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Abstract: Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic
contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds
can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk
through the mother’s habits, diet being one of the main routes of exposure. The aim of the present
work was to analyse possible associations between the dietary habits of women and the content
of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological
profiles of human milk. Possible associations between major trace elements and BPA and the lipid,
microbiological and immunological profiles were also analysed. The results of this study support
that the microbiological composition of human milk is associated with the dietary habits of the
women, and that the consumption of canned drinks is related to the presence of BPA in human milk.
Furthermore, some relationships were found between the amount of major trace elements and the
microbiological and immunological profile of the milk samples. Finally, the presence of BPA was
associated with changes in the immunological profile of human milk.

Keywords: human milk; milk microbiota; immunology; bisphenol A; chemical elements; breastfeed-
ing; diet

1. Introduction

Breastfeeding is the ideal infant feeding option [1–3]. However, it can act as a source
of abiotic contaminants, such as heavy metals or bisphenol A (BPA) [4–7]. Chemical
substances may reach milk from the mother’s diet, the use of medication and/or drug
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consumption, chemical inhalation or dermal exposure. The risk associated with these
contaminants increases if they bioaccumulate in the adipose tissue (including mammary
tissue) throughout a women’s life and are mobilized during pregnancy and lactation [6,8].
The toxic properties of some metallic and metalloid elements, such as mercury (Hg), lead
(Pb) or cadmium (Cd), include neurotoxic effects, preterm birth or intrauterine growth
retardation. Furthermore, they can also act as mutagenic and carcinogenic agents or en-
docrine disruptors [9,10]. Tetrabromobisphenol A (TBBPA) is another chemical of concern,
which has a widespread use as flame retardant. This persistent environmental chemical
accumulates in the body and the human milk acts as a vehicle from the mother to the
infant [11,12]. The exposure to TBBPA during early infant development may contribute to
the increasing incidence of disorders such as infertility, genital tract abnormalities, obesity,
attention deficit hyperactivity disorder, and prostate and breast cancer later in life [13–15].

The composition of human milk varies within a feeding, over lactation and it is
influenced by maternal diet, health status and environmental factors [16]. In addition, the
different milk components may establish interactions between each other. The cell wall of
some Gram-positive bacteria binds metals and toxic compounds, as has been observed in
environmental lactic acid bacteria [17]. Accordingly, human microbiota, and in particular
milk microbiota, could influence the mother-child transfer of chemical substances. The
interactions between BPA and gut microbiota [18,19], and changes in the immune profile
related to the presence of this undesirable substance have also been reported [20]. Therefore,
knowledge of the complex composition of human milk and the interactions between
its different components is relevant to gaining better understanding of all the factors
modulating this complex biofluid and, hence, its impact on infant nutrition and growth.

In a previous study, the main and trace elements, BPA, TBBPA and fatty acids (FAs)
contents in human milk samples were analysed and compared with those present in infant
formulas [21]. The objective of the present work was to analyse potential relationships
between women’s dietary habits and the microbiological and immunological profile and
the content of main and trace elements, FAs, BPA and TBBPA in human milk. In addition,
the correlations that may exist between all these milk components were explored.

2. Materials and Methods
2.1. Demographic Characteristics

A total of 53 lactating women were recruited for this study through the Neonatology
Service of La Paz University Hospital (Madrid, Spain). To be enrolled as a participant in
the study women had to report having a healthy breastfed infant, born at term after an
uncomplicated pregnancy, and having healthy nursing without any symptoms related
to breast infection or breast pain from birth to recruitment. Volunteers provided specific
information on age, weight, height and lactation time when the milk sample was collected.

The mean (95% CI) age of the participants (n = 53) was 35 (34,36) years, ranging
from 25 to 43 years (Table 1). The median (IQR) body mass index (BMI) was 24.5 kg/m2

(20.89–27.19 kg/m2). Most women provided the milk sample during the first six months of
lactation, while 19% of the samples were collected after the sixth month of lactation. All
volunteers gave written informed consent to the protocol (C.P.-C.I. 10/017-E), which was
previously approved by the Ethical Committee of Clinical Research of La Paz University
Hospital (Madrid, Spain). Some women did not provide some of the demographic and
lactation data requested in the questionnaires (Table 1).

2.2. Food Frequency Questionnaires

The participants completed a Food Frequency Questionnaire (FFQ; Supplementary
Material) to evaluate their dietary habits, which was specifically designed for this study by
the Center of Environmental, Food and Toxicological Technology (TecnATox, Rovira i Virgili
University, Reus, Spain). The questionnaire included information about the frequency
of intake and the consumption level of food items in a finite list. Most of the food items
belonged to the following three main groups: fish (fresh tuna, canned tuna, salmon,
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swordfish, other fish), cereals (bread, pasta, rice), and dairy products (milk, cheese, yogurt).
In addition, the questionnaire inquired about the ingestion of some specific products, such
as nuts, tap water, bottled water, canned drinks and microwavable food. Servings from
the same group of food were added together and the results were transformed to the same
unit of measure (servings per week).

Table 1. Demographic characteristics of the participating women (n = 53).

Characteristic n (%) Mean (95% CI) or Median
(IQR)

Age (years) 49 35 (34,36) 1

BMI (kg/m2) 50 24.47 (20.89–27.19)
Time of lactation (months) 43 2 (1–5)

1 16 (37) 1 (0–1)
1 to 6 19 (44) 3.00 (2.00–4.25)

>6 8 (19) 15.00 (8.25–21.75)
95% CI, 95% confidence interval; IQR, interquartile range; BMI, body mass index. Some of the anthropometric
data are missing due to lack of answers in the questionnaires. Time of lactation refers to the time point when the
samples were collected, and the questionnaires were conducted. 1 Age is expressed as mean (95% CI) and other
characteristics as median (IQR).

2.3. Milk Sampling

Milk samples were collected aseptically from each woman by manual expression after
cleansing of the breast with soap and water. The samples were collected in tubes of different
materials depending on the posterior analysis: plastic sterile tubes for microbiological
and immunological analysis, and glass tubes for metals, metalloids, Fas, BPA, and TBBPA
analysis. Milk was cooled immediately and kept at 4 ◦C in cool boxes until arrival at the
laboratory where samples were divided into aliquots and frozen (−20 ◦C). In order to
eliminate or minimize potential lab biases, all the samples were submitted only to a single
freeze-thaw cycle and were analysed by the same researchers using the same batch of
reagents and equipment.

