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Abstract

Type 2 diabetes (T2D) is a complex disease characterized by beta cell dysfunctions. Islet amyloid polypeptide (IAPP) is
highly conserved and co-secreted with insulin with over 40% of autopsy cases of T2D showing islet amyloid
formation due to IAPP aggregation. Dysregulation in IAPP processing, stabilization and degradation can cause
excessive oligomerization with beta cell toxicity. Previous studies examining genetic associations of pathways
implicated in IAPP metabolism have yielded conflicting results due to small sample size, insufficient interrogation of
gene structure and gene-gene interactions. In this multi-staged study, we screened 89 tag single nucleotide
polymorphisms (SNPs) in 6 candidate genes implicated in IAPP metabolism and tested for independent and joint
associations with T2D and beta cell dysfunctions. Positive signals in the stage-1 were confirmed by de novo and in
silico analysis in a multi-centre unrelated case-control cohort. We examined the association of significant SNPs with
quantitative traits in a subset of controls and performed bioinformatics and relevant functional analyses. Amongst
the tag SNPs, rs1583645 in carboxypeptidase E (CPE) and rs6583813 in insulin degrading enzyme (IDE) were
associated with 1.09 to 1.28 fold increased risk of T2D (PMeta = 9.461023 and 0.02 respectively) in a meta-analysis of
East Asians. Using genetic risk scores (GRS) with each risk variant scoring 1, subjects with GRS$3 (8.2% of the cohort)
had 56% higher risk of T2D than those with GRS = 0 (P = 0.01). In a subcohort of control subjects, plasma IAPP
increased and beta cell function index declined with GRS (P = 0.008 and 0.03 respectively). Bioinformatics and
functional analyses of CPE rs1583645 predicted regulatory elements for chromatin modification and transcription
factors, suggesting differential DNA-protein interactions and gene expression. Taken together, these results support
the importance of dysregulation of IAPP metabolism in T2D in East Asians.
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Introduction

Type 2 diabetes (T2D) is characterized by abnormal beta cell

biology. Large scale genome-wide association studies (GWAS)

have discovered multiple loci associated with T2D in both

European [1] and Asian populations [2]. While some of these

risk variants independently conferred 1.1–1.5 fold increased risk,

this could increase to 2–3 folds in carriers with multiple genetic

variants [3]. Islet amyloid polypeptide (IAPP) is highly conserved

and co-secreted with insulin with suppressing effects on appetite

[4]. Over 40% of T2D autopsy cases in human showed amyloid

deposits associated with loss of beta cells [5]. IAPP is synthesized as

a prohormone (pro-IAPP) which is processed to mature IAPP in

endoplasmic reticulum (ER) by several enzymes and proteins,

including prohormone convertases (PCSK1, PCSK2), carboxy-

peptidase E (CPE) and serum amyloid P component (APCS)

before cleared by the insulin-degrading enzyme (IDE). Dysregu-

lation of these processing enzymes, increased stabilization of IAPP

by APCS and reduced clearance of IAPP by IDE [6,7,8] can lead

to accumulation of pro-IAPP or excessive oligomerization of IAPP

[9] which can cause mitochondrial dysfunction [10] and ER stress

[11]. Excessive pro-IAPP and IAPP production can also lead to

formation of amyloid beta sheet resulting in loss of islet structure

and beta cell function [9] (Figure S1).

Research studies including GWAS have revealed independent

associations of T2D with genetic polymorphisms of components of

IAPP metabolism [12,13,14]. However, these results were not

always consistent [15,16] due to small sample size, population

heterogeneity and incomplete interrogation of gene structure. The

hematopoietically expressed homeobox (HHEX)-IDE block is one of the

GWAS susceptibility loci for T2D with replications in multiple

ethnic groups [3,14]. Although HHEX is considered to be the most

likely causal gene in this block, some studies had shown

independent effect of genetic polymorphisms of IDE and their

combined effects with HHEX on risk of T2D [17].

In this report, we used a tag single nucleotide polymorphism

(SNP) approach to select genetic variants of candidate genes

(APCS, CPE, IAPP, IDE, PCSK1 and PCSK2) implicated in IAPP

metabolism (Figure S1) and tested their independent and joint

associations with risk of T2D and beta cell dysfunction. In this

multi-staged experiment, we performed de novo genotyping in 9,901

Asians and in silico analysis in 55,252 subjects followed by

bioinformatics and functional analyses (Table 1–3 and Figure 1–

3). The study design was summarized in Figure S2.

Results

Table S1 shows clinical characteristics of the study populations.

