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Abstract: Non-coding RNAs (ncRNAs) represent a research hotspot by playing a key role in epigenetic
and transcriptional regulation of diverse biological functions and due to their involvement in different
diseases, including oral inflammatory diseases. Based on ncRNAs’ suitability for salivary biomarkers
and their involvement in neuropathic pain and tissue regeneration signaling pathways, the present
narrative review aims to highlight the potential clinical applications of ncRNAs in oral inflammatory
diseases, with an emphasis on salivary diagnostics, regenerative dentistry, and precision medicine for
neuropathic orofacial pain.
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1. Introduction

Oral inflammatory diseases are commonly observed pathologies in everyday dental
clinical practice and via activation of the systemic immune response can lead to the devel-
opment of systemic inflammatory disorders and impairment of the individual’s general
health [1]. In order to improve clinical outcomes and increase patient quality of life, there is
a tendency to incorporate molecular profiling into clinical decision-making and molecular
signature-guided therapies. Based on the understanding of non-coding RNAs (ncRNAs)
in the regulation of inflammatory signaling, new avenues for ncRNA in diagnostics and
therapeutic intervention in inflammatory diseases have opened.

2. Non-Coding RNA Transcriptome

It has been proposed that approximately 70% of the human genome is transcribed into
mRNA, but only around 2% are protein-coding [2–4], suggesting that a very tiny propor-
tion of the human genome sequences and elements translate into proteins. According to
this, a vast majority of transcribed sequences of RNA molecules are regulatory elements.
Non-coding RNAs are genome elements that do not encode for amino acids [4]. They are
involved in various cellular processes and interfere with signaling pathways. Non-coding
RNAs are localized in almost every cellular compartment and interact with nucleic acids
and proteins, thus changing their conformation and functions. Some non-coding RNAs
interact with chromatin, contributing to chromatin remodeling, and thus shaping gene
activity. In the backbone of every pathological condition lies non-coding RNA transcrip-
tome changes, and their interactome. The localization and abundance of non-coding RNA
are tissue-specific [5] and can change in response to a wide span of stressogenic factors
and cellular and environmental events. Non-coding RNA transcriptome changes should
be more closely discovered in association with disease development and have the poten-
tial to be utilized as diagnostic, predictive, and prognostic biomarkers; parameters for
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the stratification of patients into more specific groups; and potential targets for therapeu-
tics. The non-coding RNA transcriptome comprises RNA molecules of various structures,
lengths, and functions [4]. The basic classification on long non-coding (lncRNA) and small
non-coding RNA is based on their length.

Transfer RNA (tRNAs) and ribosomal rRNAs (rRNAs) were among the first RNAs
found that do not translate into proteins. However, high-throughput “whole transcriptome”
techniques discovered seemingly insignificant but now very important regulators of all
cellular processes in the two additional classes of non-coding RNAs: long non-coding and
small non-coding RNA molecules. [6]. Classification of non-coding RNAs is based mostly
on their length, but there are other types of non-coding RNA based on their special features
such as packing into microvesicles, including extracellular RNAs [7].

2.1. Long Non-Coding RNA

LncRNAs are endogenous cellular RNAs lacking an ORF (open reading frame) or
with a shorter ORF than mRNA, which is used as one of the criteria for distinguishing
lncRNAs from messenger RNAs [8,9]. LncRNAs are classified as more than 200-nucleotide-
long RNA molecules [10]. There are more than 16,000 lncRNA genes, while estimations
suggest more than 100,000 lncRNAs [11]. The expression and abundance of lncRNAs
is tissue specific; they have specific cellular localization, and have the ability to alter
signaling pathways by interacting with nucleic acids and proteins. They are involved in
gene expression regulation at the pre-, post-, and transcriptional level via changes in the
chromatin state, and transcriptional activity, splicing, and translation [11,12]. LncRNAs
can be subclassified into the groups of very long intergenic RNAs longer than 10 kb, and
macroRNAs, which are pathway specific [13]. Five additional subclasses of RNA transcripts
can be distinguished: intronic, intergenic, sense, antisense, and bidirectional [8]. Regarding
the functional significance of lncRNA, one should be cautious, and conclusions should rely
on specific studies with genetic quantitative loss-of-function or gain-of-function models in
each species due to the different levels of lncRNA evolutionary conservation [9]. Namely, it
has been suggested that lncRNA conservation between species could be considered at four
dimensions: at the sequence level, where lncRNAs from different species can have sequence
homology and thus similar transcripts; at the structural level, where similar structures
could be produced despite a lack of lncRNA sequence homology; at the functional level,
where similar functions could be executed despite lncRNAs’ different sequences and
structures; and at the transcriptional level, where the locus of transcription is conserved,
thus mediating functions despite different lncRNA transcripts [9].

