD, the

distal ORF in the glycerol operon was inactivated in strain B31-A3

by disruption with a flgB-aadA cassette inserted at residue K149

(Figure 7). Three mutants, two with the flgB-aadA cassette in the

same orientation as the operon (CP176, CP177) and one with the

insert in the opposite orientation (CP257), were isolated

(Figure 8A). Southern blot analysis confirmed a disruption in glpD

and showed that recombination occurred by a double crossover

event in all three mutants (Figure 8B). Western blot analysis

revealed that GlpD was absent in the mutants (Figure 9). Analysis

of plasmid content of the wild type by PCR revealed that it lacked

lp5 and cp9 and contained all other B31 linear plasmids, including

those essential for murine infectivity. GlpD mutants had the same

plasmid profile as the parental strain (data not shown).

Repeated attempts to isolate a complemented mutant strain

were unsuccessful. Most experiments described below were carried

out with all three isolated glpD mutants. Mutants CP176 and

CP177 were isolated from one transformation and CP257 was

obtained independently, thereby mitigating the concern that the

observed mutant phenotypes were the result of a second site

mutation.

GlpD is required for maximal in vitro growth when
glycerol is the principal carbohydrate source

To begin to characterize the role of GlpD in B. burgdorferi

physiology, growth of glpD mutants was compared to that of wild-

type B31-A3 in BSK-II, an undefined, enriched medium that

contains glucose as the principal carbohydrate source [43]. No

differences in final cell density were detected between wild-type

Figure 1. Predicted carbohydrate utilization pathways in B. burgdorferi. Based on Fraser et al. [12] and von Lackum and Stevenson [28].
doi:10.1371/journal.ppat.1002102.g001

B. burgdorferi Requires Glycerol During Tick Phase
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and glpD mutants at either 25uC (1.36109 and 1.16109,

respectively) or 37uC (1.46109 and 1.36109, respectively). In

addition, no difference in growth characteristics was observed

(data not shown).

Previous studies have shown that N-acetyl glucosamine

(GlcNAc) is required for growth of B. burgdorferi in vitro [44–46].

There were no differences in growth characteristics between B31-

A3 and CP176 grown in a modified BSK-II medium that did not

contain glucose but had GlcNAc as the carbohydrate source (BSK-

lite [28]) (Figure 10A). In contrast to growth in BSK-II with

GlcNAc only or medium supplemented with glucose (data not

shown), there was a significant difference in growth between wild

type and glpD mutants when glycerol was supplied as the principal

carbohydrate source. B31-A3 reached a significantly higher cell

density in BSK-glycerol medium compared to CP176 when grown

at 25uC (6.46108 and 1.16108, respectively; P,0.001)

(Figure 10B). Interestingly, this effect was observed only at 25uC;

when cultivated at 37uC, the growth characteristics of wild type

and CP176 were indistinguishable. Indeed, B31-A3 cultures

achieved significantly higher cell densities at 25uC as compared

to 37uC in BSK-glycerol medium (6.46108 and 9.16107,

respectively; P,0.001). These experiments were repeated with

the other two independent glpD mutants (CP177, CP257) with

essentially identical results (data not shown). These findings suggest

that B. burgdorferi can utilize glycerol to support enhanced growth

at the lower temperature. This observation would be consistent

with the elevated expression of GlpD at 25uC (Figure 4).

GlpD is not required for murine infection by B.
burgdorferi

In order to determine whether the absence of GlpD affects the

pathogenic properties of B. burgdorferi, C3H/HeJ mice were needle

inoculated with 16104 cells of either wild type or glpD mutant. All

mice in both the wild type and glpD mutant groups were infected

Figure 2. Predicted tertiary structure of B. burgdorferi G3PDH. The B. burgdorferi G3PDH sequence was mapped onto known bacterial G3PDH
three-dimensional structures using SWISS-MODEL software. Structures were rotated so they are aligned in an identical orientation, with the C-
terminal a-helix (red) at the top in all structures. MBD, putative membrane binding domain [41].
doi:10.1371/journal.ppat.1002102.g002
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and were seropositive by four weeks post-inoculation (Table 1).

Unfed larvae were allowed to feed to repletion on these infected

mice to allow spirochete acquisition by ticks. Infected fed larvae

that molted to nymphs were fed to repletion on naı̈ve C3H/HeJ

mice. Viable spirochetes were recovered from all mice that were

fed on by either wild type- or glpD mutant-infected ticks and

seroconverted by 4 weeks post-feeding (Table 1). These results

demonstrate that GlpD is not required for murine infection by B.

burgdorferi. Further, GlpD-deficient spirochetes were acquired by

larvae fed on infected mice, persisted through the molt and were

transmitted to naı̈ve mice by infected nymphs.

glpD mutants have a lower spirochete density in unfed
nymphs

The enhanced growth of B. burgdorferi at lower ambient

temperature in vitro when glycerol is the principal carbohydrate

source, elevated expression of GlpD at the lower temperature and

its RpoS-dependent repression in DMCs suggested that glycerol

may be an important nutrient for B. burgdorferi during the tick

phase of its life cycle. Therefore, the effect of glpD disruption was

explored more extensively in infected ticks. Naı̈ve, unfed larvae

were placed on mice infected with either B31-A3 or CP176,

allowed to feed until repletion and molt to the nymphal stage.

Spirochete loads in infected ticks were measured by qPCR

(Table 2). Larvae infected with either B31-A3 or CP176 had

similar spirochete loads (approximately 700 spirochetes/larvae).

Spirochete numbers in wild type-infected ticks increased slightly

after larval molting to nymphs but decreased in nymphs infected

with any of the glpD mutant strains. This resulted in a significant

five-fold decrease in CP176 density in unfed nymphs compared to

the wild-type (Table 2). Further, in independent experiments,

CP177 and CP257 had an identical phenotype to that observed for

CP176, i.e. spirochete densities were significantly lower after

molting as compared to spirochete loads in B31-A3-infected ticks

(data not shown).

