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Navigating in vitro bioactivity data 
by investigating available resources 
using model compounds
Sten Ilmjärv1,2, Fiona Augsburger1, Jerven Tjalling Bolleman3, Robin Liechti2, 
Alan James Bridge3, Jenny Sandström4, Vincent Jaquet1, Ioannis Xenarios   2,5,6 &  
Karl-Heinz Krause1

The number of chemical compounds and associated experimental data in public databases 
is growing, but presently there is no simple way to access these data in a quick and synoptic 
manner. Instead, data are fragmented across different resources and interested parties need 
to invest invaluable time and effort to navigate these systems.

Both the CAS RegistrySM and PubChem1 contain more than 90 million compounds, with new compounds 
added daily. Most of these compounds are missing toxicological characterization, due in part to the lim-
ited capacity of current methods to assess a compound’s bioactivity in a living system. High-throughput 

and scalable in vitro test systems aim to bridge that gap. In combination with structural information and known 
molecular properties, these high-throughput data will allow researchers to describe toxicity pathways more com-
prehensively. However, the increasing amounts of new data presents its own set of challenges.

Anomalies in metadata records and the inadequate use of ontologies are hindering for the data to be FAIR2. 
Even after a compound has been published in a scientific document, the diversity of compound synonyms and 
identifiers, and lack of precise metadata and annotations, can lead to false conclusions and difficulties identifying 
the compound correctly3. To improve the reproducibility of experimental results and to test new hypotheses (e.g. 
development of predictive computational models), availability and accessibility of raw data are crucial. Using a 
set of four arbitrarily chosen model compounds (aspirin, rosiglitazone, valproic acid, and tamoxifen; Table 1), we 
investigated data access and consistency within publicly available online resources (Table 2). We observed that 
modest adoption of semantic web technologies and poor annotations of experimental metadata represent a major 
obstacle for high-quality data integration and reusability. We argue that this could be substantially improved by 
annotating compound-related experimental data with standardized ontologies. Also, new and existing resources 
should adapt to accommodate ontology-based data representation on their platforms and compounds should 
always be accompanied with a unique structural identifier that helps later discoverability and reduces mistakes.

Abbreviations:
CASRN - Chemical Abstract Service Registry Number;
ChEBI - Chemical Entities of Biological Interest;
FAIR - Findable, Accessible, Interoperable and Reusable;
InChI - International Chemical Identifier;
InChIKey - International Chemical Identifier Key;
IUPAC - International Union of Pure and Applied Chemistry;
SPARQL - SPARQL Protocol and RDF Query Language;
SMILES - Simplified Molecular Input Line Entry System;
RESTFul API - Representational State Transfer Application Programming Interface;
RDF - Resource Description Framework.
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Identifying Data in Compound-Specific Resources
A chemical compound can be referenced with many identifiers, such as a trade name, a generic name, a system-
atic IUPAC name, a registry number (e.g. CASRN), or a unique database identifier and its structure-derived rep-
resentations, i.e. structural identifiers: InChI, InChIKey and SMILES. Any of the above can potentially be used to 
search for a compound within an online resource, but researchers need to be careful about the variability between 
resources. For example, the compound rosiglitazone has 157 depositor-supplied synonyms in PubChem, but only 
two synonyms in ChEBI. Predictably, the PubChem depositor-supplied synonym for rosiglitazone termed Gaudil 
failed to recognize the compound in ChEBI.

Structural identifiers, intuitively, should be the most unique identifiers of a compound, but disparity between 
the resources still exists. Among eleven resources that reported SMILES (BindingDB, ChEBI, ChEMBL, 
ChemIDPlus, ChemSpider, CompTox, CTD, DrugBank, HMDB, HSDB, PubChem, T3DB and ZINC15), we 
found 8 different SMILES for rosiglitazone and tamoxifen, 5 for aspirin and 3 for valproic acid. A single InChIKeys 
was observed for aspirin, valproic acid and tamoxifen but three different ones for rosiglitazone. IUPAC system-
atic names were only reported in ChEBI, ChemSpider, CompTox, DrugBank, HMDB, PubChem and T3DB and 
demonstrated the largest variability: 3 different names for aspirin, 4 for rosiglitazone, 1 for valproic acid and 5 for 
tamoxifen. UniChem4 provides a cross-referencing service connecting 39 individual database identifiers of vari-
ous resources using InChIKeys but this service is only useful when one already knows the compound’s database 
identifier or the InChIKey. Currently, it cannot be used with other structural identifiers or compound names.