In the stage-1 study, 459 unrelated Chinese T2D patients and 419

age and sex-matched controls were included. Positive signals were

replicated in 3,092 Hong Kong Chinese (1,114 cases and 1,978

controls), 3,388 Shanghai Chinese (1,716 cases and 1,672

controls), 1,393 Korean (761 cases and 632 controls) and 1,150

Japanese (568 cases and 582 controls). The study cohorts of

Singaporeans and Europeans in in silico analysis were described in

Table S2.

We also examined the risk association of T2D in a family-based

cohort of Hong Kong Chinese consisting of 285 subjects with

diabetes and 187 without diabetes. In a subset of 85 control

subjects in whom IAPP and insulin were measured, we examined

the risk association of significant SNPs with beta cell function. In

the control subjects from the stage-1 study, we examined the

association of positive SNPs with quantitative traits function.

Stage-1 study
In the stage-1 study, we genotyped 89 single nucleotide

polymorphisms (SNPs) of the 6 target genes in 878 unrelated

cases and controls. Based on the HapMap Chinese data (CHB),

542 common SNPs in these genes were filtered for the tag SNP

selection. In addition to 7 reported SNPs, 135 SNPs were included

in the panel design with 89 SNPs finally selected for multiplex

genotyping with an average call rate of 95% and concordance rate

of 99.9% among the duplicate samples. Using these 89 SNPs, we

were able to capture 426 common SNPs, i.e. 79% of all common

SNPs with minor allele frequency (MAF) $0.05. Amongst these

SNPs, 4 SNPs [rs2808661 (APCS), rs12306305 and rs1056007

(IAPP), and rs4646953 (IDE)] failed quality control (QC) and were

excluded for analysis. All SNPs were in Hardy-Weinberg

equilibrium (HWE) (P.0.001 for controls). Table S3 shows the

Pallelic and Pempirical values for T2D of all SNPs, the latter generated

by 10,000 permutations under the best model of genetic models

for multiple test correction. Six of these SNPs showed nominal
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associations with 4 SNPs (rs1583645, rs6841638, rs10021007 and

rs17046561) in CPE, 1 SNP (rs6583813) in IDE and 1 SNP

(rs8117664) in PCSK2 with odds ratio (OR) and 95% confidence

intervals (CI) ranging from 1.24 (1.01–1.51) to 1.34 (1.02–

1.75)(Pempirical = 0.01–0.05).

Stage-2 de novo genotyping
We replicated these 6 SNPs in 9,023 Asian subjects from Hong

Kong, Shanghai, Japan and Korea, with over 90% power to detect

ORs ranging from 1.24 to 1.34 at the 5% significant level. In the

Shanghai Chinese, rs6583813 was discarded due to unsuccessful

panel optimization and replaced by rs2149632 in a linkage

disequilibrium (LD) block with rs6583813 [r2 = 0.94; D’ = 1;

MAF = 0.35 for both SNPs using HapMap CHB data]. Table 1

summarizes the results in each case-control cohort and meta-

analysis of stage-1 and 2 studies under allelic, dominant and

recessive models for each associated SNP. There were nominal

associations of T2D with rs1583645 and rs10021007 of CPE and

rs6583813 of IDE in at least one genetic model with some

population heterogeneity possibly due to sub-ethnicity and other

disease modifiers. For each SNP, we selected the most significant

genetic model and applied a fixed effect model for SNPs which did

not show heterogeneity of ORs (Q-statistic P.0.05). Otherwise, a

random effect model was used. In the combined analysis,

rs1583645 of CPE and rs6583813 of IDE were nominally

associated with T2D (PMeta = 0.001 and 0.045 respectively).

Joint effects of CPE and IDE genetic polymorphisms
We tested the joint effects of rs1583645 in CPE and rs6583813

in IDE on T2D risk in the Asian case-control cohort and beta cell

function in a subset of the Hong Kong Chinese controls. We

assigned each risk allele of rs1583645 (CPE) and rs6583813 (IDE)

as a genetic risk score (GRS) of 1 under additive models, which

was linearly associated with T2D risk (Pmeta = 0.01, Q-statistic

P,0.05 Figure 1) on meta-analysis. Subjects with the highest GRS

accounted for 8.2% of the study population and had 56% higher

risk for T2D compared to those with the lowest GRS (P = 0.01). In

the control subjects of the Hong Kong cohort stratified by

GRS#1, 2 and $3 with similar numbers in each group, increasing

GRS was associated with progressive decline in Stumvoll’s index of

beta cell function (P = 0.03) and area under the curve (AUC) of

insulin at 30-minute (P = 0.05, Table 2). In the 472 subjects from

the Hong Kong family-based cohort, 85 non-diabetic unrelated

subjects had measurement of plasma IAPP levels. In these subjects,

the GRS was associated with increased plasma IAPP (P = 0.008)

and IAPP to insulin (IAPP:INS) molar ratios (P = 0.006) after

adjustment for age, sex, BMI and/or fasting insulin (Figure 2A and

2B).