2.2. Small Non-Coding RNA

Small non-coding RNAs (sncRNAs) are 20–200-nucleotide (some around even 400
nts in length) RNA molecules involved in the regulation of gene expression, transcrip-
tion, translation, splicing, RNA modification, and methylation by the interaction with
target mRNA, either through full or partial complementarity [14]. Different types of
snRNAs such as microRNAs (miRs), endogenous short interfering RNA (endo-siRNA),
piwi-interacting RNA (pi-RNAs), transfer RNA (tRNAs), transfer RNA fragments (tRFs),
small nuclear (snRNAs), small nucleolar (snoRNAs), small Cajal-body RNAs (scaRNAs),
YRNAs (small stem-loop RNA structures), and short hairpin RNA (shRNA) are synthe-
sized through various biogenesis and maturation pathways by various enzymes and by
interaction with different proteins, such as Argonaute or Pi-wi like, combined into the
ribonucleoproteins [14–16]. Ribonucleoprotein complexes guide non-coding RNA to the
target and enable them to interact not only with RNA molecules but with proteins and
DNA in some cases, such as microRNAs, thus forming a very complex coding-non-coding
RNA-DNA-protein reactome [17–19].

So far, the vast number of studies have focused on microRNAs as critical molecules
governing development and stress responses. Very recent studies have paid attention to
other sncRNAs, tRNA and tRFs, that accumulate in the stressed cell [20]. Because both
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sncRNAs have a Dicer-dependent biogenesis pathway, it has been proposed that tRFs could
function akin to an miR to inhibit the translation or cleave partial complementary target
sites [21]. The canonical pathway of miR biogenesis requires two enzymes: Drosha and
Dicer. Primary miR transcripts are first cleaved by the nuclear “microprocessor” complex,
which contains the enzyme Drosha, and then exported to the cytoplasm, where they are
further processed by another enzyme, Dicer, forming the mature miR. Dicer is critical for
most miRNAs, but the 5p miRNAs appear to be produced to some extent even without
Dicer. Moreover, unlike canonical miR-21-5p, the synthesis of noncanonical miRs, including
miR-320a-3p and miR-484–3p, is Drosha independent [22].

In addition to those described above, it is noteworthy to mention extracellular RNAs
(exRNAs) [7] and competing endogenous RNAs (ceRNAs) packed into lipid or protein
particles, such as exosomes, microvesicles, or oncosomes, which are especially significant for
cancer research, which bare and transfer very important genetic and biological information
between cells and organ systems [7]. The competing RNA (ceRNA) term is associated
more with their function and role rather than the length or another structural feature or
localization. The competing RNA phenomenon is associated more with interaction with
long and small non-coding RNA and other transcripts, thus acting as sponges by controlling
the amounts of active (free to interact with) non-coding RNA transcripts [23].

2.3. Challenges Related to the Clinical Application of ncRNAs

The introduction of single-cell sequencing has enabled investigation of not only the
landscape of ncRNAs but also their cellular function. Furthermore, bioinformatic tools
are becoming more sophisticated and are used for analyzing ncRNA sequencing data.
However, detection of ncRNAs still remains challenging due to the low expression and
unique features of certain ncRNAs and the bias of RNA sequencing and bioinformatic
methods, leading to erroneous identification of ncRNA species [24].

Currently, eleven RNA-based therapeutics have been approved by the US Food and
drug administration and/or the European Medicines Agency involving antisense oligonu-
cleotides (ASOs) or small interfering RNAs (siRNAs) while others, including miRNA
mimics and antimiRs, are in phase II or III clinical investigations [25].

The use of miR-based therapeutics has several advantages [26]. Namely, miRs are
naturally occurring molecules in human cells, contrary to synthetic chemotherapy com-
pounds or ASOs, and all the mechanisms in cells for their processing and downstream gene
target selection are available. Additionally, miRs, by targeting multiple genes within one
pathway, show a broader yet specific response [26]. It is noteworthy that circulating miRs
(in serum, saliva, and other body fluids), due to their stability and distinctive function,
have the advantage of being biomarkers compared with other biomarkers such as proteins
(cytokines). Moreover, as controllers of gene transcription, miRNAs and their expression
have a higher probability of being related to clinical variables and since they reflect cellular
disturbance that occurs years before the appearance of related clinical signs, they enable
disease-preventing actions [27].

Clinical applications of all RNA-based therapeutics are hindered by several issues:
specificity, related to undesired effects due to uptake in non-target cells or overdosing; de-
livery, mainly related to inefficient intracellular delivery and the lack of suitable delivery ve-
hicles; and tolerability, caused by the recognition of RNA molecules by pathogen-associated
molecular pattern (PAMP) receptors, causing strong immune effects [25]. Therefore, in
order to achieve the application of ncRNA as therapeutics and biomarkers, further research
should focus on immunogenicity screening, extensive pharmacodynamic and pharmacoki-
netic studies regarding delivery systems, and chemical modifications to improve specificity.

3. ncRNAs and Oral Inflammatory Diseases

Every disease is a consequence of the specific interactions among the genetic and
epigenetic backgrounds of each individual and cellular and environmental conditions.
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During the last decade, it has been discovered that the non-coding elements of the genome
underlie the onset and progression of inflammatory diseases [12].

Pulpitis is a chronic inflammatory condition of the dental pulp, mostly caused by
cavities [28]. Periodontal disease is a result of the complex interaction among inflammatory
and immune responses induced by pathogenic bacteria [29] and the individual’s genetic
and epigenetic background. Periodontitis is mainly caused by bacterial infection affecting
periodontal tissue, which can lead to the loss of alveolar bone attachment [30]. Peri-
implantitis is an inflammatory process of the tissues around an osseointegrated implant
and may result in supporting bone loss, and miRs, such as ncRNAs, could be engaged in
the prognosis of peri-implant bone resorption [31].