2.4. Bacteriological Analyses of Milk Samples

Milk samples were plated onto Columbia Nalidixic Acid (CNA; a medium particularly
suitable for isolation of streptococci, staphylococci, enterococci, corynebacteria and related
Gram-positive bacteria; BioMérieux, Marcy-l’Etoile, France), MacConkey agar (MCK; a
medium for the isolation of Gram-negative bacteria; BioMérieux), De Man, Rogosa and
Sharpe supplemented with L-cysteine (0.05%, w/v) agar plates, MRS-Cys; a medium for
the isolation of lactic acid bacteria (Oxoid, Basingstoke, UK), and Wilkins-Chalgren agar
(WC; a medium for isolation of strict anaerobe bacteria; Oxoid, UK). MCK and CNA plates
were incubated under aerobiosis at 37 ◦C for 24 and 48 h, respectively. MRS-Cys and WC
plates were incubated anaerobically (85% nitrogen, 10% hydrogen, 5% carbon dioxide)
in an anaerobic workstation (MINI-MACS, DW Scientific, Shipley, UK) at 37 ◦C for 48 h.
After incubation, bacterial counts in each medium were recorded and, subsequently, at
least one representative of each colony morphology was selected from the agar plates. The
isolates were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight
(MALDI-TOF) mass spectrometry using a Vitek-MS instrument (BioMérieux), following
the protocol described by Martín et al. [22].

2.5. DNA Extraction from Milk Samples and PCR Amplification and Sequencing

DNA extraction was done following the protocol described by Lackey et al. [23]
for milk samples. Total eluted DNA was quantified using a NanoDrop ND-1000 UV
spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA).

A dual-barcoded 2-step PCR reaction was conducted to amplify a fragment of the
V3–V4 hypervariable region of the bacterial 16S ribosomal RNA (rRNA) gene. Equimolar
concentrations of the universal primers S-D-Bact-0341-b-S-17 (ACACTGACGACATG-
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GTTCTACACCTACGGGNGGCWGCAG) and S-D-Bact-0785-a-A-21 (TACGGTAGCAGA-
GACTTGGTCTGACTACHVGGGTATCTAATCC) were used as previously described [24]
with the following modifications. Twenty-six PCR cycles were performed with an an-
nealing temperature adjusted to 50◦C, generating amplicons of approximately 464 bp
from the V3–V4 hypervariable region. The primers were synthesized by Isogen Life Sci-
ences (Castelldefels, Spain). Barcodes used for Illumina sequencing were appended to
3′ and 5′ terminal ends of the PCR amplicons to allow for the separation of forward and
reverse sequences.

An automated electrophoresis system (2100 Bioanalyzer, Agilent Technologies, Palo
Alto, CA, USA) was used to determine the DNA concentration in each sample. Barcoded
PCR products from all samples were pooled at approximately equimolar DNA concentra-
tions and run on a preparative agarose gel. The correct sized band was excised and purified
using the QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany) and then quantified
using PicoGreen (BMG Labtech, Jena, Germany). Finally, one aliquot of pooled, purified,
barcoded DNA amplicons was sequenced using the Illumina MiSeq pair-end protocol
(Illumina Inc., San Diego, CA, USA) at the facilities of the Scientific Park of Madrid (Spain).
The resulting sequences are available in the BioSample database of the National Center for
Biotechnology Information (Bethesda, MD, USA) under the BioProject ID PRJNA715929.

The amplified fragments were taxonomically analyzed using the Illumina™ software
version 2.6.2.3, according to the manufacturer’s guidelines and pipelines. The resulting
high-quality reads were assembled and classified taxonomically into operational taxonomic
units (OTUs) by comparison with the Illumina-curated version of the GreenGenes taxo-
nomic database (Illumina software version 2.6.2.3; https://www.illumina.com accessed
on 7 March 2017) using a Bayesian classification method and a level of similarity of at
least 97%. Bacterial taxa abundances were normalized to the total number of sequences in
each sample and expressed as relative abundances. Negative controls were processed in
parallel with samples starting at DNA extraction, and no amplification was observed. In
order to filter out contaminant sequences, the “isContaminant” function in the “decontam”
package [25] in R was used [26].

2.6. Immunological Analysis of Milk Samples

The concentrations of 23 immune factors, including innate immune factors (IL1β, IL6,
IL12, IFNγ, TNFα), acquired immunity factors (IL2, IL4, IL10, IL13, IL17), immunoglobu-
lins (Igs) (IgA, total IgG [IgGt], IgM), chemokines (IL8, Groα, MCP1, MIP1β), and growth
factors (IL5, IL7, granulocyte colony-stimulating factor (GCSF), granulocyte–macrophage
colony-stimulating factor (GMCSF), TGFβ2, and epidermal growth factor [EGF]) were de-
termined by magnetic bead-based multiplex immunoassays using a Bioplex 200 instrument
(Bio-Rad, Hercules, California, USA) and the Bio-Plex Pro Human Cytokine, Chemokine,
and Growth Factor Assays (Bio-Rad), according to manufacturer’s instructions. EGF was
determined by ELISA using the RayBio Human EGF ELISA kit (RayBiotech, Norcross, GA,
USA). Concentrations of Igs (IgA, IgGt, and IgM) were determined using the Bio-Plex Pro
Human Isotyping Assay kit (Bio-Rad) in the Bioplex system instrument.

Prior to their analysis, milk samples (1 mL) were centrifuged (800× g, 15 min, 4 ◦C),
and after removing the upper fat layer, the supernatant was transferred and aliquoted
into different tubes for subsequent immunological analysis. A fresh aliquot was used for
each assay, avoiding defrosting cycles. Every assay was run in duplicate according to the
manufacturer’s instructions, and standard curves were performed for each analyte in every
assay. The inter-assay coefficients of variation were below manufacturers’ instructions for
all the immune markers. Concentrations of immunological compounds were expressed as
the weight per volume of whole milk.

2.7. Main and Trace Elements, BPA, TBBPA and FAs Analysis of Milk Samples

The analysis of main and trace elements, BPA, TBBPA, and FAs was done and pre-
viously published by Martínez et al. [21]. Only main and trace elements detected in at

https://www.illumina.com
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least 25% of the samples were included in this work: chromium (Cr), copper (Cu), calcium
(Ca), potassium (K), sodium (Na), strontium (Sr), selenium (Se), magnesium (Mg), zinc
(Zn), barium (Ba) and Cd. Regarding the lipid profile, only relevant lipid classes and FAs
(according to their frequency of detection and concentration and/or bioactive characteris-
tics), including total fat, saturated FAs (SFA), monounsaturated FAs (MUFA), ω-3,ω-6 and
total polyunsaturated FAs (PUFA), trans FAs (TFA), lauric acid (12:0), myristic acid (14:0),
palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), conjugated
linoleic acid (CLA; 18:2, c9,t11), α-linolenic acid (18:3 n-3), arachidonic acid (ARA; 20:4 n-6),
eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3), were
taken into account in this work.

In some cases, the sample volume was insufficient to perform all the planned anal-
yses, so the priority order for analysis was the following: immunological and culture-
independent microbiological analysis, main and trace elements, BPA, TBBPA, FAs and
culture-dependent microbiological analysis. The number of samples included in each
analysis is specified in each table and figure.

2.8. Statistical Analysis

Distribution of the data was evaluated using the Shapiro-Wilk normality test. Contin-
uous variables conforming to a normal distribution were expressed as the mean and the
95% confidence interval (95% CI), while those that did not follow a normal distribution
were expressed as the median and the interquartile range (IQR).