In silico analysis in T2D GWAS studies and combined
meta-analysis

Having discovered and replicated the risk association of

rs1583645 of CPE and rs6583813 of IDE SNPs with T2D in

stage-1 and stage-2 experiments, we performed in silico analysis to

validate these findings in 2 GWAS. The Singapore cohort

consisted of 8,135 (3,781 cases and 4,354 controls) and the

European cohort, 47,117 subjects (8,130 cases and 38,987

controls) [18,19] (Table 3). In the Asian (CHB+JPK) and

European (CEU) HapMap database, the respective frequency of

the G allele of rs1583645 of CPE were 0.87 and 0.51 while that of

the C allele of rs6583813 of IDE were 0.39 and 0.68 (Table S4). In

the Caucasian population, we found strong association of IDE

rs6583813 with T2D (P = 1.33610212) but not with rs1583645 of
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CPE. Due to this inter-ethnic differences, we only included de novo

genotyping and in silico analysis of GWAS data from the East Asian

populations and confirmed the risk association for CPE rs1583645

[OR:1.09(1.02–1.16), P = 9.461023] in the fixed effect model and

IDE rs6583813 [OR:1.28(1.04–1.59), P = 0.02] in the random

effect model.

Bioinformatics and functional analyses
Both CPE and IDE loci show mild conservation among species

and are located in the vicinity of regulatory elements for histone

modification, islet specific formaldehyde-assisted isolation of

regulatory elements (FAIRE) and DNaseI hypersensitive (HS)

peaks related to open chromatin modifications. A downstream

region from CPE rs1583645 is annotated with a CpG island and

pre-microRNA form (Table S5). Using transcription factor

binding site (TFBS) prediction tools, we identified 11 transcription

factors (TFs) which can either bind specifically to one or both of

these variants (Table S6). Due to its proximity to the promoter

region, we conducted functional tests on CPE rs1583645 variants

[G/A] using dual luciferase reporter assays transiently transfected

in HepG2 and rat INS-1E cells. In both cells transfected with the

constructs carrying the G-risk allele, the basal luciferase activity

was 50–66.7% higher than those transfected with A-allele of

rs1583645 [P,0.001 and P = 0.005 respectively, Mann-Whitney

U-test (Figure 3)].

Discussion

In this multi-stage study, we used a hypothesis defined a priori

and a tag SNP approach combined with genetic statistics,

bioinformatics and functional analyses to examine the indepen-

dent and joint effects of components of the IAPP pathway on risk

of T2D and beta cell function. In the meta-analysis of de novo

genotyping and in silico analysis of GWAS data in Asian

populations, we confirmed the risk association of rs1583645 in

CPE and rs6583813 in IDE with T2D. Using GRS, we

demonstrated the joint effects of these two variants with increased

plasma IAPP and reduced beta cell function. These findings were

corroborated by bioinformatics analysis suggesting that the

flanking region of these SNPs might harbor regulatory elements

for gene expression through chromatin modification and binding

with TFs [20,21]. Results of luciferase activity assays indicated the

G risk allele was associated with lower CPE repression than the

non-risk allele which might cause dysregulation of IAPP produc-

tion and beta cell dysfunction.

In the genetic analysis, we used data from the HapMap Project

and selected tag SNPs which captured over 80% of common SNPs

with MAF$5% for each of these 6 candidate genes. The de novo

genotyping of unrelated case-control cohort consisting of 9,901

subjects had over 90% power to detect at least 20% increased risk

for T2D for SNPs with MAF of 10%. In the first stage experiment,

we selected 6 SNPs in CPE, IDE and PCSK2 which showed

nominal significance for replication. Notwithstanding some

heterogeneity of effect sizes possibly due to differences in

population-specific LD architecture, allele frequency [18] and

factors such as lifestyle and environment [22], rs1583645 of CPE

and rs6583813 of IDE showed consistent associations with T2D on

meta-analysis of multiple East Asian cohorts. Importantly, subjects

with $3 risk variants, which accounted for 8.2% of the study

population, had 56% increased risk of T2D. In the control

subjects, increased GRS was associated with increased plasma

IAPP and reduced insulin secretion. Taken together, these findings

support our hypothesis that dysregulation of IAPP pathway might

increase risk of beta cell dysfunction and T2D.