Sjögren’s syndrome (SS) is a rheumatoid pathological condition predominantly affect-
ing the salivary and lachrymal glands, leading to oral dryness and salivary gland swelling.
Patients with SS show an increased risk of developing non-Hodgkin’s lymphoma [32].
Oral lichen planus (OLP) is a premalignant epithelial oral lesion, with the potential to
malignantly transform [33]. Oral squamous cell carcinoma (OSCC) is a malignant epithelial
tumor with low overall survival rates and poor prognosis, regardless of the advances in
surgery, chemotherapy, and radiotherapy [34]. Growing evidence supports an associa-
tion between oral squamous cell carcinoma (OSCC) and chronic inflammation and the
involvement of long non-coding transcriptome alterations [34].

3.1. Long Non-Coding RNA and Oral Inflammatory Diseases, Premalignant States, and Oral
Squamous Cell Carcinoma

LncRNAs were shown to be closely associated with oral inflammatory diseases and
malignant transformation in the oral cavity epithelium, but the mechanisms underlying
these pathological conditions are still unknown. Long non-coding RNAs were shown to
be immunomodulatory [35]. Thus, antisense non-coding RNA in the INK4 locus (ANRIL)
regulates the STAT1 pathway and thus the production of the proinflammatory cytokine
interferon-gamma (IFN-γ). ANRIL is one of the regulators and a component of the NF-kB
pathway, and after TNFα treatment, it induces IL-6 and IL-8 expression [36], indicating that
it is an important regulator of inflammation underlying the pathology of this type of dis-
ease. Upregulation of another proinflammatory long non-coding RNA, of lncRNA MEG3
(lncRNA maternally expressed gene 3), was associated with pulpitis progression while its
downregulation was associated with dental pulp regeneration [37]. The authors also found
that inhibition of lncMEG3 lowered the secretion of proinflammatory cytokines in dental
pulp cells treated with LPS, probably via p38/MAPK signaling pathway regulation [37].
LncRNA FGD5 antisense RNA1 was shown to be underexpressed in gingivae in patients
with periodontitis by blocking miR-142 to silence NF-kB signaling and the inflammatory
response [38]. LncRNA MALAT1 acts as a sponge to miR-20a and increases inflamma-
tory processes in periodontal tissue via activation of the toll-like receptor 4 pathway [39].
LncRNA DQ786243 was shown to be overexpressed in the CD4+ lymphocytes of oral lichen
planus patients compared with healthy individuals and associated with increased proin-
flammatory miR-146a through Foxp3 activation, which downregulates the NF-κB pathway
and, in turn, affected the resulting LncRNA DQ786243 expression [40]. It has been shown
that lncRNA TMEVPG1 was increased in CD4+ T helper cells in patients with Sjögren
syndrome compared with healthy individuals [41], indicating its potential involvement
in the development of SS. It was reviewed by Benedittis et al. that lncs LINC00426, NRIR,
CYTOR, TPTEP1, BISPR, AC017002.1, n336161, LINC00426-003, NR_002712, LINC02384,
TCONS_l2_00014794, lnc-UTS2D-1:1, and n340599 expression was altered in PBMCs or
salivary glands in SS patients [42].

Jia et al. [43] showed the potential of four lncRNAs (ENST00000412740, NR_131012,
ENST00000588803, and NR_038323) to distinguish early stage from advanced-stage OSCC.
They also showed significant differences between OSCC and healthy controls, indicating
that these four lncRNAs not only have prognostic potential but diagnostic potential as
well [43]. Other lncRNAs frequently associated with oral cancers are lncRNA cancer sus-
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ceptibility candidate 9 (lncRNA CASC9) [44] and lncRNA HOTAIR, which was described
as an oncogene that boosts the invasive and metastatic potential of OSCC [45]. LncRNA
CASC9 was overexpressed in OSCC tissue and SCC15, TSCCA, and CAL27 oral cancer
cell lines compared with healthy matched tumorous tissue and HOMEC, a normal cell
line derived from oral keratinocytes. Higher lncRNA CASC9 levels were also associated
with an advanced T stage, positive lymph node status, and an advanced clinical stage [44].
LncRNA HOTAIR showed higher expression levels in OSCC and cell lines and advanced
TNM stages, higher tumor grade, and positive lymph node status compared with healthy
oral mucosa epithelium and a normal cell line derived from keratinocytes from the oral
cavity. Furthermore, LncRNA HOTAIR acts as a sponge for miR-326, thus decreasing its
ability to silence the translation of oncogenes, such as metastasis-associated gene 2, which
was confirmed by Tao et al. [45].

3.2. Small Non-Coding and Oral Inflammatory Diseases, Premalignant States, and Oral Squamous
Cell Carcinomas

In oral diseases and pathology, microRNAs are the most investigated small non-coding
RNA with the highest potential to be utilized in clinical practice. MicroRNAs play a very
important role in dental pulp pathology via their role in regulating the immune response
and inflammation [46]. miR-21 was shown to mitigate the inflammatory signaling in LPS-
stimulated dental pulp cells [47]. Bacterial infection with P. gingivalis lipopolysaccharides
(LPS) was shown to induce miR-584 overexpression, which induced IL-8 production and
inflammation in the gingival epithelium [48,49].