Infected nymphs were fed on naı̈ve mice and spirochete loads

were measured in the resulting fed nymphs. As expected,

spirochete numbers increased substantially during nymphal

feeding in both wild type- and CP176-infected nymphs, although

the spirochete burdens in the glpD-infected engorged nymphs were

significantly lower than in nymphs infected with the parental strain

(P,.02) (Table 2). These results suggest a role for glycerol

utilization by B. burgdorferi as an important factor for spirochete

maintenance during transtadial transition.

Absence of GlpD results in impaired B. burgdorferi
replication in feeding nymphs

As previously described, wild type- and glpD mutant-infected

nymphs are equally capable of transmitting B. burgdorferi to, and

Figure 3. The B. burgdorferi glp region constitutes an operon. RT-PCR of RNA extracted from B31-A3 grown at 37uC in BSK-II medium was
performed using primers listed in table 4. Lanes 1, 2: bb0240-bb0241 (expected size 349 bp); lanes 3, 4: bb0241–bb0243 (expected size 1141 bp); lanes
5, 6: bb0240–bb0243 (expected size 2383 bp). Migration positions of DNA size markers are indicated on left. A schematic diagram showing the operon
structure and sizes of expected amplification products is shown below the gel picture.
doi:10.1371/journal.ppat.1002102.g003

Figure 4. B. burgdorferi GlpD expression is temperature
dependent. Whole cell lysates of B. burgdorferi B31-A3 grown at
37uC and 25uC were analyzed by immunoblotting. FlaB levels were
determined as a control.
doi:10.1371/journal.ppat.1002102.g004
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causing infection in, mice (Table 1). However, those studies were

conducted by allowing nymphs to feed to repletion. A feeding

nymph will attach and feed on a host for 72 hours or longer [47].

During this time, replicating B. burgdorferi surround midgut

epithelial cells, penetrate the midgut basement membrane, and

enter the hemocoel and salivary glands from which they are

ultimately transmitted to the mammal [8,9]. Therefore, replication

is a critical step in spirochete transmission from the vector to the

mammalian host. Since the density of glpD mutant spirochetes

decreases as a result of molting and was five-fold lower than in wild

type-infected unfed nymphs, we reasoned that nymphs harboring

glpD mutant spirochetes would require a longer feeding period

before transmission to the host due to its delayed exit from the tick

midgut.

To explore this possibility, B31-A3- and CP176-infected

nymphs were placed on naı̈ve mice, allowed to begin feeding,

but forcibly removed at different time points post-attachment.

Mice were then monitored for evidence of infection. In a pilot

experiment, nymphs were fed on naı̈ve mice for 65 hours; 2/2

mice fed on by B31-A3-infected nymphs became infected, whereas

0/3 mice fed on by CP176-infected nymphs acquired infection.

Based on this pilot study, B31-A3- or CP176-infected unfed

nymphs were placed on the outer ear of naı̈ve C3H/HeJ mice and

allowed to feed for either 24, 48, 55, 62 or 72 hours or collected at

drop off (.72 hours). Ticks were removed at each time point and

spirochete load was determined by qPCR. Results presented in

Figure 11 demonstrate that CP176 experienced a lag in replication

and achieved significantly lower spirochete loads at times beyond

48 hours of feeding (P,0.001). At these points, spirochete loads

per tick were 3.5–5 fold lower in CP176-infected ticks than in

those infected with B31-A3 (e.g., at 55 hours of feeding spirochete

loads were 42,633 and 8,581 for B31-A3 and CP176-infected

nymphs, respectively) (Figure 11). Mice were also monitored for

infection. Results demonstrate that mice fed on by wild type-

infected nymphs were infected by 62 hours of feeding. In contrast,

CP176-infected nymphs produced infection in mice only after at

least 72 hours of feeding (Table 3). These data suggest that wild

type-infected nymphs are more readily able to infect naı̈ve mice

due to a more rapid increase in spirochete density induced on

commencement of tick feeding. Further, disruption of glycerol

utilization results in reduced fitness of the spirochete during the

tick phase and spirochetes that are unable to utilize glycerol are at

a disadvantage for transmission to a mammalian host.

Expression of chbC, encoding a chitobiose transporter
subunit, is elevated in ticks

Chitobiose is a di-GlcNAc molecule that is a component of the

peritrophic matrix and tick chitin [45,46,48,49]. The B. burgdorferi

genome contains open reading frames that encode gene products

that can mediate chitobiose transport and metabolism

[12,46,48,49]. These include the three subunits of a chitobiose

transporter (BBB04-BBB06), a putative chitobiase (BB0002) and

NagA and NagB (BB0151 and BB0152). In combination, the

actions of these gene products would result in production of

Figure 5. Transcriptional analysis of selected genes at different stages of the enzootic cycle. qRT-PCR was performed with RNA isolated
from strain B31-A3-infected ticks and mouse joints as described in Methods. Statistical analysis was determined by Kruskal-Wallis multiple comparison
Z- value test; * significant difference (P#.05) between samples. Error bars indicate standard error of the mean (SEM).
doi:10.1371/journal.ppat.1002102.g005
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glucose 6-phosphate that could enter the glycolytic pathway

(Figure 1). Both chitobiose and chitin can support B. burgdorferi

growth in vitro [45,46,48,49]. Therefore, the transcript levels for

chbC (bbb04), which encodes subunit C of the chitobiose

transporter, were also measured to determine whether chitobiose

utilization by B. burgdorferi may be important during the tick phase

of the enzootic cycle. Substantially higher expression of chbC

occurred during the various tick stages (fed larvae, 5.1067.00

copies/10 copies of flaB; unfed nymphs, 4.4262.33; fed nymphs,

2.8760.36) as compared to expression in mouse joints (0.5960.71

copies/10 copies of flaB) (figure 5).

Discussion

On acquisition by feeding larvae from an infected mammal, B.

burgdorferi must initially adapt to the new host (i.e. tick)

environment. The spirochete must then survive the tick molting

process and endure a substantial period in a nutrient-poor milieu

(unfed nymph). This is not a period of metabolic dormancy since

several studies, including our own, demonstrate that B. burgdorferi

gene expression is modulated in different tick developmental stages

and that expression of some genes is higher in unfed nymphs than

in fed nymphs [17,50,51]. During the subsequent nymphal blood

meal, B. burgdorferi enter a rapid replication phase, experiencing a

significant increase in density within a 48 hr period [8,9] and must

prepare for transmission back to a mammal. How does B.

burgdorferi generate the energy required to withstand this harsh

environment?