Insulin degrading enzyme (IDE)
Both CPE and IDE are widely expressed to process and degrade

different hormones including IAPP and insulin. In experimental

studies, inhibition of IDE decreased IAPP degradation and

increased IAPP toxicity while CPE mediated palmitate-induced

ER stress resulting in beta cell apoptosis [7,23,24]. These findings

were supported by association of variants of CPE and IDE with risk

of T2D and related traits in small cohort studies [25,26]. In

another study, rs2149632 of IDE was associated with reduced

insulin secretion [26,27]. In the stage-1 study, we selected reported

SNPs of IDE (rs4646953, rs4646958, rs1887922, rs4646957 and

rs2149632) but two of them failed during panel design of

genotyping and were replaced by their respective tag SNPs

(rs4304670 for rs4646957; rs6583813 for rs2149632). Amongst

these SNPs of IDE, only rs6583813 showed significance in the

Table 2. Associations of genetic risk scores (GRS) with beta cell function in Hong Kong Chinese unrelated controls (N = 419) with 1
risk allele of rs1583645 of CPE and rs6583813 of IDE each given 1 point.

Genetic risk score (GRS) 0-1 2 3–4 P value

Subjects (%) 30 41 29

Male (%) 42 38 36

Age (years) 41610 40611 40610

Body mass index (kg/m2) 22.563.2 22.663.3 22.563.1

Results of 75g oral glucose tolerance test

Fasting plasma glucose (mmol/l) a 4.8 (4.6,5) 4.72 (4.45,5.1) 4.8 (4.6,5.1) 0.88

Fasting plasma insulin (pmol/l)a 41.4 (26,60.7) 41.5 (25.2,54.1) 37.3 (24.1,56.7) 0.22

Plasma glucose at 30-minute (mmol/L)a 7.67 (6.68,8.75) 7.78 (6.85,8.87) 7.86 (6.89,8.61) 0.31

Plasma insulin at 30-minute (pmol/L)a 286 (180,449) 292 (182,427) 288 (196,407) 0.24

Glucose AUC at 30-minute (min.mmol/l)a 195 (179,205) 190 (175,207) 191 (177,210) 0.73

Insulin AUC at 30-minute (min.pmol/l)a 5817 (3583,7811) 5670 (3555,8432) 4856 (3574,6922) 0.05

Stumvoll’s index of beta cell function (61026)a 29.7 (21.7,40.7) 30.8 (19.8,42.8) 27.1 (18.4,36.1) 0.03

Data were shown as mean6SD or amedian(interquartile range) and analyzed by the linear regression with adjustment of age, sex and BMI under additive models after
log-transformation. P values in bold indicated significance for the phenotypes. AUC: area under the curve.
doi:10.1371/journal.pone.0062378.t002

Genetic Variations of IAPP Pathways and T2D

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e62378



stage-1 study and was replicated in later stages using additional

cohorts. In a GWAS examining risk variants for multiple diseases

in Icelanders, our group contributed to the discovery of the risk

association of T2D with rs1111875 which lies in the intergenic

region of the HHEX-IDE LD locus [28]. This SNP has now been

validated in multiple cohorts albeit with inter-ethnic differences in

allele frequency and effect size [3,29,30]. Other researchers have

reported the close proximity of this SNP with highly conserved

non-coding elements which may control expression of TFs [31].

The importance of this HHEX-IDE block was further supported by

the joint effects of TCF7L2, HHEX and IDE on risk of T2D [17].

In the present analysis, the SNP discovered in our study,

rs6583813, was located near the 39 end of IDE with a moderate

LD (r2 = 0.67 in Hong Kong Chinese) with rs1111875. Although

we cannot be absolutely certain about the independent effect of

rs6583813, in a recent epigenome study of human pancreatic

islets, this novel SNP was found to lie within a putative regulatory

element (NCBI Build 36.1 CHR10:94,199,479–94,203,011) im-

plicated in epigenetics [21].

Table 3. Meta-analysis of risk associations of CPE rs1583645 and IDE rs6583813 with Type 2 diabetes (T2D) using data from de novo
genotyping and in silico analysis in a multi-ethnic population.

Risk Allele

CHR:bp in Number Frequency

SNP Gene NCBI Build 36.1 Allelesa Study Cases Controls Cases Controls OR trend(95% CI)P trend