Main and trace elements, BPA, TBBPA and FAs contents were expressed per volume
of milk. Microbiological data, recorded as colony-forming units (CFU) per mL of milk,
immunological compounds and main and trace elements concentrations were transformed
to logarithmic values before statistical analysis.

In order to discard confounding factors, generalized linear models (GLM) and the
Kruskal-Wallis test were performed to ascertain the influence of age, body mass index and
time of lactation on all parameters analysed.

A Principal Component Analysis (PCA) was performed to identify patterns for the
consumption of the main food groups among the participants using the “FactoMineR”
package [27] in R [26]. A method to reduce variables (cos2 > 0.2) was used to identify
the most important parameters in the distribution of the samples. Hierarchical clustering
on principal components using Ward’s method (agglomerative hierarchical clustering
procedure) was performed to group the participants by dietary similarities. Biplots of
individuals and variables were drawn with the “factoextra” R package [28]. In order to
identify differences in the concentration and the frequency of detection of the variables (mi-
crobiological counts, relative abundance of bacterial taxa, and the content of immunological
compounds, FAs, main and trace elements, BPA and TBBPA) between groups with different
dietary habits, Kruskal-Wallis tests with Bonferroni adjustment for multiple comparisons
and Fisher tests were used.

Correlation between the log transformed bacterial counts and the relative abundance
of OTUs in milk samples for selected bacterial genera were established using Pearson
correlation analysis. The strength and direction of association between variables (main
and trace elements, free and total BPA and TBBPA content with culture-dependent and
culture-independent results, and the concentration of immunological compounds) was
observed using a scatter plot of the data and quantified after performing Spearman’s
rank-order correlation analyses. The correlation matrix was visualized using the function
“corrplot” in the R package [29].

Main and trace elements contents were stratified according to the median value, and
BPA was categorized according to its presence or absence. Differences between the resulting
groups of samples were analyzed using parametric ANOVA tests or nonparametric Kruskal-
Wallis tests, depending on the distribution of the variable.
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Significance for all statistical tests was declared at p≤ 0.05. All statistical analysis were
performed with the software R statistic, version 3.6.0 (R-project, http://www.r-project.org
accessed on 29 October 2021).

3. Results
3.1. Microbiological, Immunological, Lipid, Main and Trace Elements, BPA, and TBBPA Contents
in Milk Samples

The results of the microbial, immunological, lipid, main and trace elements, BPA
and TBBPA analyses are presented in Supplementary Tables S1–S4. They are briefly
summarized below.

3.1.1. Microbial Profile of Milk Samples

Microbiological characterization of milk samples using culture-dependent methods
indicated that bacterial growth was observed in 47 of the 48 samples analysed (Supple-
mentary Table S1). The mean total bacterial count in the milk samples with detectable
growth was 4.77 log10 CFU/mL, with values ranging from 1.30 to 5.93 log10 CFU/mL.
Staphylococcus epidermidis was the bacterial species most frequently isolated from the sam-
ples (90%), and it was also the most abundant with mean (95% CI) counts of 4.73 log10
UFC/mL (3.98, 4.99 log10 UFC/mL) (Supplementary Table S1). Staphylococcus aureus and
Staphylococcus lugdunensis were detected in 25% and 15% of the samples, respectively, but at
lower abundance than S. epidermidis. In addition, Enterococcus faecalis and Enterobacteriaceae
isolates were present in at least 10% of the samples. The rest of the bacterial species or
genera identified were detected in less than 10% of the samples (Supplementary Table S1).
Most of the isolates (from CNA and WC plates) were Gram-positive, being identified as
members of the genera Staphylococcus, Streptococcus and Corynebacterium. Lactobacillus and
Bifidobacterium isolates were found at a lower frequency and only in MRS-Cys and/or WC
plates incubated in anaerobic conditions. A few Gram-negative isolates were recognized
from MCK plates, and all were identified as Enterobacter and Klebsiella strains.

Microbiological characterization of milk samples was also performed using culture-
independent methods (Supplementary Table S2). A total of 50 human milk samples were
sequenced targeting the V3–V4 rRNA hypervariable region resulting in 6,694,925 usable reads
(mean ± SD = 133,898 ± 15,765 reads/sample, ranging from 178,598 to 107,925 reads/sample)
and 2,686 OTUs (median (IQR) = 700 OTUs/sample (609–797) OTUs/sample). The great major-
ity of the OTUs were classified into the domain Bacteria (median [IQR] = 100% [99.994–99.998%]),
but a few OTUs corresponded to domain Archaea (median [IQR] = 0.003% [0.002–0.006%])
in 47 samples. Assembled OTUs were assigned to known 27 phyla, 60 classes, 116 orders,
257 families, and 698 genera.

At the phylum level, Firmicutes, Proteobacteria, and Actinobacteria were detected
in all the samples analyzed with a relative abundance greater than 1% (Supplementary
Table S2). The most abundant phylum was Firmicutes, which was present in most of the
samples (n = 39) at the highest relative abundance (77.90%). In the rest of the samples
(n = 11), Actinobacteria was the phylum with the highest relative abundance (6.76%).
Minor phyla included all the OTUs that were not present in all the samples, or their
relative abundance were less than 0.01%. Unclassified OTUs were detected also in all the
samples with a median relative abundance of 0.43% at the phylum level and 5.01% at the
genus level. At the genus level, Staphylococcus, with a median (IQR) relative abundance
of 30.20% (11.08–63.59%), and Streptococcus (7.78% (2.14–31.97%) comprised the largest
proportion of sequences in milk samples (Supplementary Table S2). There was a positive
correlation between the log transformed staphylococcal counts and the relative abundance
of staphylococcal OTUs (Pearson’s correlation; r(38) = 0.58, p < 0.001). Other genera showed
median relative abundances less than 1%: Rothia, Corynebacterium and Pseudomonas showed
median relative abundances greater than 0.50%; Bacillus, Lactobacillus, Paenibacillus and
Propionibacterium greater than 0.10%; and Macrococcus, Enterococcus, Clostridium, Kocuria,
Bifidobacterium and Acinetobacter less than 0.10%.

http://www.r-project.org
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3.1.2. Immunological Profile of Milk Samples

The immunological profile of the milk samples, including both the prevalence and con-
centration of 19 immunological compounds, is shown in Supplementary Table S3. Only four
compounds (IL12, IL10, IL5 and GMCSF) out of the 23 analyzed were not detected in any
sample. The frequency of detection and the concentration of the different immunological
factors were highly variable (Supplementary Table S3). IgA, IgGt, IgM, IL8, Groα, EGF and
TGFβ2 were found in all samples. The immunoglobulins (Ig) were the compounds found in
higher concentration, especially IgA (median (IQR) = 2796.8 mg/L [1773.5–4057.2 mg/L]).
High levels were observed also for EGF (5.65 µg/L (4.67–6.91 µg/L)), followed by Groα
and TGFβ2 (2.97 µg/L (0.30–5.81 µg/L) and 1.74 µg/L (0.60–4.02 µg/L), respectively).
IL1β, TNFα, IL7 and MIP1β were detected in most of the samples (78–88%), IL7 concentra-
tion (96.22 ng/L (37.10–150.68 ng/L)) being remarkably higher among these compounds.
MCP1 and GCSF were found in about half of the samples, although at very different
concentrations. Finally, IL6, IFNγ, IL2, IL4, IL13 and IL17 were detected in less than 30% of
the samples, and their concentrations were lower than 25 ng/L.