Kamal et al. [50] compared the differential expression of miRs from the saliva and plasma
of patients with chronic periodontitis (CP) with miRs extracted from healthy controls. The
authors pointed out that the arrays from saliva and plasma differed from each other and
found that miR-let-7d/miR-103a-3p/126-3p/150-5p/199a-3p/4485-5p/6088/6821-5p were
significantly lower in the saliva and plasma of the CP patients compared with the controls,
indicating that these miRs might be used as diagnostic and prognostic factors of CP [50].
MicroRNA miR-146a and miR-155 deserve special attention because it has been shown
that these miRs can modulate immune responses [51]. Their upregulation was observed in
the crevicular fluid of patients with chronic periodontitis associated with diabetes mellitus
type II [52]. Sipert et al. [51] investigated the differences in the miR expression levels
in cultivated fibroblasts in dental pulp, gingival, and periodontal ligament fibroblasts
from the same individual by microarray and RT-qPCR analysis. The authors showed a
cell-type-specific miR expression pattern and an increase in proinflammatory miR-146a
in gingival fibroblasts after stimulation with LPS, and that miR-155 in gingival fibroblasts
was decreased after LPS addition [51]. By employing differential expression analysis,
miR-517/525/624/3128/3658/3692/3912/3920/4683/4690 were identified as predictors of
periimplantitis in the five years after implant surgery, which regulate critical processes in
peri-implant tissues, such as inflammation or cellular proliferation [27].

Exosomes represent cellular particles that contain proteins, lipids, coding and non-
coding RNAs, microRNA, and cytokines, thus having the ability to transfer information
among neighboring and distant cells. It has been also shown that exosomal microRNA
can modulate the immune response and inflammation [53,54]. Zheng et al. [55] showed
that dental pulp stem cell-derived small extracellular vesicles (DPSCs-sEV) and their cargo,
including 81 miRs, have immunomodulatory features in dental pulp cells. Especially,
miR-125a-3p jumped was notable for its immunomodulatory potential by regulating the
NF-κB and toll-like receptor (TLR) axis via silencing of the inhibitor of nuclear factor-kappa
B kinase subunit beta (IKBKB) [55]. Exosome-derived microRNA molecules can alter the
translation of mRNAs in immune cells [54]. MicroRNA miR-142-3p, which was found in
exosomes from T cells, was associated with exocrine gland malfunction in SS [56]. Some
other miRs from exosomes such as miR-124a/192-5p and miR-150-5p were associated with
an impaired immune response in rheumatoid arthritis [54].
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In OLP, miRs are the most studied small non-coding RNA. Gassling et al. [57] identified
16 altered miRNAs by microarray analysis in 7 patients with OLP. Oncogenic miRs, such as
miR-21, were shown to be significantly upregulated, meaning that OLP might be a precursor
state for malignant transformation. Additionally, miR-31/132/143/155/15a/342-3p were
also differentially expressed in OLP compared with healthy controls [57]. Scapoli et al. [58]
found that miR-21/23/25/146b/489/129/338/212, among others, were overexpressed
in OSCC and that tumor-suppressive miR-34a/520h/197/378/135b, and miR-224 were
lower than in healthy control samples. Furthermore, miR-let-7i, miR-155, and miR-146a
downregulation was associated with OSCC metastasis [58].

A study investigated circulating small non-coding RNA derived from seven male
patients with oral cancer and found a significant difference in the distribution of small
non-coding RNA between the cancer and healthy control groups [59]. According to their
results, a vast majority of investigated small non-coding RNA (50%) were miRs (miR-
103-3p and miR-107 emerged as the most important, and associated with the tumor size),
38% were YRNAs, and 10% were tRNAs while snRNAs, rRNA, snRNA, and snoRNA
together contributed only 1% of the small-noncoding RNA transcriptome [59]. These
findings indicate the importance of microRNA in future clinical practice for oral disease
diagnosis, prognosis, and treatment. The list of lncRNA and sncRNA associated with oral
inflammatory diseases was presented in Table 1.

Table 1. LncRNA and sncRNA association with oral inflammatory diseases in clinical settings.

lncRNA or sncRNA Association with Oral Inflammatory Disease References

lncRNA MEG3
Upregulated in inflamed pulp.

MEG3 downregulation inhibited the secretion of TNF-α, IL-1β, and
IL-6 in LPS-treated hDPCs

[37]

lncRNA FGD5-AS1
Downregulated in gingival samples of periodontitis patients.

Overexpression protects PDLCs via regulation of the
miR-142-3p/SOCS6/NF-κB inflammatory signals

[38]

lncRNA TMEVPG1 Increase in CD4+ T cells in Sjogren syndrome patients [39]
ENST00000412740, NR_131012,
ENST00000588803, NR_038323

Downregulated in the plasma of patients with oral premalignant lesion
and gradually increased with the malignant transformation process. [43]

lncRNA CASC9

Upregulated in OSCC tissues; CASC9 is strongly associated with tumor
size, clinical stage, regional lymph node metastasis, and overall

survival time in OSCC patients
Enhances cell proliferation and suppresses autophagy-mediated cell

apoptosis via the AKT/mTOR pathway

[44]

lncRNA HOTAIR

Upregulated in OSCC tissue
Overexpression was positively correlated with TNM

(tumor-node-metastases) stage, histological grade, and regional lymph
node metastasis