rs1583645 CPE CHR4:166,517,901 G/A Stage-1

Hong Kong Chinese 410 386 0.770 0.727 1.26(1–1.58) 0.049

Stage-2 denovo replication

Hong Kong Chinese 1079 1969 0.788 0.756 1.20(1.06–1.36) 5.2461023

Shanghai Chinese 1618 1634 0.861 0.841 1.18(1.02–1.35) 0.021

Korean 754 629 0.847 0.866 0.86(0.69–1.06) 0.161

Japanese 568 582 0.873 0.863 1.00(0.79–1.27) 0.993

Stage-3 in silico analysis

Singapore Chinese 2009 1945 0.800 0.799 1.00(0.89–1.12) 1.00

Singapore Malay 1235 792 0.65 0.62 0.88(0.77–1.00) 0.06

Singapore Indian 1166 971 0.66 0.65 0.96(0.84–1.09) 0.52

DIAGRAM+ 38987 8130 b0.51 – 1.00(0.96–1.04) 0.92

cMeta-analysis in Asian
subjects

Fixed effect 1.09(1.02–1.16) 9.461023

Random effect 1.01(0.85–1.2) 0.898

Heterogeneity test P = 0.05

rs6583813 IDE CHR10:94,199,919 C/T Stage-1

Hong Kong Chinese 429 414 0.364 0.315 1.23(1.01–1.49) 0.042

Stage-2 denovo replication

Hong Kong Chinese 1076 1952 0.342 0.346 0.98(0.88–1.1) 0.754

Shanghai Chinese 1292 1576 0.292 0.297 0.98(0.88–1.09) 0.708

Korean 756 630 0.40 0.344 1.27(1.08–1.48) 3.061023

Japanese 568 582 0.399 0.296 1.58(1.32–1.88) 3.4361027

Stage-3 in silico analysis

Singapore Chinese 1935 1879 0.315 0.278 1.20(1.09–1.33) 4.061024

Singapore Malay 1188 759 0.28 0.30 1.07(0.93–1.24) 0.34

Singapore Indian – – – – – –

DIAGRAM+ 38987 8130 b0.68 – 1.17(1.12–1.22) 1.33610212

cMeta-analysis in Asian
subjects

Fixed effect 1.23(1.14–1.34) 8.2561027

Random effect 1.28(1.04–1.59) 0.02

Heterogeneity test P = 0.002

aRisk alleles were underlined. bThe allele frequency was based on HapMap Caucasian (CEU) population. cMeta-analysis for the Chinese from Hong Kong, Shanghai.
and Singapore, Korean and Japanese cohorts.
doi:10.1371/journal.pone.0062378.t003
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Carboxypeptidase E (CPE)
Regulation of gene expression (epigenetics) is a complex process

involving chromatin and histone modifications which play pivotal

roles in determining cellular structure and function [20,21,32]. In

a recent epigenetic study on islet cells, CPE is one of the reported

genes contained in an islet-selective open chromatin [20] which

encompasses various gene regulatory elements. Despite their

upstream locations from the promoter and transcription start site,

these elements recruit TFs to form a DNA loop to bring them into

interactions with promoter to regulate gene expression [33]. Our

results indicated that CPE variants at rs1583645 exhibited

differential transcriptional activity, suggesting that they might

alter gene expression via DNA-protein interactions. On bioinfor-

matics analysis, 11 TFs were predicted to bind to either one or

both variants [G/A]. While these predictions need experimental

confirmation, two of these TFs, upstream stimulating factor (USF)

which binds to the G-allele and octamer binding factor 1 (Oct1 also

known as POU2F1) which binds to the A-allele of CPE, are located

within the chromosome 1q region which is the most replicable loci

for T2D in multiple populations [34]. Besides, we have reported

risk association of T2D in our Chinese populations with variants of

USF and POU2F1 [35], the latter also known to interact with

histone proteins to alter chromatin organization and inflammatory

responses [36].

IAPP and insulin
In our family-based association test (FBAT) analysis, none of the

SNPs of CPE or IDE showed associations with T2D, possibly due

to small sample size and young age of the subjects. However, in

this family-based cohort, non-diabetic subjects with high GRS had

increased plasma IAPP and IAPP to insulin (IAPP:INS) ratio. In

experimental studies, high IAPP, either de novo or compensatory,

can induce ER stress and trigger apoptotic signaling pathways with

increased expressions of C/EBP homologous proteins (CHOP)

and caspase-3 [37]. In in vitro studies, we have demonstrated beta

cell toxicity associated with IAPP oligomerization due to

mitochondrial dysfunction and oxidative stress [9,10].

Figure 1. Based on results of a meta-analysis of risk association of type 2 diabetes (T2D) in 9,901 Asian subjects with de novo
genotyping, each risk allele of rs1583645 (CPE) and rs6583813 (IDE) was given a genetic risk scores (GRS) of 1 under additive
models. Increasing GRS was associated with increasing trend of risk for T2D (Pmeta = 0.01; Q-statistic P,0.05) with the highest GRS of 4 conferring an
odds ratios of 1.56 compared to the lowest GRS of 0 (*P = 0.01).
doi:10.1371/journal.pone.0062378.g001