3.1.3. Lipid, Main and Trace Elements, BPA and TBBPA in Milk Samples

The characterization of the milk samples with regard to their main and trace elements,
FAs profile, and BPA and TBBPA content is provided in Supplementary Table S4.

Free and total BPA were detected in 18 and 49% of the milk samples, respectively, with
a median (IQR) concentration of 0.61 µg/L (0.18–1.00) µg/L and 0.54 µg/L (0.32–1.25) µg/L,
respectively. TBBPA was detected only in only three samples, with a mean concentration
of 2.20 (1.60–2.25) µg/L (Supplementary Table S4).

Regarding the content of main elements, traces of K, Ca and Na were found in all the
samples. Their median (IQR) values were 500.79 mg/L (439.37–580.89 mg/L), 260.81 mg/L
(226.52–300.35 mg/L) and 125.22 mg/L (97.48 -177.31 mg/L), respectively. Mg was detected
in 75% of the samples with a median (IQR) concentration of 33.35 mg/L (31.23–37.88) mg/L.
In relation to trace elements, Cu and Cr were identified in all the samples although their
concentrations never exceeded 0.5 mg/L. In contrast, the percentage of samples where Zn was
detected was lower (55%), although its concentration was about four-fold higher (2.09 mg/L
(0.95–4.18) mg/L). Ba, Cd, Sr and Se had the lowest concentrations (< 0.10 mg/L) and, while
Se and Sr were present in most of the samples (>82%), Ba and Cd were detected only in 18
and 14% of them, respectively (Supplementary Table S4).

Finally, the median (IQR) percentage of fat in the samples was 3.70% (2.80–4.46%)
(Supplementary Table S4). All the individual and grouped FAs analysed were found in
all samples. The major FA was oleic acid with a median (IQR) concentration of 1.36 g/L
(1.02–1.57) g/L, followed by linoleic acid (0.43 g/L [0.32–0.60] g/L). Some essential FAs,
such as α-linolenic acid, ARA and DHA, were detected at lower concentration (18.63 mg/L
(14.66–25.93) mg/L, 16.14 mg/L (12.12–20.69) mg/L and 13.15 mg/L (7.93–17.97) mg/L,
respectively). Globally, MUFA and SFA were the major grouped FAs found in the samples
(1.45 g/L (1.12–1.68) g/L and 1.39 g/L (1.05–1.83) g/L, respectively).

A preliminary analysis examined the contribution of participant’s age, BMI and time of
lactation on the microbiological, immunological and lipid profile and on the main and trace
elements, BPA, and TBBPA contents in this set of milk samples. The relative abundance
of Streptococcus was higher (Kruskal-Wallis test; p = 0.008) in the group of samples from
women aged 35 years or younger (n = 22) (median (IQR) = 27.75% (4.97–45.10%)) compared
to the group of women aged > 35 years (n = 23) (5.22% (1.41–17.28%)). The concentration
of Cu was higher in the milk samples provided during the first month of lactation (n = 16)
(median (IQR) = 0.44 mg/L [0.29–0.54] mg/L) than in samples provided from 1 to 6 month
of lactation (n = 16) (0.26 mg/L [0.15–0.33] mg/L) (Bonferroni-adjusted Kruskal-Wallis test;
p = 0.013). No significant relationships between the BMI and the analysed milk parameters
were found.
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3.2. Dietary Habits of the Participant Women

A total of 49 out of the 53 participants completed the FFQ and the aggregated results
are shown in Table 2. Dairy products were most frequently consumed by the participants
(median (IQR) consumption of 23 servings/week (16–31 servings/week)) followed by the
cereals group (16 servings/week (9–18 servings/week)). The ingestion of fish and nuts was
considerably lower (1.50 servings/week (1.00–2.57 servings/week) and 1.00 servings/week
(0.40–3.00 servings/week), respectively).

Table 2. Weekly consumption (servings/food or drink item) of the different food groups among the
women participating in the study (n = 49).

Food Group Weekly Consumption

Dairy products 23 (16.23–31.00)
Cereals 16 (9.00–18.00)

Fish 1.5 (1.00–2.57)
Nuts 1 (0.40–3.00)

Microwavable food 0 (0.00–0.11)
Tap water 42 (28.00–56.00)

Canned drinks 2 (1.00–4.25)
Bottled water 1.5 (0.07–19.00)

All data expressed as median (IQR) servings/week of food or drink items in each food group. The dairy products
group includes milk, cheese and yogurt; the cereals group includes bread, pasta and rice; and the fish group
includes fresh tuna, canned tuna, salmon, swordfish and other fish. IQR, interquartile range.

The intake of microwavable food was infrequent; only 15 (36%) participants ever con-
sumed this kind of food, and only five of them did at least once a week. Regarding drinks,
tap water was the most consumed beverage (42 servings/week (28–56 servings/week)),
followed by canned drinks (2.00 servings/week (1.00–4.25 servings/week)) and bottled
water (1.50 servings/week (0.00–19.00 servings/week)).

To ascertain if there were specific dietary patterns from the information gathered about
food consumption, an exploratory PCA was performed revealing three dietary patterns
according to the intake of dairy products, cereals, fish, nuts, microwavable food, canned
drinks and bottle and tap water (Figure 1A).

The first two principal components (or two linear combinations of the original vari-
ables) had an eigen value > 1 and explained 72% of the observed variance in the women’s
dietary habits. The intake of fish, dairy products, bottled and tap water had a great contri-
bution (>10) to the first principal component (Dimension 1) that explained 46.7% of the
variability, while the consumption of cereals and dairy products were the most influential
(contribution > 10) in the second principal component (Dimension 2) and explained 26.2%
of the total variance.

The hierarchical clustering according to the dietary habits grouped women in three
groups (nesting distance of 0.85), as represented in the biplot (Figure 1A,B). The differences
in the dietary habits of the participants are illustrated in Figure 2. The diets of women
grouped in the cluster 1 were characterized by a limited consumption of fish, dairy products
and cereals, while the women in cluster 2 had higher consumption of cereals and tap water,
and a very low intake of bottled water. The diets of women grouped in cluster 3 were
distinguished by high consumption of fish, dairy products and bottled water, but a scarce
intake of tap water. No differences in age and lactation period were observed between
the groups based on dietary habits (Bonferroni-adjusted Kruskal-Wallis tests; p > 0.308).
However, differences in BMI were observed between women grouped in cluster 2 (median
(IQR) = 22.18 kg/m2 (20.60–24.48 kg/m2) and cluster 3 (median (IQR) = 26.67 kg/m2

(25.99–31.83 kg/m2) (Bonferroni adjusted Kruskal-Wallis test; p = 0.018).
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Figure 1. (A) Principal Component Analysis (PCA) of the consumption of each food group according
to the dietary habits of the women participating in the study. The variables with a cos2 > 0.2 are
represented as black arrows. Samples in Cluster 1 are represented as red dots, in Cluster 2 as green
triangles, and in Cluster 3 as blue squares. Ellipses were obtained at a significance of 95%. The
dairy products group includes milk, cheese and yogurt; the cereals group includes bread, pasta
and rice, and the fish group includes fresh tuna, canned tuna, salmon, swordfish and other fish.
(B) Dendrogram generated by hierarchical clustering on principal components using Ward’s method
(agglomerative hierarchical clustering procedure) of the women participating in the study according
to their dietary habits.