[45]

miR-let-7d/miR-103a-3p/126-3p/150-
5p/199a-3p/4485-5p/6088/6821-5p

Downregulated in both plasma- and salivary-exosomal samples of
periodontitis patients [50]

miR-
517/525/624/3128/3658/3692/3912/

3920/4683/4690
Predictors of peri-implantitis [27]

miR-21/31/132/143/155/15a/342-3p Upregulated in the oral mucosa of OLP patients [57]
miR-21/23/25/146b/489/129/338/212 Overexpressed in OSCC tumors [58]
miR-520h, miR-197, miR-378, miR-135b,

miR-224, miR-34a Underexpressed in OSCC tumors [58]

4. Clinical Perspectives of ncRNAs in Oral Inflammatory Diseases

Due to their involvement in DNA translational control, their regulation of mRNA and
protein expression levels, and their ability to reprogram cellular signaling pathways in
oral inflammatory diseases, ncRNAs could be used to diagnose and predict disease and
to improve patient-tailored treatments as an integral part of precision medicine for oral
inflammatory diseases (Figure 1).
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4.1. ncRNAs as Salivary Diagnostic Markers of Oral Inflammatory Diseases

Saliva sampling represents a cost-effective and non-invasive procedure while ncRNAs,
due to their short size, body fluid stability, and main location inside exosomes, represent
very suitable salivary biomarkers. Prominently investigated, microRNAs are engaged
in the regulation of cytokine expression and have been established as significant in the
pathogenesis of oral inflammatory diseases. As a result, their evaluation in body fluids
may be helpful in assessing disease status and progression and in the evaluation of the
treatment process.

Salivary miR-21 can be used as a diagnostic marker for oral potentially malignant
disorders, showing a specificity of 66% and sensitivity of 69% and an area under the receiver
operating characteristic (ROC) curve (AUC) of 0.82 [60]. Regarding OSCC, ROC curve
analysis of salivary miR-424, miR-31, and miR-345 showed that each miR had limited power
individually to differentiate between OSCC and healthy controls, with miR-345 having the
largest AUC of 0.77. However, their combination could differentiate well between OSCC
and control samples, with an AUC of 0.87, specificity of 0.77, and sensitivity of 0.86 [61].
Furthermore, the ROC analysis performed by He et al. [62] showed that salivary exosomal
miR-24-3p has diagnostic accuracy for OSCC, with an AUC of 0.74, while miR-512-3p and
miR-412-3p, with AUC values of 0.85 and 0.87, were also reported as perspective diagnostic
markers for OSCC [63].

Patients with periodontitis show higher expression of miR-146a/155 in crevicular
fluid, showing high diagnostic accuracy for periodontitis, with an AUC >0.9. [52]. In saliva,
the AUC, specificity, and sensitivity of salivary miR-155 in diagnosing periodontitis were
0.88, 78%, and 97.14%, respectively, and those of miR-146a in diagnosing PD were 0.75,
58.54%, and 88.57%, respectively [64]. The miR expression profile in saliva may discriminate
patients with primary Sjögren’s syndrome from those with Sjögren-like disease. Namely,
analysis of the salivary miRs revealed that the AUC for miR-17-5p was 0.87, let-7i-5p
was 0.91, and miR-328-3p was 0.84 when used as single biomarkers. Furthermore, the
combination of miR-17-5p and let-7i-5p showed an AUC of 0.97 and, similarly, when
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all three miRNAs were combined while the four miR-17 family members (i.e., miR-17-
5p/106a/106b/20b-5p) in combination yielded an AUC of 0.95 [65]. The list of salivary
miRs with diagnostic value for oral inflammatory diseases is presented in the Table 2.

Table 2. The list of salivary miRs with diagnostic value for oral inflammatory diseases.

Salivary miR Oral Inflammatory
Disease

Area under the Receiver
Operating Characteristic

Curve (AUC)
References

miR-21 Potentially malignant
disorders 0.82 [60]

miR-424/31/345 OSCC 0.87 [61]
miR-24 OSCC 0.74 [62]

miR-512 OSCC 0.85 [63]
miR-412 OSCC 0.87 [63]
miR-155 Periodontitis 0.88 [64]

miR-146a Periodontitis 0.75 [64]
miR-17/let7i Sjögren syndrome 0.97 [65]

miR-17/106a/106b/20b Sjögren syndrome 0.95 [65]