Glycerol and its metabolites play important roles in cellular

biochemistry [52] and glycerol is a readily available carbohydrate

in Ixodes ticks [32–34]. Most bacteria have the ability to acquire

glycerol from the surrounding milieu or to re-utilize it from its own

metabolites [52,53]. G3P is a crucial intermediate for energy

metabolism (via its conversion to dihydoxyacetone phosphate and

entry into the glycolytic pathway) and for phospholipid biosyn-

thesis (via its conversion to phosphatidic acid [Figure 1]). The B.

burgdorferi genome putatively encodes all the enzymes required for

both processes [12,54]. The possibility that glycerol uptake and

utilization may play an important role during the tick phase of the

enzootic cycle was suggested by previous studies showing that

genes comprising the glp operon had elevated expression during

growth in vitro at 23uC and were subject to RpoS-dependent

repression within the mammalian host [17,35]. A number of

findings from the current study confirm that this is the case. First,

in medium supplemented with glycerol as the principal carbohy-

drate source, wild-type B. burgdorferi grew to a significantly higher

cell density compared to a glpD mutant during growth at 25uC
(Figure 10B). This difference was not observed during growth at

37uC or when glucose was employed as the principal carbohydrate

source. Second, transcript levels for glpF and glpD were

significantly lower in mouse joints relative to their levels in ticks

(Figure 5). Third, GlpD protein was not produced during growth

in DMCs and its repression was dependent on the presence of

RpoS (Figure 6). Finally, the glpD mutant was fully infectious in

mice when introduced by either needle or tick inoculation

Figure 6. Repression of GlpD expression requires RpoS. Wild type (c162) and RpoS mutant (c174) B. burgdorferi were cultivated in vitro at
either 23uC or 37uC or in DMC. Cell lysates were subjected to SDS-PAGE and gels were either silver stained (top panel) or blotted to PVDF membranes
and developed with antibodies to GlpD or FlaB (bottom panel). Lanes 1 and 4, 23uC; lanes 2 and 5, 37uC; lanes 3 and 6, DMC. Migration positions of
protein molecular mass markers are indicated on left in top panel.
doi:10.1371/journal.ppat.1002102.g006
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(Table 1), but had a replication defect in ticks (Table 3 and

Figure 11).

Absence of GlpD results in reduced spirochete fitness in the tick.

This defect is manifested at two distinct points during this phase of

the enzootic cycle. Spirochete loads are reduced five-fold after the

larval molt in the mutant relative to the wild type. Spirochete loads

were measured in larvae that had fed to repletion and in unfed

nymphs two weeks after the molt. Therefore, it is not clear

whether the reduction in B. burgdorferi density occurred during the

molt or during the initial period in the unfed nymph. We favor the

latter possibility. At the onset of nymphal feeding, the glpD mutants

display a lag prior to beginning replication; as a result, they

replicate more slowly than wild-type spirochetes and fail to achieve

the same final spirochete densities (Figure 11). As a consequence,

there is delayed transmission of glpD mutant spirochetes to mice

during feeding. Whereas ticks infected with wild-type B. burgdorferi

caused infection by 62 hours of feeding, those infected with

mutant spirochetes required at least 72 hours of feeding before

productive transmission occurred. Dunham-Ems et al. have

demonstrated that B. burgdorferi migration from the midgut to the

salivary glands for transmission to a mammal proceeds in two

phases. In the initial step, replicating spirochetes form non-motile

networks that advance toward the basolateral surface of the gut

epithelium. The non-motile spirochetes then transition to motile

Figure 7. Strategy for generation of glpD disruption mutants. glpD mutant clones CP176 and CP177 were generated by recombination with
pCP101; glpD mutant clone CP257 was generated by recombination with pCP201.
doi:10.1371/journal.ppat.1002102.g007

Figure 8. Confirmation of glpD disruption. A) Southern blot analysis confirms the disruption of glpD. Whole genomic DNA from B31-A3 and
glpD disruption mutants CP176, CP177, CP257 were digested with BamHI and blotted on a nylon membrane. Digoxygenein-11-dUTP labeled bb0243
probe was utilized to visualize glpD. Migration positions of DNA molecular size markers are indicated on the left. B) glpD disruption occurred via by a
double crossover insertion of flgB-aadA. Whole genomic DNA from B31-A3 and glpD disruption mutants CP176, CP177, CP257 were digested with
BamHI or EcoRI, which would be specific for the proximal or distal bb0243 flanking chromosomal regions, respectively, and blotted to a nylon
membrane. Blots were developed with a digoxygenein-11-dUTP-labeled aadA probe. A schematic diagram indicates the sizes of the fragments
expected to contain flgB-aadA. Migration positions of DNA molecular size markers are indicated on the left of each panel.
doi:10.1371/journal.ppat.1002102.g008
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organisms that penetrate the basement membrane into the

hemocoel and migrate to the salivary gland [9]. This model of

B. burgdorferi dissemination provides an explanation for the delayed

transmission phenotype of the glpD mutant. As dissemination of B.

burgdorferi in the tick during the first phase of feeding does not

depend on motility, but instead is replication driven, the reduced

replication rate of the mutant would result in delayed dissemina-

tion to the hemocoel. As a result, the mutant would require

additional time for successful tick to mammal transmission.

Spirochete loads of wild type and glpD mutant were identical in

fed larvae whereas those of the mutant were reduced approxi-

mately five-fold after the larval molt; the reduced level of mutant

persisted throughout the subsequent stages of the tick cycle

(Table 2). In a very recent study, He et al. showed that a glpF polar

deletion mutant, which does not express any of the glp operon

genes, had a phenotype both in vitro and in vivo very similar to

that described here for a glpD mutant (i.e. the mutant failed to

reach the same cell density as the wild type when cultured in

medium with glycerol as the principal carbohydrate and had

reduced spirochete loads in infected nymphs) [23]. Interestingly,

the reduction in mutant spirochete levels in nymphs was much

more severe (.2 logs) in their study than was observed here for the

glpD mutant. Presumably, this difference is due to the fact that the

glpD mutant will only have an effect on glycerol utilization for

glycolysis, whereas the glp operon mutant will also affect

phospholipid biosynthesis (Figure 1). Thus, study of the glpD

mutant is important in allowing evaluation of the contribution of

glycerol utilization for energy metabolism without any confound-

ing from effects on other metabolic pathways.