Figure 2. Plasma IAPP (A) and molar ratio of IAPP to insulin
(IAPP/INS) (B) in 85 unrelated non-diabetic controls selected
from a family-based cohort categorized by genetic risk scores
(GRS) (1 risk allele of rs1583645 of CPE and rs6583813 of IDE
each given 1 point). Plasma IAPP (*P = 0.008) and IAPP/INS ratio
(**P = 0.006) increased with increasing GRS.
doi:10.1371/journal.pone.0062378.g002
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Insulin and IAPP form complexes in secretory granules and are

secreted in a fixed ratio. However, subject to different stimuli or

conditions, these peptides may exhibit different kinetics and

responses. Both insulin and IAPP share similar transcriptional

regulators and enzymatic pathways for maturation and degrada-

tion [38,39]. Thus, reduced CPE activity may lead to low insulin

response with compensatory increase of pro-IAPP or alternatively,

high CPE activity may increase IAPP production. Both scenarios

can potentially lead to beta cell toxicity due to excessive

oligomerization especially in the presence of reduced IAPP

clearance. In experimental studies, exposure to fatty acids induced

overexpression of IAPP resulting in impaired insulin secretion

[40]. Thus, genetic or acquired factors which perturb activities of

these processing and degrading enzymes may alter IAPP:INS ratio

to increase risk of IAPP oligomerization, fibril formation, beta cell

dysfunction and T2D [41]. Without measuring CPE and IDE

activity, the final effects of these functional SNPs remain

uncertain, although the multiple associations between GRS and

risk of T2D, reduced beta cell function and increased IAPP

support the functional significance of these variants and our

overall hypothesis.

Study limitations
Although the combined cohort of 9,901 subjects had over 90%

power to detect at least 20% increased risk of T2D for SNPs with

MAF$0.05, our first stage study involving 459 young patients with

familial T2D and 419 controls might have excluded some SNPs

with low MAF or effect size resulting in type 2 error. Analysis of

these SNPs in a larger sample size will be needed to ascertain their

associations with risk of T2D. To overcome possible type 1 error,

we performed 10,000 permutation tests to adjust for multiple

comparisons. In the quantitative trait analysis, the IAPP results

might be confounded by cross-reactivity of the IAPP antibody with

pro-IAPP. Although the genetic and bioinformatics analysis on

rs1583645 and rs6583813 of CPE and IDE support their functional

significance, further studies are needed to examine their effects on

IAPP, insulin and/or other substrates. Finally, effects due to

adjacent variants via LD structures with stronger causal relation-

ships cannot be excluded.

Conclusion

In this study, we combined our understanding of the IAPP

pathway with genetic analysis and used multiple cohorts to

demonstrate the genotype-phenotype correlations relevant to T2D

and beta cell function. Using a hypothesis driven approach, we

confirmed the risk association of T2D with SNPs in CPE and IDE.

In non-diabetic subjects, these risk variants were associated with

reduced beta cell function, increased IAPP levels and IAPP:INS

ratio. Bioinformatics and functional analyses suggested that these

SNPs are located within regulatory sites for DNA-protein binding.

Although the effect size of these SNPs averaged 15–20%, they can

be found in 5% to 50% of the population. It has been estimated

that for complex diseases such as T2D, 50% of population

attribution risks can be explained by 20 or fewer susceptibility

genes with an effect size of 10–20% [42]. Taken together, our

findings support the important roles of IAPP processing and

Figure 3. Effect of rs1583645 [G/A] polymorphism on luciferase activity assays. (A) Upstream region of transcription start site (TSS as
indicated by the black arrow), first exon and part of intron 1 of CPE (NCBI Build 36.1, CHR4:166,496,501–166,536,501). The LD structure of CPE SNPs
within this region was shown by D’ using the Chinese HapMap data. The red arrow indicated the location of rs1583645. (B) CPE-[G/A] constructs
consisting of 449 bp of CPE rs1583645 region and pGL4.23 firefly luciferase reporter vectors were transfected into HepG2 (left panel) and rat INS-1E
cells (right panel) together with Renilla luciferase reporter vectors. Measurement of the firefly luciferase activity of CPE-[G/A] constructs was
normalized relative to the activity of the Renilla luciferase vectors. Data were shown as mean6SEM of at least three independent experiments in
triplicate set up. The constructs of CPE-G showed 50% and 66.7% increased transcriptional activity in HepG2 and rat INS-1E cells respectively when
compared to the constructs of CPE-A (P,0.001 and P = 0.005 respectively by Mann-Whitney U-test).
doi:10.1371/journal.pone.0062378.g003
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degrading enzymes in T2D and that a multi-staged approach

using tag SNPs of candidate genes within a biological pathway

may discover novel variants to identify high risk subjects for T2D.