We performed bioinformatic analysis (miRnet) in an attempt to identify the shared
target genes of salivary microRNAs with diagnostic value for oral inflammatory diseases.
miRNet is an online network tool that visualizes the interactions between miRs and their
targets [66]. According to miRNet, we discovered the shared targets of 17 miR molecules.
One gene transcript (PTEN) was the potential target of 12 miRs (degree 12) and 3 gene
transcripts (CDKN1A, NFAT5, and KIAA1551) were associated with 10 miRs (degree 10)
(Table 3). The three miRs, miR-106a/106b-5p, and miR-20b-5p, interact with all four
listed genes. Literature analysis of these four shared genes: CDKN1, PTEN, NFAT5, and
KIAA1551 (RESF1), revealed that all genes are significant for immunological responses,
mainly via regulation of the T cell responses. Namely, the CDKN1 gene encodes a potent
cyclin-dependent kinase inhibitor p21, which has been shown to control autoimmune T
cell autoreactivity without affecting normal T cell responses [67]. PTEN gene expression is
significantly positively correlated with CD4/CD8A gene expression and T cell infiltration,
especially T helper cells, central memory T cells, and effector memory T cells, in multiple
tumor types [68] while PTEN loss predicts a poor therapeutic response and worse survival
outcomes in patients receiving immunotherapy. NFAT5 plays a role in the development and
activation of immune cells, especially T cells and macrophages contributing to autoimmune
and inflammatory diseases [69]. KIAA1551 (RESF1, C12orf35) is highly expressed in the
thymus, spleen, bone marrow, and liver, organs associated with the immune system and
involved in T cell immunology and transplants [70]. Noteworthy, in silico analysis revealed
that upregulation of salivary miR-146a/155 is predicted to upregulate ACE2 expression and
essential SARS-CoV-2 receptors, and modulate the host antiviral response; thus, it could be
related to the susceptibility of these patients to SARS-CoV-2 infection [71]. Evaluation of
PTEN immunoexpression in human oral mucosa specimens showed that alteration of PTEN
mediates oral submucous fibrosis pathogenesis and oral carcinogenesis [72]. Likewise,
a cell culture study revealed that the NFAT5 transcription factor is able to promote oral
cancer cell proliferation via changes in the subcellular localization of the epidermal growth
factor receptor [73].
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Table 3. Bioinformatic analysis (miRnet) of salivary miRs with diagnostic value for oral inflam-
matory diseases showing the top four target genes with the highest degree in the miR-mRNA
regulatory network.

Target Gene Degree miR Involved in the Regulation of Target Genes

PTEN 12 miR-106b-3p/21-3p/486-5p/10b-5p/20b-5p/106b-
5p/106a-5p/155-5p/17-5p/106a-3p/21-5p/155-3p

CDKN1A 10 miR-17-5p/106a-5p/106b-5p/20b-5p/10b-5p/345-
5p/146a-5p/328-5p/512-5p/486-3p

NFAT5 10 miR-17-5p/155-5p/106a-5p/106b-5p/20b-5p/345-
5p/146a-5p/31-5p/21-5p/24-3p

K1AA1551 10 miR-10b-5p/20b-5p/106b-5p/106a-5p/17-5p/106a-
3p/21-5p/155-3p/27b-3p/512-3p

4.2. ncRNAs in Regenerative Medicine in the Field of Oral Inflammatory Diseases

As important players in the processes of differentiation and proliferation of stem
cells, ncRNAs may represent an option for regenerative treatment (Figure 2). There is a
growing body of evidence on the role of ncRNAs in human periodontal ligament stem cells
(PDLSCs). Periodontal ligament is a highly specialized connective tissue that surrounds
the tooth root, which contains mesenchymal stem cells capable of differentiating into
osteoblasts, cementoblasts, and adipocytes; thus, it is considered to be a highly promising
stem cell population for alveolar bone repair and regeneration in periodontal disease [74].
Substantial evidence has demonstrated that some lncRNAs, including MEG3, H19, and
lncRNA-ANCR, may guide osteogenic differentiation of stem cells under physiological and
pathological conditions [75]. In the study of Hao et al. [74], microarray analysis identified
an miRNA profile of human PDLSCs that induced osteogenic differentiation. A total of
116 miRNAs were found to be differentially regulated, and the expression of 6 of them
was validated: miR-654-3p/4288/34c-5p were found to be upregulated while miR-218-
5p/663a/874-3p were downregulated during osteogenesis. However, it seems that the miR
regulatory role depends on the microenvironment conditions. For instance, miR-17 seems
to inhibit osteogenic differentiation of healthy human PDLSCs, but it has a promoting effect
when the cells originate from periodontitis patients or are cultured under inflammatory
conditions [76,77].

To illustrate the significance of miRNA in osteogenesis, induction or inhibition of
several miRs, including miR-31, miR-26a, and miR-21, for calvarial defect repair was
evaluated in vivo [78–81].

Using miRnet, we investigated the miRs-genes network of selected osteogenic miRs:
hsa-mir-654-3p/4288/34c-5p/218-5p/663a/874-3p/21-5p/26a/31-5p (Table 4), and the top
three genes with the highest degree (number of miR–mRNA interactions) were found: CDK6,
E2F2, and FOXO3, represent perspective targets of bone regenerative medicine since they
are involved in bone cell survival, proliferation, differentiation, and angiogenesis [82–84].
Noteworthy, FOXO3 transcription factor was found to associate with chronic periapical
inflammation in periapical lesion specimens via IL-1β release regulation [85]. Furthermore,
an animal study showed that FOXO3a signaling promotion could improve the mandibular
bone loss caused by 1,25 dihydroxy vitamin D deficiency [86].