3.2.1. Variation of the Milk Bacterial Profile with the Women’s Dietary Habits

No statistically significant differences were observed either in the prevalence or in
the concentrations of the bacterial isolates found in milk samples using culture-dependent
microbiological methods according to the women’s dietary habits (Supplementary Table S5).
However, the culture-independent analysis of the microbial community in milk samples
indicated that the relative abundance of Firmicutes was higher in samples from participants
grouped in cluster 3 (median (IQR) = 97.09% (88.14–97.41%)) compared to samples from
participants in Cluster 1 (69.61% [47.29–87.57%]) (Bonferroni-adjusted Kruskal-Wallis test;
p = 0.017) (Figure 3A and Supplementary Table S6). This difference was also observed at the
genus level since the median [IQR] relative abundances of the genera Staphylococcus and
Paenibacillus in cluster 3 (89.16% (46.61–91.87%) and 0.21% (0.17–0.22%)) were statistically
higher than in Cluster 1 (16.59% (4.17–38.68%) and 0.10% (0.06%–0.13%) (Bonferroni-
adjusted Kruskal-Wallis tests; p = 0.030 and p = 0.013, respectively) (Figure 3A,B and
Supplementary Table S6).
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Figure 2. Box-plots showing the consumption of each food group (servings/week) according to the
dietary habits of the women participating in the study. In the box-plots, the box represents the values
of the interquartile ranges, and the median is represented as a line in the box. Outliers are represented
as dots. Cluster 1 (n = 19) is coloured in red, Cluster 2 (n = 22) in green and Cluster 3 (n = 8) in blue.
The dairy products group includes milk, cheese and yogurt; the cereals group includes bread, pasta
and rice, and the fish group includes fresh tuna, canned tuna, salmon, swordfish and other fish.
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Figure 3. Box-plots showing the relative abundances of Firmicutes, Staphylococcus and Paenibacillus (A,B) and the concentra-
tion of TNFα (C) according to the dietary habits of women participating in the study. In the box-plots, the box represents
the values of the interquartile ranges, and the median is represented as a line in the box. Outliers are represented as dots.
Cluster 1 (n = 19) is coloured in red, Cluster 2 (n = 22) in green and Cluster 3 (n = 8) in blue.

3.2.2. Variation of the Milk Immunological Profile with the Women’s Dietary Habits

A comparison of the prevalence and concentration of the different immunological com-
pounds in milk samples from women with different dietary habits is shown in Figure 3C
and Supplementary Table S7. The concentration of TNFα was higher in Cluster 2 (me-
dian (IQR) = 4.72 ng/L (3.43–6.42) ng/L) than in Cluster 1 (median (IQR) = 2.94 ng/L
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(1.96–3.33) ng/L) (Bonferroni-adjusted Kruskal-Wallis test; p = 0.023). No other statistical
differences were observed regarding the prevalence or concentration of any other immuno-
logical compound according to the three dietary clusters (Supplementary Table S7).

3.2.3. Variation of the Milk Main and Trace Elements Content, Fatty Acids Profile, and BPA
and TBBPA Content in Milk with the Women’s Dietary Habits

The profile of main and trace elements (Ba, Ca, Cd, Cr, Cu, K, Na, Se, Sr, and Zn)
was similar in milk samples from the three dietary clusters, except for Mg (Supplemen-
tary Table S8). The prevalence of this element was lower in cluster 3 (detected in 25% of
the samples) than in Cluster 1 and 2 (detected in 89% and 82% of the samples, respec-
tively) (Fisher exact tests; p = 0.020 and p = 0.007, respectively). However, there were no
differences in the level of Mg in the samples where it was detected between the three
clusters (Supplementary Table S8). Similarly, no differences were found in the lipid profile
(prevalence or concentration of the most relevant FAs, either individually or grouped,
included in this study) in milk samples based on their inclusion in the three dietary clusters
(Supplementary Table S9). In contrast, remarkable differences were noted in relation to
the concentration of free and total BPA (Table 3). First, free BPA was found in 26% and
50% of the milk samples from women in Clusters 1 and 3, respectively, but it was not
detected in any of the samples from women in Cluster 2 (χ2 test; p < 0.010). Second, the
analysis of total BPA revealed that this compound was present in about half of the samples
from each of the three clusters, but the median (IQR) concentration was lower in samples
from women grouped in Cluster 2 (0.32 µg/L (0.20–0.36] µg/L)) than in the samples from
Cluster 1 and 3 (1.03 µg/L (0.60–1.63) µg/L and 0.45 µg/L (0.34–4.53) µg/L, respectively)
(Bonferroni-adjusted Kruskal-Wallis test; p < 0.048) (Table 3). Therefore, the relationships
between consumption of individual food groups and the concentrations of free BPA, total
BPA and TBBPA in milk samples were further explored. It was found that the consumption
of canned drinks was higher in women in which total BPA was identified in their milk
samples (median (IQR) consumption of canned drinks = 2.4 servings/week (1.0–7.0) serv-
ings/week) compared to women whose milk did not show traces of BPA (median (IQR) =
1.0 servings/week (0.6–3.0) servings/week) (Kruskal-Wallis test; p = 0.040).

Table 3. Frequency and concentration (expressed as µg/L) of TBBPA, free and total BPA in the milk samples depending on
the dietary habits of the women participating in the study (n = 49).

Cluster 1 (n = 19) Cluster 2 (n = 22) Cluster 3 (n = 8) p-Value 1 p-Value 2

BPA (free) 5 (26)a 0.61 (0.18–0.95) 0 (0)b - 4 (50)a 1.93 (0.19–3.78) < 0.010 0.462

Total BPA 11 (58) 1.03 (0.60–1.63) a 9 (41) 0.32
(0.20–0.36) b 4 (50) 0.45 (0.34–4.53) a 0.553 0.048

TBBPA 2 (10) 1.60 (1.30–1.90) 0 (0) - 1 (12) 2.30 0.192 0.221

Prevalence was expressed as the number (percentage) (n (%)) of samples in which the element was detected (relative frequency of detection).
Concentration was expressed as median (IQR). 1 Fisher tests were used to determine a possible association between the detection of
compound in milk samples and the dietary habits of the women participating in the study. 2 Kruskal-Wallis adjusted tests were used to
determine if there were differences in the concentration of free and total BPA and TBBA between clusters. Different caption letters (a,b)
mean statistical differences between clusters (post hoc Bonferroni adjusted test). BPA, bisphenol A; TBBPA, tetrabromobisphenol A.