Methods

Recruitment of samples
Stage-1 study. In the stage-1 study, we selected 459 T2D

subjects diagnosed before 40 year-old who had at least one affected

first degree relative from the Hong Kong Diabetes Registry

(HKDR) [43]. None of these patients had clinical or autoimmune

type 1 diabetes, defined as history of ketoacidosis or continuous

requirement of insulin within 1 year of diagnosis with or without

autoimmune antibodies. Another 419 control subjects with normal

glucose tolerance (NGT) [fasting plasma glucose (FPG),6.1

mmol/L] and no family history of diabetes were recruited from

community-based health screening programs [44].

De novo and in silico replication
In the stage-2 study, we included case-control cohorts consisting

of 3,564 Hong Kong Chinese 3,388 Chinese from Shanghai, 1,393

Koreans and 1,150 Japanese [3,45,46]. We also performed the

FBAT analysis in 472 subjects recruited from the Hong Kong

Diabetes in Family Study [47]. All participants were recruited as

part of a diabetes gene discovery program in respective countries.

In the stage-3 study, we performed in silico replication in 2 GWAS

conducted in Singaporean and European populatioins including

3,955 Chinese (2,010 cases, 1,945 controls), 2,034 Malays (794

cases, 1,240 controls) and 2,146 Indians (977 cases, 1,169 controls)

and 47,117 Europeans (8,130 cases and 38,987 controls) (Text S1,

Table S1 and S2).

Tag SNP selection
Using the HapMap Phase II database for Han Chinese from

Beijing (www.hapmap.org), all SNPs with MAF$0.05 in six

candidate genes with ,2 kb flanking regions were selected. Their

pair-wise LD was estimated in terms of r2 by Haploview v 4.0RC2

[48]. Under a pair-wise tagging mode with r2$0.8, 82 tag SNPs

were selected. Together with 7 SNPs reported to be associated

with T2D and/or related traits (rs4646953, rs4646958, rs1887922,

rs4646957 and rs2149632 in IDE; rs2808661 and rs6689429 in

APCS) [15,27,49], 89 SNPs were selected in the stage-1 study for

genotyping in 459 cases and 419 controls. Nominally significant

SNPs for T2D were replicated in stage-2 and stage-3 studies.

Genotyping
In the stage-1 study, all SNPs were genotyped using the matrix-

assisted laser desorption ionization-time of flight (MALDI-TOF)

MassARRAY System (Sequenom, San Diego, CA) at the Genome

Research Center at the University of Hong Kong or Genome

Quebec Innovation Center at the McGill University. Each of 96

well plates contained negative controls and duplicate samples for

QC. Only SNPs with genotyping call rates$0.8, MAF$0.05 and

exhibiting no departure from HWE in control subjects (P.0.001)

were included for analysis. Stage-2 genotyping was performed

using either Sequenom’s MassARRAY System (Sequenom, San

Diego, CA) or the MGB TaqMan Assay (Applied Biosystems,

Foster City, CA, USA).

Clinical assessment and metabolic profiling
All patients enrolled in the HKDR [43] underwent structured

assessments modified from the European Diabcare protocol [50].

In brief, the HKDR was established in 1995 and enrolls 30–50

ambulatory diabetic patients per week. Patients were referred by

general practitioners and internists from community and hospital-

based clinics or were discharged from the Prince of Wales Hospital

or other regional hospitals. All patients underwent a comprehen-

sive diabetes assessment with documentation of detailed pheno-

types and clinical outcomes to form the HKDR. All control

subjects underwent detailed clinical examination. A subset

(N = 302) of control subjects underwent 75g oral glucose tolerance

tests (OGTT) and blood samples were collected at multiple time-

points for plasma glucose (PG) and insulin measurements. PG

assayed enzymatically using the Roche Modular Analytics system

(Roche Diagnostics GmbH, Mannheim, Germany). Insulin was

assayed using the enzyme-linked immunosorbent assays (Dako-

Cytomation, Cambridgeshire, UK). The precision of these assays

was within that specified by the manufacturer. In the family-based

cohort involving 472 subjects (285 cases, 187 controls), a random

subcohort of 85 subjects with normal glucose tolerance had

measurement of fasting plasma IAPP determined in the laboratory

of Professor Garth JS Cooper using a radioimmunoassay method

with an inter-assay coefficient of variation (CV) of 3.5% [51].

Calculation
The AUC of PG and insulin during OGTT was calculated by

the trapezoid rule. Insulin resistance (HOMA-IR) was calculated

by the equation of [fasting insulin (mU/l) 6 fasting PG (mmol/l)

422.5] while beta cell function was estimated by two algorithms:

1) HOMA-b = [fasting insulin (mU/l) 6204 (fasting PG (mmol/

l)-3.5)] and 2) Stumvoll’s index of beta cell function (61026) =

[insulin AUC30min (min.pmol/l) 4 glucose AUC30min (min.mmol/

l)] [52].