Based on previous studies, the research on ncRNAs during odontogenic differentiation
of dental tissue-derived stem cells has mainly focused on miRs. Xu et al. [87] showed that
upregulated expression of miR-21 and expression of signal transducer and activator of
transcription 3 (STAT3) are associated with increased odontogenic differentiation of human
dental pulp stem cells (DPSCs), promoted by tumor necrosis factor-α. Huang et al. [88]
showed that miR-223-3p is expressed at a higher level in inflamed pulp and that overexpres-
sion of miR-223-3p in DPSCs significantly increased the levels of markers of odontoblast
differentiation: dentine sialophosphoprotein and dentine matrix protein 1. Sun et al. [89]
showed that miR-140-5p enhanced the proliferation of human DPSCs but inhibited the
differentiation of human DPSCs via regulation of the lipopolysaccharide/toll-like receptor
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4 signaling pathway. Downregulation of miR-224-5p may promote DPSCs’ proliferation
and migration [90]. miR-34a promotes odontogenic differentiation of human stem cells
from the apical papilla (SCAPs), a significant perspective for regenerative endodontics [91].
In this line, LncRNA H19 was reported to lead to enhanced odontogenesis of SCAPs via
the miR-141/ SPAG9 signaling pathway [92].
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Table 4. Bioinformatic analysis (miRnet) of miRs involved in the regulation of osteogenic differentia-
tion of human periodontal ligament stem cells and osteogenesis in vivo showing the top four target
genes with the highest degree in the miR-mRNA regulatory network.

Target Gene Degree miRs Involved in the Regulation of Target Genes

CDK 6 4 miR-34c-5p/21-5p/26a-5p/218-5p
E2F2 4 miR-21-5p/26a-5p/218-5p/31-5p

FOXO3 4 miR-31-5p/26a-5p/21-5p/218-5p
NUFIP2 4 miR-218-5p/26a-5p/21-5p/874-3p

We investigated the shared targets of six selected odontogenic miRNA molecules-
hsa-miR-223-3p/21-5p/34a/140-5p-141/224-5p, and the top four genes with the highest
number of interactions with the investigated miRs are presented in Table 5. These genes
represent widespread regulators of dental pulp stem cell processes, including: quiescence,
proliferation, metabolism, differentiation and lineage choice, cell death and survival, self-
renewal, and angio-/vasculogenesis [93–96]. Immunohistochemical data in humans shows
that the expression of VEGF is strongly positive in the inflammatory infiltrate in irreversible
pulpitis, reflecting the decrease in the microvessel density in irreversible pulpitis [97].
Both VEGF and IGF, by contributing to odontogenic differentiation of DPSCs, represent
perspective bioactive molecules in dental pulp tissue engineering [98,99].
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Table 5. Bioinformatic analysis (miRnet) of miRs involved in the regulation of odontogenic differenti-
ation of human dental pulp and apical papilla stem cells showing the top four target genes with the
highest degree in the miR-mRNA regulatory network.

Target Gene Degree miR Involved in the Regulation of Target Genes

IGF1R 6 miR-223-3p/21-5p/140-5p/34a-5p/141-3p/224-5p
CAPRIN1 4 miR-141-5p/223-3p/21-5p/34a-5p

E2F3 4 miR-140-5p/21-5p/34a-5p/141-3p
VEGFA 4 miR-141-5p/140-5p/21-5p/34a-5p

4.3. ncRNAs as Biomarkers and Perspective Therapeutics for Neuropathic and Inflammatory Pain

Chronic orofacial pain is usually caused by inflammation and tissue or nerve injury, but
it continues even after the initial injury has healed. It is usually characterized by ongoing
or intermittent burning pain, an enhanced response to noxious stimuli (hyperalgesia),
or pain in response to normally innocuous stimuli (allodynia), accompanied by distress,
fatigue, and depression. Current treatment for this disorder has had limited success and
new therapeutic strategies, based on precision pain medicine, are warranted. In this regard,
engagement of ncRNA in precision oral neuropathic pain medicine represents a potential
strategy (Figure 3).
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injury/inflammation and neuropathy development could be used in diagnosis/prediction and in
patient-tailored treatments as an integral part of precision medicine for neuropathic pain.

ncRNAs have been identified in pain-related regions in the human nervous system
and, following nerve injury in humans, there are highly significant correlations between the
abundance of miR-29a and miR-500a in human lingual nerve neuromas and the pain VAS
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score [100], which suggests a potential contribution of specific miRNAs to the development
of chronic neuropathic pain. Lutz et al. [101] proposed a model for the mechanism by which
microRNAs contribute to chronic inflammatory and neuropathic pain, and it includes en-
gagement of inflammatory mediators. Namely, the increase in inflammatory mediators,
such as interleukin (IL)-1β, after injury induces a change in the expression of miRs in dorsal
root ganglion (DRG) neurons, resulting in an alteration of pain-related genes and an in-
crease in DRG neuronal excitability and pain hypersensitivity (hyperalgesia and allodynia).
Indeed, miR-146a/199a/558 were shown to be involved in pain-related pathophysiology of
osteoarthritis, linked to the expression of cyclooxygenase-2 [102–104]. MicroRNA profiles
could serve as blood biomarkers of neuropathic pain in humans. For instance, differential
expression of 18 miRNAs was reported in blood from patients with complex regional pain
syndrome [105]. Human miR-132-3p/146a/miR-21 were upregulated in the white blood
cells of patients suffering from neuropathic pain [106,107]. Heyn et al. [108] found that in
blood samples from neuropathic pain patients, upregulated miR-124a/155 were associated
with reduced expression of Sirtuin 1 mRNA, leading to the development of neuropathic
pain. On the other side, Liu et al. [109] found that downregulation of hsa-miR-101 expres-
sion in plasma from patients with neuropathic pain led to nuclear factor kappa B activation
and consequent development of neuropathic pain.