Why isn’t the glpD mutation lethal rather than being simply

growth inhibitory? Clearly, there must be an alternative

carbohydrate source that can be metabolized via glycolysis to

produce the required ATP. We propose that this alternative

energy source is chitobiose. Tilly et al. reported that chbC

transcript is elevated at 23uC relative to 34uC [45] and we have

found that chbC expression is significantly higher in ticks than in

mouse joints (Figure 5). Taken together, these data suggest that

chitobiose utilization by B. burgdorferi is important during the tick

phase of the cycle. Chitobiose would be available to the spirochete

during tick feeding, when it is shed from the forming peritrophic

matrix, as well as during molting when the tick cuticle is being re-

modeled for growth [31,49]. It has been suggested that chitobiose

utilization would be essential for B. burgdorferi during the tick phase

of the enzootic cycle for spirochete glycolysis and cell wall

synthesis. However, chbC mutants, which cannot take up

exogenous chitobiose or utilize chitin to support growth,

successfully complete the mouse-tick-mouse infectious cycle [48].

It is possible that glycerol availability may be partially responsible

for rescue of the chbC mutant. This would suggest that B. burgdorferi

maintains spirochete fitness in the nutrient deplete environment of

the tick midgut by utilizing either glycerol and/or chitobiose as

glycolytic precursors. It would be of interest to determine whether

a glpD-chbC double mutant would be capable of completing the

natural infectious cycle.

As described earlier, signals that lead to phosphorylation of

Rrp2 result in activation of RpoN which, in turn, initiates

transcription of rpoS [14,15]. RpoS is expressed only in feeding

nymphs and mammals and therefore, is thought to be responsible

for the regulon that is required for mammalian infection [17,55].

This is consistent with the fact that Rrp2, RpoN and RpoS

mutants cannot establish infection in mice [16,56,57]. The RpoS

regulon includes genes that are absolutely dependent on RpoS for

their transcription (e.g. ospC), as well as genes subject to RpoS-

dependent repression [17,18]. The glp operon is in the latter

category. Several recent studies have begun to reveal the role of

the Hk1/Rrp1 TCS in B. burgdorferi [22–24]. Lack of Hk1 and

Rrp1 has no effect on infectivity in mice. However, Hk1 and Rrp1

mutants are killed within the tick midgut during feeding [23,24].

Hk1 and Rrp1 appear to be expressed during all stages of the B.

burgdorferi life cycle [22,24], but the important consideration is

whether Rrp1 is phosphorylated leading to the production of c-di-

GMP. Interestingly, Caimano et al. have recently shown that Hk1

mutants are killed during the larval and nymphal blood meals,

indicating that c-di-GMP is required during both tick feeding

stages [24]. It is reasonable to conclude that the Rrp2/RpoN/

RpoS pathway governs the expression of B. burgdorferi genes

required in the mammalian host, whereas Hk1/Rrp1 controls a

subset of borrelial gene products that is critical for survival in the

tick vector. A number of genes that are induced by Rrp1 (i.e. c-di-

GMP) are subject to RpoS-dependent repression; these include the

glp operon genes and bba74 [22,23].

The current study demonstrates that glp operon expression is

modulated by nutrient availability. Several reports have estab-

lished that this operon is regulated in a reciprocal manner by

RpoS and Rrp1 [17,22,23]. The glp genes are the first borrelial

gene products linked to spirochete metabolism whose expression is

subject to regulation by both B. burgdorferi TCSs. As such, these

genes represent a valuable paradigm for elucidating the interplay

between these two regulatory pathways. A model that integrates

both carbohydrate availability and presence/absence of transcrip-

Figure 9. GlpD is absent in disruption mutants. Whole cell lysates from B31-A3, CP176, CP177, and CP257 were separated by SDS-PAGE,
followed by immunoblot analysis using GlpD-specific antiserum. Presence of FlaB was also measured as a control.
doi:10.1371/journal.ppat.1002102.g009
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tional regulators is presented in Figure 12. It is presumed that early

in larval feeding RpoS is still present, but must be degraded in

order to allow for expression of tick phase genes; the precise timing

of RpoS disappearance is not currently known. Glucose should be

available at this stage in quantities sufficient to support B. burgdorferi

growth. Later in the blood meal hexose sugars and other serum

constituents crossing the peritrophic matrix are sequestered by tick

midgut epithelial cells. This creates a nutrient-poor environment

in which B. burgdorferi must rely on glycerol and rapidly depleting

chitobiose to support glycolysis. The turnover of RpoS during

larval feeding would result in the de-repression of glycerol pathway

enzymes and presence of c-di-GMP will activate their expression,

ensuring that spirochetes can rapidly switch from a glucose-based

to a glycerol-based metabolism. Once spirochete infection is

established in the midgut and the larva molts to an unfed nymph,

B. burgdorferi remains a metabolically active spirochete that must

Figure 10. Growth of B31-A3 and CP176 in modified enriched medium. A) BSK-lite containing GlcNAc as the sole carbohydrate. N, B31-A3;
%, CP176. Left panel, 25uC: B31-A3 achieved a stationary phase cell concentration of 1.86108 and CP176 achieved a stationary phase cell
concentration of 1.56108. Right panel, 37uC: B31-A3 achieved a stationary phase cell concentration of 8.56107 and CP176 achieved a stationary phase
cell concentration of 6.36107. All data points were determined in quadruplicate. Results are representative of two independent experiments. B) BSK-
lite containing GlcNAc and glycerol as the principal carbohydrate. N, B31-A3; %, CP176. Left panel, 25uC: B31-A3 achieved a stationary phase cell
concentration of 6.46108 and CP176 achieved a stationary phase cell concentration of 1.16108. The difference in stationary phase cell concentration
between B31-A3 and CP176 at 25uC was significant (P,.001). Right panel, 37uC: B31-A3 achieved a stationary phase cell concentration of 9.16107 and
CP176 achieved a stationary phase cell concentration of 6.46107. All data points were measured in quadruplicate. Results are representative of three
independent experiments. Error bars indicate SEM.
doi:10.1371/journal.ppat.1002102.g010
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rely on glycolysis for maintenance of cellular integrity. Glycerol is

presumed to be the primary carbohydrate at this stage and

absence of RpoS would allow expression of the glp operon. Early in

nymphal feeding while blood constituents are scarce, B. burgdorferi

must actively replicate and migrate through the epithelial midgut

lumen to begin its migration to the salivary glands. At this point

glycerol would be a primary energy source for support of cellular

replication, as chitobiose will not be available until the eventual

breakdown of the peritrophic matrix. Inability to utilize glycerol,

as in the glpD mutant, would result in delayed and reduced

spirochete replication that could impact transmission of B.