3.3. Relationships between the Main and Trace Elements Content and the Microbiological and
Immunological Profiles of Milk

The culture-dependent microbiological analysis indicated that the concentrations of
total bacteria and total staphylococci (3.27 log10 CFU/mL (2.25–4.16 log10 CFU/mL) and
3.20 log10 CFU/mL (2.00–4.04 log10 CFU/mL), respectively) were increased among milk
samples with high content of Na (≥130.09 mg/L) than in samples with low Na levels
(<130.09 mg/L) (2.75 log10 CFU/mL (1.30–3.15 log10 CFU/mL) and 2.53 log10 CFU/mL
(1.30–3.02 log10 CFU/mL)) (Kruskal-Wallis tests; p < 0.021) (Table 4). Enterobacteriaceae
isolates were only detected in the samples with high contents of Zn (≥2.06 mg/L), but the
prevalence of these microorganisms was low (9% of the samples). No strong correlations
were observed between microbiological counts and the content of other main and trace ele-
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ments (results not shown). Some differences were also observed in the culture-independent
analysis according to the concentration of elements in milk (Table 4). The relative abun-
dances of Pseudomonas, Clostridium and minor genera in milk samples with low Na content
were about twice those found in milk samples with high Na content (Kruskal Wallis test;
p < 0.036). A similar trend was observed in the relative abundances of Lactobacillus, Bi-
fidobacterium and Clostridium according to Cu concentration in milk samples (Table 5).
The relative abundances of these bacterial genera were higher among the samples with
low Cu content (<0.35 mg/L) than in those samples with high Cu content (≥0.35 mg/L)
(Kruskal-Wallis test; p < 0.046) (Table 5). Finally, higher relative abundances of Rothia were
found among milk samples with high Cr content (≥0.32 mg/L) in comparison to samples
with lower Cr content (Kruskal-Wallis test; p = 0.041) (Table 5). The opposite trend was
observed for Bacillus which relative abundances doubled in the group of samples with low
Cr content than in the group with more Cr (Kruskal-Wallis test; p = 0.022) (Table 5).

Table 4. Frequency and concentration of microbiological counts, microbial relative abundances and immunological
compounds according to the content of Na in the milk samples.

Na < 130 mg/L Na ≥ 130 mg/L

n (%) Median (IQR) n (%) (Median IQR) p-Value 1 p-Value 2

Bacterial counts (culture-dependent analysis) (n = 45)

Total counts (log10 CFU/mL) 23 (100) 2.75 (1.30–3.15) 22 (100) 3.27 (2.25–4.16) 1.000 0.021
Total staphylococci

(log10 CFU/mL) 22 (100) 2.53 (1.30–3.02) 21 (93) 3.20 (2.00–4.04) 0.448 0.009

Relative abundance of bacterial genera (culture-independent analysis) (n = 48)

Clostridium (%) 23 (100) 0.07 (0.06–0.09) 25 (100) 0.04 (0.03–0.05) 1.000 0.001
Pseudomonas (%) 23 (100) 0.21 (0.08–0.53) 25 (100) 0.06 (0.01–0.19) 1.000 0.021

Minor genera (%) 23 (100) 13.92
(8.36–30.55) 25 (100) 6.50

(2.27–19.14) 1.000 0.036

Immunological compound (n = 48)

IgM (mg/L) 23 (100) 24.26
(14.88–51.62) 25 (100) 72.79

(41.03–147.19) 1.000 < 0.001

TNFα (ng/L) 18 (78) 3.13 (1.87–4.02) 24 (96) 4.72
(2.84–10.29) 0.091 0.031

IL8 (ng/L) 23 (100) 13.70
(5.50–21.19) 25 (100) 41.30

(13.38–88.63) 1.000 0.002

GROα (µg/L) 23 (100) 0.29 (0.04–2.85) 25 (100) 3.52 (1.59–7.69) 1.000 0.002

MCP1 (ng/L) 8 (35) 94.31
(56–102.10) 20 (80) 275.24

(195.43–539.59) 0.003 0.001

MIP1b (ng/L) 18 (78) 5.24 (1.95–8.25) 25 (100) 20.97
(13.43–67.89) 0.019 < 0.001

EGF (µg/L) 23 (100) 4.96 (4.55–5.97) 25 (100) 6.08 (5.33–7.39) 1.000 0.031

GCSF (ng/L) 9 (39) 2.33 (1.67–6.54) 16 (64) 12.18
(4.55–21.86) 0.147 0.029

TGFβ2 (µg/L) 23 (100) 0.62 (0.31–1.76) 25 (100) 3.47 (1.61–6.23) 1.000 < 0.001

n (%): number (percentage) of samples in which the microorganism or compound was detected (relative frequency of detection). All
data expressed as median (IQR). IQR, inter quartile range. Results from microbiological analysis are expressed as log10 CFU/mL. CFU,
colony-forming units. Results from metataxonomic analysis are expressed as relative abundances (%). Total staphylococci include: S.
epidermidis, S. aureus, S. lugdunensis, S. haemolyticus, S. hominis spp. hominis and S. warnerii. Minor genera include bacterial genera with
a relative abundance < 0.1%. 1 Fisher tests were used to determine differences between the frequency of detection of microorganism or
compound and the concentration detected of Na in milk samples. 2 Kruskal-wallis tests were used to determine differences between the
concentration of each microorganism or compound and the concentration detected of Na in milk samples. EGF, epidermal growth factor;
GCSF, granulocyte colony-stimulating factor; Ig, immunoglobulin; IL, interleukin; MCP1, macrophage-monocyte chemoattractant protein-1;
MIP1β, macrophage inflammatory protein-1β; TGFβ2, transforming growth factor-β2; TNFα, tumor necrosis factor-α.
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Table 5. Differences in the prevalence and concentration of microbial relative abundances obtained after metataxonomic
analysis and immunological compounds according to the content of main elements in milk samples.