Trigeminal neuralgia (TN), a common type of orofacial neuropathic pain, is charac-
terized by severe, sudden pain in the trigeminal nerve distribution. In humans with TN,
upregulation of circulatory miR-132-3p/146b-5p/155-5p/384 was observed compared to
healthy controls while functional analysis indicated that miR-155-5p could directly target
and downregulate nuclear factor-E2-related factor 2, which modulates the expression of
inflammatory genes [110]. In animal models of TN, Xiong et al. [111] found that knockdown
of lncRNA uc.48+ by siRNA could inhibit transduction of TN signals in rats. Li et al. [112]
reported that lncRNA MRAK009713 expression was markedly increased in DRG in a rat
model of TN, and downregulation of MRAK009713 significantly inhibited the nociceptive
transmission and reduced both mechanical and thermal hyperalgesia. On the other side,
lncRNAGm14461 expression was upregulated in the trigeminal ganglion in a mice model
of TN and is associated with the pain transmission of TN via regulation of proinflammatory
cytokines and CGRP expression [113].

Burning mouth syndrome (BMS) is a chronic pain condition characterized by burning
sensation or pain felt in the oral mucosa. The etiology of BMS is multifactorial, including
oral parafunctional habit, salivary gland dysfunction, or nerve injury, while menopausal
disorders and diabetes may contribute to the severity. A recent study by Kim et al. [114]
found that salivary exosomal miRNAs (miR-1273h-5p/1273a/1304-3p/4449/1285-3p/6802-
5p/1268a/1273d/1273f/423-5p) were upregulated while 18 exosomal miRNAs (miR-27b-
3p/16-5p/186-5p/142-3p/141-3p/150-5p/374a-5p/93-5p/29c-3p/29a-3p/148a-3p/22-3p/
27a-3p/424-5p/19b-3p/99a-5p/548d-3p/19a-3p) were downregulated in BMS patients
compared to controls, suggesting miRs could play an important role in the diagnosis and
progression surveillance of BMS.

Patients with temporomandibular disorders (TMDs) frequently report pain deriving
from either intra-articular or extra-articular structures. Differences in the perceived TMD
pain between individuals make diagnosis and management of the TMD complex, requir-
ing a personalized approach. A research study by Xu et al. [115] found that in synovial
fibroblasts from patients suffering from osteoarthritis of the temporomandibular joint, eight
miRNAs were upregulated and six miRNAs were downregulated, with miRNA221-3p
being the most downregulated. The miRNA221-3p downregulation was attributed to an
abundance of IL-1β (inflammation), and associated with induction of matrix metallopro-
teinases, MMP1 and MMP9, involved in joint injury. In another study, miR-140-5p was
found to regulate temporomandibular joint osteoarthritis (TMJOA) via the TGF-β/Smad
signaling pathway and might serve as a novel prognostic factor of TMJ degenerative
changes [116]. A very recent study showed that the levels of miR-101a-3p were significantly
lower in a rat inflammation model with TMJOA and involved in apoptosis of chondro-
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cytes [117]. Using miR21 knockout mice, Zhang et al. [118], reported that miR21, via critical
regulation of growth differentiation factor 5 in chondrocytes, regulates cartilage matrix
degradation and contributes to the progression of TMJ-OA. A list of ncRNAs with potential
as biomarkers of neuropathic orofacial pain is shown in Table 6.

Table 6. ncRNAs as potential biomarkers of neuropathic orofacial pain.

Neuropathic Orofacial Pain Biofluid or Tissue Clinical Significance References

Temporomandibular
Disorders (TMDs)

Synovial fibroblasts and
articular cartilage

Altered expression of
miR221–3p/140-5p/101a-3p/21-5p was

observed in degenerative TM joint disease
and pain

[115]
[116]
[117]
[118]

Burning Mouth Syndrome
(BMS) Saliva

There were upregulated exosomal miRNAs
(miR1273h-5p/1273a/1304-3p/4449/1285-
3p/6802-5p/1268a/1273d/1273f/423-5p)

and downregulated miRNAs
(miR-27b-3p/16-5p/186-5p/142-3p/141-
3p/150-5p/374a-5p/93-5p/29c-3p/29a-
3p/148a-3p/22-3p/27a-3p/424-5p/19b-

3p/99a-5p/548d-3p/19a-3p) in BMS patients
compared to healthy

[114]

Trigeminal neuralgia

Serum
In humans with TN, upregulation of

circulatory miR-132-3p/146b-5p/155-5p/384
was observed compared to healthy controls

[110]

Trigeminal ganglion LncRNA Gm14461 promoted pain
transmission in a mouse TN model [113]

LncRNA uc.48+ overexpression promoted
pain transmission in a rat TN model [111]

Dorsal root ganglia Downregulation of Lnc MRAK009713
reduced hyperalgesia in rats [112]

5. Conclusions

Although still in its infancy, the implementation of precision medicine for oral inflam-
matory diseases is expected to have a significant impact on patient well-being. At the
forefront of precision medicine (in dentistry) is the ability to identify unique characteristics
in individual patients with oral inflammatory disease, allowing selection of a tailored treat-
ment. Among the engaged methods, assessment of the in vivo molecular characterization
(signature) of the disease and the host (mal)adaptive immune responses, regenerative
medicine, and monitoring of drug and patient outcomes could rely on ncRNAs.
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