burgdorferi to the mammalian host. Presence of c-di-GMP would

result in sustained expression of glp operon genes. As RpoS levels

increase during the nymphal blood meal, presence of c-di-GMP

will counteract the repressive effects of RpoS on glp gene

expression, ensuring that glycerol utilization can continue until

the spirochetes are transmitted to a mammalian host.

The model presented in Figure 12 accounts for carbohydrate

source availability and presence of regulatory molecules through-

out the tick-mouse enzootic cycle and highlights the interdepen-

dence of these two parameters. Concentrations of glucose and

glycerol in mouse plasma are approximately 150 and 2.8 mg/

100 mL, respectively [58]. Glycerol is abundantly present during

all tick stages. On this basis, the model assumes that B. burgdorferi

utilizes glucose as the preferred nutrient source when it is available

in the mammal or at certain stages during the tick blood meal, but

switches to utilizing glycerol, especially in the unfed nymph when

glucose is not present. This may represent the B. burgdorferi version

of carbon catabolite repression (CCR), which is defined as a

regulatory mechanism by which the expression and enzymatic

activities of enzymes involved in the use of secondary carbohy-

drates are reduced in the presence of sufficient levels of the

preferred carbohydrate [59]. The mechanisms underlying CCR in

most bacteria involve a glucose-specific phosphotranferase subunit

(EIIA) that can be reversibly phosphorylated based on the

phosphoenolpyruvate to pyruvate ratios. B. burgdorferi encodes a

putative EIIA subunit (BB0559), but does not appear to contain

other major components that modulate CCR in other bacteria

[12]. It is reasonable to assume that B. burgdorferi possesses sensing

mechanisms that monitor the relative levels of glucose and glycerol

in the environment. It is tempting to speculate that modulation of

Hk1 kinase activity is one outcome of the fluctuating nutrient

ratios. When the glycerol/glucose ratio increases Hk1 would

phosphorylate Rrp1 leading to the production of c-di-GMP. The

specific molecular signal that is recognized by Hk1 is not currently

known. Likewise, the precise timing of the transcriptional

activation/repression of RpoS and the possible reciprocal

modulation of c-di-GMP levels is not known. Studies designed to

elucidate the molecular events underlying the proposed model are

warranted.

Materials and Methods

Ethics statement
All animal experimentation was conducted in strict accordance

with the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. The protocols were approved by the

Institutional Animal Care and Use Committee of New York

Medical College (Approval number 31-1-0310H).

Strains and growth conditions
B. burgdorferi strains B31-A3 [60], 297 (c162) and a strain 297-

based RpoS mutant (c174) [17] were employed in this study.

Spirochetes were grown in modified Barbour-Stoenner-Kelley-II

medium [43,61] supplemented with 6% heat inactivated rabbit

serum (Sigma, St. Louis, MO) (BSK-II). BSK-lite medium was

based on the formulation of Barbour [43] with modifications as

previously described [28].

B. burgdorferi were grown to late log phase (5–106107 cells/ml) in

BSK-II medium at 25uC. For BSK-lite experiments, spirochetes

were diluted 100 fold in BSK-lite medium to remove BSK-II

medium constituents. 56104 spirochetes in 40 ml of BSK-lite

medium with a specific carbohydrate (either glucose or glycerol)

were aliquoted into eight 5 ml tubes. Four tubes of each sample

were placed at either 25uC or 37uC and observed for up to 60

days. Individual tubes were counted daily for cultures grown at

37uC and every two days for those incubated at 25uC. Spirochete

density was enumerated by dark field microscopy as previously

described [62]. Student’s two-tailed, unpaired t-tests were

performed on data collected during exponential phase and

stationary phases of cell growth. Significance was defined as a

P,0.01.

Cultivation of c162 and c174 in DMCs was carried out as

described [63].

Construction of a B. burgdorferi glpD mutant
The strategy for disruption of B. burgdorferi is presented in

figure 7. A 2519 bp region of B. burgdorferi chromosomal DNA

containing bb0243 was amplified by PCR using primers bb0243F/

R (Table 4) ligated into the pGEM-T vector (Promega, Madison,

Table 1. Infectivity of B. burgdorferi wild type and GlpD
mutants in mice.

Condition Strain Ear Bladder Joint

Needle Inoculated Micea Wild Type (B31-A3) 3/3 3/3 3/3

CP176 (B31-A3DglpD) 3/3 1/3 3/3

CP177 (B31-A3DglpD) 4/4 4/4 4/4

CP257 (B31-A3DglpD) 3/3 1/3 3/3

Nymph Infected Miceb Wild Type (B31-A3) 3/3 3/3 3/3

CP176 (B31-A3DglpD) 4/4 4/4 4/4

CP257 (B31-A3DglpD) 3/3 3/3 3/3

Table represents typical results from 1 of 3 independent experiments.
aWild-type strain B31-A3 or GlpD mutants were needle inoculated into naı̈ve
C3H/HeJ mice and tested for infectivity by cultivation of indicated tissue in BSK
medium.

bUnfed nymphs naturally infected with either wild-type or GlpD mutant strains
were placed on naı̈ve C3H/HeJ mice.

doi:10.1371/journal.ppat.1002102.t001

Table 2. Spirochete density at different tick phases.