Bioinformatics and functional analyses
We tracked the University of California, Santa Cruz (UCSC)

human genome browser (http://genome.cse.ucsc.edu/cgi-bin/

hgGateway) to examine the cross-species conservation and

regulatory elements including CpG islands, chromatin structure

and histone modification sites within the flanking regions of

rs1583645 in CPE and rs6583813 in IDE (NCBI Build 36.1

CHR4:166,517,651–166,518,151 and CHR10:94,199,669–

94,200,169 respectively). We also performed TFBS prediction

using the MATCHTM program [53].

Transient transfection studies
We generated two clones with identical sequences except [G/A]

variants at rs1583645 of CPE into pGL4.23 vectors (Promega) by

PCR cloning and QuickChange Site-Directed Mutagenesis Kit

(Stratagene, La Jolla, CA, USA) using the following primers:

forward:59-TAAGAGCTC(SacI)CAGACCTGATGAATTC-39;

reverse:59-CTACTCGAG( XhoI)TAGCTGTCTCTTTGAAC-

39; M1-59-CCTATGAAGCCACAAACAAGTAATACATGT-

GCCAGTAAAGTTGG-39 and M2-59-CCAACTTTACTGG-

CACATGTATTACTTGTTTGTGGCTTCATAGG-3 (Desired

mutation underlined). We independently transfected these clones

with Renilla luciferase vectors [pGL4.73(hRluc/SV40)] into

HepG2 and rat INS-1E cells using LipofectamineTM 2000

(Invitrogen). Empty pGL4.23 vectors were included as reference

for comparisons. Next, we detected their luciferase activities in

cells with different variants in at least 3 independent experiments

using the Dual-Luciferase Reporter Assay kit (Promega) in

accordance to the manufacturer’s instructions.

Statistical analysis
All data were expressed as mean6SD or median (interquartile

range) as appropriate. Skewed data were transformed using
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natural logarithms and outlier data ($ or #4SD from the mean)

were excluded. All statistical tests were performed by PLINK

(v.1.07 http://pngu.mgh.harvard.edu/,purcell/plink), Haplo-

view (v 4.0RC2 http://www.broad.mit.edu/mpg/haploview) or

Stasticial Package for Social Sciences (vereson 15.0) for Windows

(SPSS Inc., Chicago, IL, USA) unless specified otherwise. The

study power in allelic models was estimated using PASS 2008

(NCSS, LLC. Kaysville, Utah). Assuming allelic models, our

samples had over 90% power to detect at least 20% increased risk

for T2D for SNPs with MAF of 0.1 and a of 0.05. The SNPs

which passed QC were analyzed in each study cohort by the x2

and logistic regression (LR) analysis under allelic, dominant and

recessive models with or without adjustments. To adjust for

multiple testings in stage-1 study, we also presented empirical P

values by 10,000 permutations under the most significant models

implemented by PLINK, which was used to select SNPs for

replication.

Except for stage-1 experiment, 2-tailed P values,0.05 were

considered statistically significant in allelic, dominant and/or

recessive models unless specified otherwise. Risk association

was expressed as OR with 95% CI. We selected the best model

based on P values among genetic models for the meta-analysis

of T2D in the combined cohort. The latter was performed by

the Cochran-Mantel-Haenszel (CMH) test implemented in

PLINK to estimate the combined ORs, 95% CI and

significance level, using study population as a strata. Hetero-

geneity of ORs was assessed by the Cochran’s Q statistic which

was calculated as the weighted sum of squared differences

among individual study effects and the pooled effect across

studies. In case of significant heterogeneity (Q-statistic

P,0.05), the effect size calculated from the model for random

effects was also reported [54]. For the analysis of family-based

cohort, Mendelian errors and potential genotyping errors were

checked by PEDCHECK (v.1.1; http://watson.hgen.pitt.edu)

and removed accordingly. We used the FBAT (v.2.0.3; http://

www.biostat.harvard.edu/,fbat) based on the transmission

disequilibrium test (TDT) but generalized to allow analysis in

additive models of inheritance using –e option for testing the

null hypothesis of ‘‘no linkage and no association’’. The power

was estimated by FBAT [55] assuming a disease prevalence of

10%, additive models with allelic OR of 1.2 for SNP with MAF

of 0.1.

To test the joint effects of significant SNPs, we assigned a score

of 1 to each risk allele to generate GRS with a maximum of 4 in

combined analysis of cohorts with de novo genotyping. We also

applied linear regression analysis to test the effects of GRS with

beta cell function in subsets of control subjects with adjustment for

covariates, as appropriate. For the dual luciferase reporter assays,

all experiments were performed using a triplicate set-up consisting

of 3 independent tests. All results were expressed as mean6SEM

and Mann-Whitney U-test was used to compare differences

between groups.
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