Cr content
n (%) <0.32 mg/L n (%) ≥0.32 mg/L p-Value 1 p-Value 2

Bacillus (%) 23 (100) 0.16 (0.10-0.52) 25 (100) 0.08 (0.05-0.16) 1.000 0.022
Rothia (%) 23 (100) 0.39 (0.06-2.24) 25 (100) 1.99 (0.59-4.11) 1.000 0.041

Cu content
n (%) <0.35 mg/L n (%) ≥0.35 mg/L

Lactobacillus (%) 23 (100) 0.32 (0.06-0.68) 25 (100) 0.10 (0.03-0.21) 1.000 0.046
Clostridium (%) 23 (100) 0.06 (0.05-0.09) 25 (100) 0.04 (0.03-0.05) 1.000 0.005

Bifidobacterium (%) 23 (100) 0.12 (0.05–0.71) 25 (100) 0.06 (0.01–0.10) 1.000 0.029

IgM (mg/L) 23 (100) 32.70
(17.74–69.70) 25 (100) 67.78

(34.27–138.88) 1.000 0.042

K content
n (%) <499.03 mg/L n (%) ≥499.03 mg/L

IgM (mg/L) 26 (100) 31.44
(17.57–69.22) 22 (100) 69.18

(40.85–130.15) 1.000 0.011

EGF (µg/L) 26 (100) 5.29 (4.38–6.06) 22 (100) 6.25 (5.26–7.65) 1.000 0.007
TGFβ2 (µg/L) 26 (100) 0.88 (0.32–3.10) 22 (100) 2.22 (1.64–4.06) 1.000 0.011

Mg content
n (%) <32.12 mg/L n (%) ≥32.12 mg/L

IgGt (mg/L) 20 (100) 49.85
(36.00–59.98) 24 (100) 90.75

(57.58–110.73) 1.000 0.001

IL8 (ng/L) 20 (100) 8.79
(4.76–26.73) 24 (100) 23.32

(14.59–70.39) 1.000 0.004

n (%): number (percentage) of samples in which the microorganism or compound was detected (relative frequency of detection). The
relative abundances of Bacillus, Bifidobacterium, Clostridium, Lactobacillus and Rothia were obtained using culture-independent analysis and
are expressed as percentages. All data expressed as median (IQR). 1 Fisher tests were used to determine differences between the frequency
of detection of microorganism or compound and the concentration detected of main elements in milk samples. 2 Kruskal-Wallis tests were
used to determine differences between the concentration of each microorganism or compound and the concentration of main elements in
milk samples. EGF, epidermal growth factor; Ig, immunoglobulin; IgGt, total IgG; IQR, inter quartile range; TGFβ2, transforming growth
factor-β2.

A Spearman’s rank correlation matrix was constructed in order to find associations
between the concentrations of the immune compounds and the levels of main and trace
elements in milk (Figure 4). The strongest positive correlations were observed between
the level of Na and IL7, TGFβ2, IL8, MCP1, MIP1β, GROα, GCSF and EGF concentrations
(0.40 ≤ ρ ≤ 0.75). The correlations between K content and TGFβ2, IL8, MCP1, MIP1β,
GROα and EGF levels were also positive, though weaker (0.31 ≤ ρ ≤ 0.50), than those
observed for Na (Figure 4). The concentrations of most of the immunological compounds
(IgM, TGFβ2, GROα, IL8, GCSF, MCP1, MIP1β, TNFα and EGF) were significantly higher
in the group of samples with higher contents of Na (Kruskal-Wallis tests; p < 0.031) (Table 4).
Similarly, the concentrations of IgGt and IL8 were directly correlated with the Mg content
(Kruskal-Wallis tests, p = 0.001 and p = 0.004, respectively), the concentration of IgM,
TGFβ2 and EGF with K content (Kruskal-Wallis tests, p = 0.011, p = 0.011, and p = 0.007,
respectively), and the concentration of IgM with Cu content (Kruskal-Wallis test, p = 0.042)
(Table 5).

3.4. Relationships between Free and Total BPA and TBBPA Content in Milk and the Microbial and
Immunological Profiles

There were no associations of the microbial counts and the relative abundances of
bacterial phyla and species and the content of free and total BPA and TBBPA in milk (results
not shown). However, regarding the immunological profile, differences were found in the
levels of TGFβ2, IL8 and MCP1 in milk depending on the presence of BPA (Figure 5 and
Supplementary Table S10). The median (IQR) concentrations of TGFβ2, IL8 and MCP1 were
double or higher in samples where total BPA was not detected (2.48 µg/L (1.25–6.06 µg/L),
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40.75 ng/L (15.20–82.97 ng/L), and 274.36 ng/L (165.18–400.04 ng/L), respectively) than in
the group of samples where BPA was detected (1.41 µg/L [(0.51–2.05 µg/L), 13.70 ng/L
(7.92–21.18 ng/L) and 94.65 ng/L (68.98–201.19 ng/L), respectively) (Kruskal-Wallis tests,
p = 0.045, p = 0.015, and p = 0.015, respectively) (Figure 5 and Supplementary Table S10).
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Figure 5. Box-plots showing the concentration of selected immunological compounds according
to the presence (green) or absence (orange) of total BPA in the samples. In the box-plots, the box
represents the values of the interquartile ranges, and the median is represented as a line in the
box. Outliers are represented as dots. Kruskal-Wallis tests were used to evaluate differences in the
concentrations of the immunological compounds between milk samples where BPA was present and
those where it was absent.
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4. Discussion

Human milk is a very complex fluid composed of a plethora of macronutrients and
micronutrients and a vast array of bioactive substances and live cells, including several
subpopulations of immune cells and a site-specific microbiota [16,30,31]. Breastfeeding is
unanimously recognized as the best infant feeding method in terms of health risk-benefit
and independently of the mother and infant circumstances, which can include living in
highly polluted environments [32,33]. Human milk may contain environmental and diet-
related lipophilic chemical contaminants that accumulate in the adipose tissue (including
mammary tissue) of women. These substances can be mobilized in situations in which
energy and nutritional demands increase sharply, such as pregnancy or lactation. Some of
these chemicals, including BPA, TBBPA and heavy metals, may act as endocrine disruptors.
Therefore, their exposure above certain thresholds during foetal or early life may cause
long-lasting negative effects on growth, development and health [34–37]. In this study, we
elucidated whether there are potential associations between the maternal diet, the content
of some major elements, trace metals, BPA and TBBPA, as well as the FAs, microbial, and
immunological profiles of human milk.

Culture-dependent analysis of the samples revealed that some of them contained
high total bacterial concentrations (median total counts in the total of samples 4.77 log10
CFU/mL), which were mainly due to a high concentration of S. epidermidis. Increased levels
of this species are usually associated with subacute or subclinical mastitis [38–41]. Although
none of the women recruited in this study reported signs of mastitis, it is entirely possible
that those women whose milk contained high S. epidermidis counts would be suffering
from subclinical mastitis. This condition is characterized by reduced milk secretion, a high
milk bacterial count, and an increase in the Na/K ratio, even in the absence of pain or
other inflammation-related symptoms [42]. Sodium content and Na/K ratio have been
used as biochemical markers for subclinical mastitis [43,44]. Interestingly, in our study
the Na content was positively correlated with total milk bacterial counts. In addition, a
positive correlation between the content of Na and some soluble immune compounds (IL8,
GCSF or MIP1β) was also found. These three immune factors are known to participate
in the immunological response against bacterial infection [45]. These findings reinforce
the hypothesis that some of the women recruited were suffering from such a condition.
Relationships between breast health status, some proinflammatory cytokines (IL1β, IL6
and IL8) and some mineral elements (P, Fe, Ca, Mg, Cu, Mn and Zn) in human milk have
been previously reported [46]. Although the number of samples analysed in our studied
was relatively low, our results suggest a link between breast health and the milk levels of
some proinflammatory cytokines and minerals.