Condition Strain
Spirochetes/
Tick SD P valuea

Fed Larvae Wild Type (B31-A3) 737 6369 0.5646

CP176 (B31-A3 DglpD) 632 6343

Unfed Nymphs Wild Type (B31-A3) 1173 6637 2.76E-08

CP176 (B31-A3DglpD) 254 6137

Engorged Nymphs Wild Type (B31-A3) 56825 647640 0.0198

CP176 (B31-A3DglpD) 17138 622000

Spirochete density was measured by qPCR.
aStudent’s t-test comparing wild type to CP176.
doi:10.1371/journal.ppat.1002102.t002
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WI), transformed into E. coli DH5a and cells containing

recombinant plasmids were selected by blue-white screening.

Selected transformants were purified to single colonies and

plasmids were confirmed to contain bb0243 by DNA sequence

analysis (Davis Sequencing, Davis, CA). The pGEM-T-bb0243

construct was digested with DraII (corresponding to position

248,983 in the B. burgdorferi chromosome). A DNA fragment

containing flgB-aadA (a spectinomycin/streptomycin resistance

cassette driven by the B. burgdorferi flgB promoter) was amplified

from vector pKFSS1 as previously described [64] and inserted into

the DraII site within PGEM-T-bb0243 by blunt-end ligation. The

construct was transformed into E. coli DH5a and selected by

growth on LB agar plates supplemented with 100 mg/ml of

spectinomycin. Transformants harboring plasmids containing

bb0243 disrupted by the flgB-aadA cassette were isolated, purified

to single colonies and plasmid inserts were confirmed by PCR and

DNA sequence analysis. flgB-aadA cassette orientation was

determined by restriction enzyme digestion. A plasmid construct

designated pCP100 had the flgB-aadA cassette in the same

orientation as bb0243 and a plasmid construct designated

pCP200 had the flgB-aadA cassette in the reverse orientation.

The ampicillin resistance cassette (bla) located in pGEM-T was

disrupted in both constructs as previously described [65] yielding a

plasmid designated pCP101 from pCP100 and pCP201 from

pCP200. Spectinomycin-resistant, ampicillin-sensitive colonies of

each construct were selected by growth on LB agar containing

either 100 mg/ml ampicillin or 100 mg/ml spectinomycin.

pCP101 and pCP201 were isolated and transformed into B.

burgdorferi B31-A3 competent cells by electroporation as described

[66]. Transformants were screened by growth in a 96 well plate in

the presence of streptomycin (100 mg/ml). Selected transformants

were cloned by limiting dilution in BSK-II medium containing

streptomycin (100 mg/ml). The glpD disruption in selected

transformants was confirmed by Southern blot and Western blot

analyses (Figures 8 and 9). Plasmid content for selected mutants

was determined as previously described [67] to ensure that all

plasmids essential for murine infectivity were present.

Southern hybridization
Southern blot analysis and generation of a digoxygenin-labeled

bb0243 probe were performed as previously described [67] with

the following modifications. A 196 base pair fragment of bb0243

was generated from strain B31-A3 by PCR using primers

243probeF/R (Table 4). B. burgdorferi DNA was fragmented by

incubation with 4.5 units of BamHI in 16 buffer B (Fermentas,

Glen Burnie, MD) or EcoRI in buffer EcoRI (Fermentas)

overnight at 37uC.

Acquisition of B. burgdorferi by I. scapularis and
transmission to mice

C3H/HeJ mice (Jackson Laboratories, Bar Harbor, ME) were

infected with either wild-type or glpD mutant B. burgdorferi by

needle inoculation as previously described [68,69]. Once infection

was established as determined by culture of ear biopsy, mice were

anesthetized with ketamine and 100–300 naı̈ve, unfed larvae were

placed in and around the ear canal. Mice were placed individually

into cages with approximately 1 cm water at the bottom. A metal

grid of the same length and width as the cage, and standing 1.5 cm

high, was placed in the cage. Larvae were allowed to feed until

repletion. Following drop off, larvae were collected, rinsed in

water, pooled into groups of 30 in 5 ml tubes with a porous cover

and maintained in a desiccator at 21uC, .95% relative humidity

with a 16 hour:8 hour light: dark cycle. Larvae molted to unfed

nymphs in approximately 5–6 weeks. At four weeks post molt,

three unfed nymphs were placed on three-week old uninfected

Figure 11. Replication of B31-A3 or CP176 in feeding nymphs. B31-A3- or CP176- infected nymphs were placed on naı̈ve mice, removed at
the indicated times and spirochete density was determined by qPCR. N, B31-A3; %, CP176. Spirochete densities for B31-A3 and CP176 were
significantly different from each other (P,.05) at all time points except 48 hours. Error bars indicate SEM.
doi:10.1371/journal.ppat.1002102.g011

Table 3. Kinetics of Mouse Infectivity by Tick Feeding.

Time Attached 48 hours 55 hours 62 hours 72+ hours

Wild Type 0/2 0/1a 3/3 2/2

CP176 0/2 0/3 0/3 2/2

aTwo mice died.
doi:10.1371/journal.ppat.1002102.t003
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C3H/HeJ mice (Jackson) and allowed to feed until repletion. Fed

nymphs were collected as described above.

For interrupted feeding experiments, 3 unfed nymphs were

allowed to feed on naı̈ve C3H/HeJ mice for 24, 48, 55, 62, and

72 hours or to repletion. Ticks were carefully removed from mice

by forceps at the indicated time point. Ticks were processed for

DNA isolation as described below. Mice were tested for infection

as previously described [68,69].

DNA isolation
DNA isolation from 56108 B. burgdorferi was performed using

the Puregene DNA isolation kit as per manufacturer’s instructions

(Qiagen, Valencia CA). DNA pellets were resuspended in 30 ml of

nuclease free water. DNA concentration was measured by

spectrophotometric analysis at 260 nm.

DNA was isolated from pools of 10 fed larvae. DNA was

obtained from unfed nymphs that were processed either

individually, in groups of 5 or in groups of 10. DNA was isolated

from individually processed fed nymphs. Ticks were surface

sterilized by washing successively with 800 ml of sterile H2O, 0.5%

sodium hypochlorite, 3% hydrogen peroxide (Sigma), 70%

ethanol (Fischer Scientific, Pittsburgh, PA) and sterile H2O each

for 1 minute. DNA extraction was performed as adapted from the

Qiagen DNeasy blood and tissue kit as described by Beati et al.

[70] with the following modifications. Ticks were homogenized

with an 18.5 gauge needle. Samples were lysed with 220 ml animal

lysis buffer and 0.45 mg recombinant proteinase K (Roche,

Mannheim, Germany) per reaction overnight in a 56uC incubator.

Following all wash steps, mixtures were centrifuged at 10,000 rpm.

DNA was eluted twice with 25 ml of PCR-grade H2O pre-warmed

to 72uC.

Quantitative PCR
qPCR reaction mixtures (25 ml total volume) contained 2 ml of

sample DNA, 3 ml of nuclease free water, 20 pmol each of primers

FL-571F/FL-677R, 5 pmol of flaB- specific Taqman probe

(flaBFAM) (table 4), and 12.5 ml Taqman PCR mastermix

(Roche). DNA copy number was determined on an ABI prism

7900HT thermocycler with an amplification profile of 50uC for

2 minutes, 95uC for 10 minutes, followed by 40 cycles of 95uC for

15 seconds and 60uC for 1 minute. Samples were run in duplicate

and each plate contained two samples lacking DNA as negative

controls. Ct values were obtained using the SDS2.1 software

program (Applied Biosystems, Carlsbad, CA). To assess spirochete

density per sample, standard curves were generated for flaB, a

constitutively expressed gene, in log increments (10–104).

Copy numbers were compared by a two-tailed, unpaired t-test

for each condition (fed larvae, unfed nymph, fed nymph), where

significance was defined as P#0.05.

RNA extraction
Ticks infected with B. burgdorferi were processed in pools of 50

for fed larvae, 100 for unfed nymphs and 35 for fed nymphs. Ticks

were homogenized in 1 ml TRIzol reagent (Invitrogen, Carlsbad,

CA) for 5 minutes. For in vitro experiments, 50 ml of cell culture

(approximately 2.56109 cells) was centrifuged at 12,000 rpm for

Figure 12. Carbohydrate availability and transcriptional regulators at different stages of the B. burgdorferi enzootic cycle. Up and
down arrows indicate increasing or decreasing RpoS levels; c-di-GMP+ and c-di-GMP2 indicate presence or absence of c-di-GMP. PM, peritrophic
matrix; MG, midgut; HC, hemocoel.
doi:10.1371/journal.ppat.1002102.g012
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10 minutes and 1 ml TRIzol was added to the cell pellet. RNA

was recovered as per manufacturer’s instructions (Invitrogen). The

RNA pellet was resuspended in 30 ml nuclease-free water and

DNase treated twice with the Ambion DNA free kit per

manufacturer’s instructions (Ambion, Austin, TX).

Mammalian hind limb joints were surgically removed from

euthanized C3H/HeJ mice, snap frozen in liquid nitrogen and

pulverized with mortar and pestle. The powdered tissue was

transferred to a glass homogenizer and homogenized with 0.5 ml

denaturation solution and the supernatant containing total RNA was

isolated from samples as per manufacturer’s instructions (ToTALLY

RNA, Ambion). RNA was rehydrated in 30 ml of nuclease free water

and DNase treated as described above. Mouse RNA was removed

by MICROBEnrich as per manufacturer’s instructions (Ambion).

The recovered RNA pellet was resuspended in 15 ml of sodium

citrate buffer (Ambion) and 15 ml of nuclease free water.

cDNA was generated from RNA samples by addition of 2 mg of

purified RNA to a mixture containing 4 ml of 56 reverse

transcriptase buffer (Promega), 0.02 mM dNTPs (Roche), 0.5 mg

random hexamer (Promega), 2 units of RNase inhibitor (Ambion),

5 units of AMV reverse transcriptase enzyme (Promega) and

nuclease free water in 20 ml total volume. The reaction mixture

was incubated at 42uC for 2 hours. Reverse transcriptase enzyme

was heat inactivated at 95uC for 5 minutes and cDNA was stored

at 220uC until further use.

Quantitative RT-PCR
For generation of standard curves, specific gene fragments for

bb0240, bb0243 and bbb04 were amplified by PCR using primers

pairs bb0240qRTPCRF/bb0240qRTPCRR, bb0243qRTPCRF/

bb0243qRTPCRR, bbb04qRT-PCRF/bbb04qRT-PCRR, ospA-

288F/ospA-369R and ospC-B31FTq/ospC-B31RTq, respectively

(table 4). PCR reaction mixtures contained 100 ng of B31-A3

DNA, 0.25 ml Taq polymerase (Roche), 0.5 ml dNTPs (Roche),

and 16Taq polymerase buffer (Roche) in a total volume of 25 ml.

Amplification conditions were 95uC for 5 minutes, followed by 36

cycles of 95uC for 30 seconds, 55uC for 30 seconds and 72uC for

30 seconds and a final incubation at 72uC for 10 minutes.

Production of the expected product was confirmed by gel

electrophoresis and the PCR products were ligated into the

TOPO 2.1 cloning vector, the vector was transformed into E. coli

Mach1 cells and recombinant clones were selected as per

manufacturer’s instructions (Invitrogen). Clonal isolates were

grown in 10 ml of LB broth supplemented with 100 mg/ml

ampicillin and the plasmids were extracted as described above.

PCR confirmed the presence of the desired gene fragments.

Plasmid concentration was determined by spectrophotometric

analysis at 260 nm, followed by mathematical computation of

copy number (http://www.uri.edu/research/gsc/resources/cndna.

html).

Transcript levels for bb0240 (glpF), bb0243 (glpD), bbb04 (chbC),

ospA, ospC and flaB were determined by performing qRT-PCR as

previously described [65] using the primer pairs listed in table 4 on

an ABI Prism 7900HT thermocycler followed by analysis using the

SDS2.1 software program (Applied Biosystems). For each

experimental run, standard curves for these genes were generated

using known quantities (10–104 in log increments) of gene specific

plasmids for calculation of absolute copy number.

Table 4. Oligonucleotide primers used in this study.