A potential relationship between the levels of bacteria belonging to the genera Lac-
tobacillus, Bifidobacterium, Clostridium and Bacillus and a lower content of Cu and Cr was
also noted. Long-term exposure to Cu can irritate respiratory mucous membranes, and
causes headaches, nausea, and diarrhoea. In turn, high intakes can cause liver and kidney
damage, and even death [47]. Cr is another hazardous heavy metal arising from industrial
waste, potentially leading to pneumonia and gastrointestinal ulceration, haemorrhage and
necrosis [47]. Some studies have reported the capacity of certain bacteria for binding and
adsorbing metals [48,49]. It has been suggested that the sequestering of heavy metals by
specific members of the human gut microbiome may greatly decrease their absorption
rate, minimizing the impact of diet-related exposures even in highly polluted areas [50].
The adsorption capacities of lactobacilli and other lactic acid bacteria have been described
previously [17,50–54]. Thus, they have been proposed for the detoxification of food and
drinking water or as a probiotic for the removal of these metals once in the gut [17,53]. Sub-
sequently, Astolfi et al. [55] tested the in vitro and in vivo binding-capacity of a multistrain
probiotic product that included strains of Lacticaseibacillus paracasei (formerly Lactobacillus
paracasei), Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), Lactobacillus aci-
dophilus, Lactobacillus delbrueckii subsp. bulgaricus and three strains of Bifidobacterium. They
observed that the product had a good in vitro capacity to bind Cd, Hg and Pb; however, no
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differences in the levels of such metals were found in breast milk and infant stools when a
group of women treated with the probiotic product was compared with a group taking a
placebo. More in vivo studies with other lactic acid bacteria or bifidobacteria strains are
necessary to understand the binding capacity of these bacteria in the human body.

In addition to lactic acid bacteria, other bacterial groups display great detoxification
potential. Bacillus is one of the genera with the highest metal-binding activity, particularly
in relation to heavy metals [49,56]. Different environmental studies have demonstrated the
ability of Bacillus licheniformis and Bacillus coagulans for Cr adsorption [57]. In our study, the
content of Cr was lower among the group of samples with a higher Bacillus concentration.

Many studies have demonstrated the metabolic disruption produced by high or
chronic BPA exposure. Unfortunately, only few addressed the impact of BPA exposure
on the human microbiota, and they were mostly restricted to the use of animal models.
BPA exposure in zebrafish shifted the microbiota community structure and selected BPA-
resistant microbes, leading to a bacterial dysbiosis state [58,59]. Exposure to BPA can lead
to gut microbiome changes in murine models [60], including a significant reduction in
diversity, an increased presence of Proteobacteria, and a reduction in that of Firmicutes and
Clostridia [19]. In our study, no significant differences were observed in the composition of
the human milk microbiota depending on the presence of TBBPA, free BPA or total BPA in
the analysed samples. This result may be due to the limited number of samples and/or to
their low levels of BPA.

Our results demonstrate the complexity of the interactions between the main parame-
ters of the different types analysed in this work. More studies are necessary to clarify the
connections among the different components of human breast milk, and to determine how
these different factors affect its composition and function.

The strengths of this study are the wide range of compounds analysed simultaneously
in the same set of milk samples (main and trace elements, BPA and TBBPA, FAs, immuno-
logical compounds and microbiota), and the concomitant evaluation of the dietary habits
of the women in relation to the concentration of these compounds. Studying potential
relationships among these different parameters may help to understand or unveil the
complex interactions that exist among the compounds that constitute human milk.

The major limitations of this study are the relatively low number of participants
and the fact that all the recruited women were healthy and without a history of high
or prolonged exposures to the toxic substances analysed in this work, such as heavy
metals or BPA. As a consequence, the interactions observed between these compounds
and the immunological and microbiological profiles were subtle. In the future, it would
be interesting to have access to samples collected from women potentially exposed to
environmental pollution. In addition, milk sampling may influence the fat concentration in
the milk samples, and therefore the concentration of lipophilic compounds. Future studies
may consider collecting more representative samples of milk and its fat content (one or
more entire milkings [61]). Another limitation of the study is the lack of information on
the time of day at which the samples were collected, or the time elapsed since the last
feeding, as both factors strongly influence the concentration of fat in breastmilk and thus
the concentration of lipophilic compounds such as BPA.

5. Conclusions

In this study, culture-dependent analysis of the milk samples revealed that some of
them contained a high concentration of S. epidermidis, although none of the women recruited
reported signs of mastitis that is frequently related. Our results showed a relationship
between breast health and milk levels of some proinflammatory cytokines and minerals.
The results of this study confirm that the microbiological composition of human milk is
influenced by the dietary habits of the women. Na content was positively correlated with
total milk bacterial counts and also with the following soluble immune compounds: IL8,
GCSF and MIP1β. A potential relationship between the levels of bacteria belonging to
the genera Lactobacillus, Bifidobacterium, Clostridium and Bacillus and a lower content of Cu
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and Cr was also noted in our work. The consumption of canned drinks was related with
the presence of BPA in human milk. However, no significant differences were observed
in the composition of the human milk microbiota depending on the presence of TBBPA,
free BPA or total BPA in the analysed samples. Further studies are needed to elucidate
the connections between the different components of human breast milk. In any case,
breastfeeding should be always the first feeding option in early life.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13124346/s1. FFQ, Food Frequency Questionnaire, Supplementary Table S1. Prevalence
and bacterial counts (expressed as log10 CFU/mL) obtained using culture-dependent analysis of
milk samples (in which bacterial growth was detected) of the women participating in the study
(n = 48). Supplementary Table S2. Relative abundance of assigned operational taxonomic units
(OTUs) at phylum and genus level (at 97% sequence similarity) in milk samples (n = 50). Only the
most abundant OTUs present in all samples are shown. All milk samples contained OTUs assigned
to the phyla and genera included in the table. Supplementary Table S3. Relative frequencies of
detection and concentration of the immune factors in human milk samples (n = 50). Supplementary
Table S4. Frequency and concentration of free and total BPA, TBBPA, major and trace elements, and
individual and grouped fatty acids content in human milk samples (n = 49). Supplementary Table
S5. Prevalence and bacterial counts (expressed as log10 CFU/mL) obtained using culture-dependent
analysis of milk samples (where bacterial growth was detected) depending on the dietary habits of
the women participating in the study (n = 43). Supplementary Table S6. Relative abundances of the
genera detected by culture-independent analysis of milk samples depending on the dietary habits of
the women participating in the study (n = 44). Supplementary Table S7. Prevalence and concentration
of immune factors detected in human milk samples depending on the dietary habits of the women
participating in the study (n = 45). Supplementary Table S8. Frequency and concentration (mg/L)
of main and trace elements in human milk samples depending on the dietary habits of the women
participating in the study (n = 49). Supplementary Table S9. Concentration of individual and grouped
fatty acids in human milk samples depending on the dietary habits of the women participating in the
study (n = 48). Supplementary Table S10. Prevalence and concentration of immune factors depending
on the presence (n = 23) or absence (n = 21) of total BPA in human milk (n = 44).
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