Namea Sequence (59 - 39) Purpose

243probeF GATCTTATAATAATTGGAGGGGGC Southern Hybridization

243probeR CGCGCAAAGCTTCTTTAAC

NdeI243F GGGTTTTCATATGGAGGAATATTTAAATTTCATG rGlpD generation

XhoI243R TTTCTCGAGTTAAATTAAATATTTTTTACTTATTTC

bb0243F AACAAAGCGGTTGGAAAAGCAAAATCCTG bb0243 disruption

bb0243R CGATATTTCAGGCTGAAAGTGTCAAAGAGG3

flgBF TAATACCCGAGCTTCAAGGAAG

aadAR GACGTCATTATTTGCCGACTACC

bb0240qRTPCRF AAGTCCCGAAATACCAGGAG qRT-PCR

bb0240qRTPCRR TTCTTGCTGCTGTGTAAATACC

bb0243qRTPCRF GCTCTGTTCTATATTACGATGATT qRT-PCR

bb0243qRTPCRR AGGGCAATGCCTCCTTTTT

bbb04qRT-PCRF GGGATTACAGGAGGATTTTTATCTCT qRT-PCR

bbb04qRT-PCRR ATTCCCCATTTAGCAGCATCTC

ospA-288F TGAAGGCGTAAAAGCTGACAAA qRT-PCR

ospA-369R TTCTGTTGATGACTTGTCTTTGGAA

ospC-B31FTq CAGGGAAAGATGGGAATACATCTGC qRT-PCR

ospC-B31RTq CGCTTCAACCTCTTTCACAGCAAG

FL-571F GCAGCTAATGTTGCAAATCTTTTC qPCR/qRT-PCR

FL-677R GCAGGTGCTGGCTGTTGA

flaBFAM FAM-AAACTGCTCAGGCTGCACCGGTTC-MGB

aFor each primer pair, F refers to forward and R to reverse primer.
doi:10.1371/journal.ppat.1002102.t004
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One-way analysis of variance was performed on qRT-PCR

results. To determine significance, a Kruskal-Wallis multiple

comparison Z-value test (Dunn’s test) was performed, where

significance was defined as P#0.05.

Production of recombinant GlpD (rGlpD) and GlpD
antibodies

bb0243 was amplified using primers NdeI243F/XhoI243R

(Table 4), cloned into the TOPO 2.1 vector, transformed into E.

coli Top10 cells and recombinant clones were selected per

manufacturer’s instructions (Invitrogen). The bb0243 insert was

excised from the TOPO 2.1 plasmid by double digestion with

NdeI and XhoI (Fermentas) and the insert was purified after

separation by gel electrophoresis using the Wizard SV genomic gel

purification kit according to manufacturer’s instructions (Pro-

mega). pET-15b (Novagen, Gibbstown, NJ) was digested with

NdeI and XhoI and the gel-purified bb0243 insert was ligated with

the NdeI/XhoI-cut pET-15b at a 2:1 ratio with 10 units of T4

ligase (New England Biolabs, Ipswich, MA). The recombinant

plasmid was transformed into E. coli DH5a and clones were

selected on LB agar plates containing 100 mg/ml ampicillin.

Recombinant pET-15b carrying bb0243 was transformed into E.

coli BL21-DE3 and grown on LB agar plates containing 100 mg/

ml ampicillin. A clone containing bb0243 was selected and

subjected to DNA sequencing. This sequence contained two

single nucleotide changes relative to the reported sequence in

strain B31-MI [12]. Nucleotide 107 had a T to C change that

would result in a predicted amino acid change of I359T and

nucleotide 591 had an A to T substitution that would result in an

amino acid change of E197D.

The selected clone was grown at 37uC in 250 ml Luria broth

containing 100 mg/ml ampicillin and 1 mM IPTG with agitation

for 4 hours. Cells were recovered by centrifugation at 8000 RPM

for 10 minutes and rGlpD was isolated from the cells using Ni-

NTA His Bind Resin (Novagen) according to the manufacturer’s

instructions. Fractions containing rGlpD, as determined by SDS-

PAGE, were pooled and loaded into an Amicon Ultra 50 kDa

molecular weight cut off spin column (Millipore, Billerica, MA).

The protein sample was centrifuged at 75006g for approximately

8 minutes to a volume of 800 ml. The protein solution was

dialyzed against 2 liters of 16 PBS, 6 M urea (pH 7.4) with

stirring overnight at 4uC. Identity of the protein as B. burgdorferi

rGlpD was confirmed by LC-MS/MS analysis (Keck Biotechnol-

ogy Resource Laboratory,New Haven, CT). The yield of purified

rGlpD was 1.3 mg.

100 mg of purified rGlpD in 16PBS, 6 M urea (pH 7.4) was

inoculated along with Freund’s adjuvant into two Sprague-Dawley

rats by Harlan Laboratories (Madison, WI). The rats received a

boost at day 28 and day 56 post-inoculation and were sacrificed

and bled on day 70 post inoculation. GlpD antiserum was tested

by ELISA and confirmed to be specific for GlpD by immunoblot

analysis.

SDS-PAGE and immunoblot analysis
B. burgdorferi cells grown in vitro or in DMCs were lysed with

Bugbuster HT (Novagen) and 1 mg/ml of lysozyme (Sigma)

according to manufacturer’s instructions. 2 mg of whole cell lysate

was subjected to 12.5% SDS-PAGE and separated proteins were

visualized by silver staining as described [71]. For immunoblot-

ting, separated proteins were transferred to PVDF membrane.

Membranes were exposed to protein-specific primary rat antise-

rum (GlpD, 1:400 dilution; FlaB, 1:2500 dilution) followed by

alkaline phosphatase-linked anti-rat secondary antibody (1:500)

(KPL, Gaithersburg, MD). The membrane was washed three

times for 10 minutes with 16 TBS/0.05% Tween 20 and

developed with BCIP/NBT phosphatase substrate (KPL) until

band development (approximately 2–4 minutes).

To determine seroconversion in mouse infection studies, mouse

serum was added to 16TBS with 0.5% dry milk at 1:200 dilution

and incubated with whole B. burgdorferi lysate Marblot strips

(MarDX, Jamestown, NY) for 1 hour at room temperature. The

remaining procedure is as described above, with anti-mouse

secondary antibody (1:5000 dilution).
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