InChIKey was the most unique identifier among the various databases, possibly because InChI is derived 
from a single algorithm, whereas several proprietary and open-source algorithms exist for SMILES, whose imple-
mentations differ from one another5. Although widely used, we did not look at CASRN because the accuracy 
of CASRN in the public domain is not absolute and reliable information can only be accessed by paid services 
provided by the Chemical Abstract Service (CAS)6.

Identification of Compound Data in Omics Databases
The identity of chemical compounds reported in omics experiments can be ambiguous since compounds are 
often mentioned by name without the accompanying structure representations3. We investigated this issue by 
searching a series of omics data resources using structural identifiers of the compounds in Table 1 as reported 
in ChEBI, using web-based free-text searches (ArrayExpress, ExpressionAtlas, BioSamples, GEO and PRIDE). 
We were able to retrieve data for all model compounds from at least four resources using compound names. 

Aspirin

ChEBI ID CHEBI:15365

PubChem CID CID2244

InChIKey BSYNRYMUTXBXSQ-UHFFFAOYSA-N

InChI InChI = 1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-
5H,1H3,(H,11,12)

SMILES CC(=O)Oc1ccccc1C(O)=O

ChEBI URI http://purl.obolibrary.org/obo/CHEBI_15365

Rosiglitazone

ChEBI ID CHEBI:50122

PubChem CID CID77999

InChIKey YASAKCUCGLMORW-UHFFFAOYSA-N

InChI
InChI = 1S/C18H19N3O3S/c1-21(16-4-2-3-9-19-16)10-11-24-
14-7-5-13(6-8-14)12-15-17(22)20-18(23)25-15/h2-9,15H,10-
12H2,1H3,(H,20,22,23)

SMILES CN(CCOc1ccc(CC2SC=O)NC2=O)cc1)c1ccccn1

ChEBI URI http://purl.obolibrary.org/obo/CHEBI_50122

Valproic acid

ChEBI ID CHEBI:39867

PubChem CID CID3121

InChIKey NIJJYAXOARWZEE-UHFFFAOYSA-N

InChI InChI = 1S/C8H16O2/c1-3-5-7(6-4-2)8(9)10/h7H,3-6H2,1-
2H3,(H,9,10)

SMILES CCCC(CCC)C(O)=O

ChEBI URI http://purl.obolibrary.org/obo/CHEBI_39867

Tamoxifen

ChEBI ID CHEBI:41774

PubChem CID CID2733526

InChIKey NKANXQFJJICGDU-QPLCGJKRSA-N

InChI
InChI = 1S/C26H29NO/c1-4-25(21-11-7-5-8-12-21)26(22-13-9-
6-10-14-22)23-15-17-24(18-16-23)28-20-19-27(2)3/h5-18H,4,19-
20H2,1-3H3/b26-25-

SMILES CC\C(c1ccccc1)=C(/c1ccccc1)c1ccc(OCCN(C)C)cc1

ChEBI URI http://purl.obolibrary.org/obo/CHEBI_41774

Table 1.  Table of model compounds used in the study and their identifiers including unified resource identifier 
(URI).
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In addition, the IUPAC systematic names of aspirin, rosiglitazone and valproic acid retrieved datasets from 
ArrayExpress, BioSamples and GEO. Interestingly, in BioSamples, we were able to retrieve datasets for valproic 
acid also with SMILES. These datasets, however, actually corresponded to the sodium salt of valproic acid, which 
has a slightly different SMILES representation in ChEBI compared to valproic acid. Confusingly, these samples 
were not retrieved when the compound name was used instead.

This highlights that, at present, the best way to identify compound-related data from omics resources is with 
compound names, which requires researchers to exhaust all compound synonyms. To understand this variability 
between annotations in sample labels, we retrieved the name, synonyms and structural identifiers for each of our 
model compounds from the ChEMBL public SPARQL endpoint. These were used to identify samples and labels 
in the BioSamples database through its public SPARQL endpoint. For rosiglitazone and tamoxifen, only the sam-
ples with the respective name was found in any of the sample labels. For aspirin, samples were found using aspirin, 
asparin, asprin, levius and measurin. Surprisingly, the compound name acetylsalicylic acid was not found in any of 
the sample labels. Valproic acid retrieved results also for valproate, depakote and 44089. The latter is a synonym of 
valproic acid in ChEMBL but none of the associated samples were actually associated to valproic acid. Of note, all 
the samples retrieved were unique, i.e. alternative compound labels were not used to annotate the same sample.

Identification of in vitro Compound Data
One approach to identify in vitro data in public resources is to browse the study descriptions for references of in 
vitro experiment related keywords like “in vitro”, “cell-line” or specific cell-line names (e.g. “HeLa”). ChEMBL 
provides a web-based search, which allows one to retrieve data on compounds associated with specific cell-lines 
or in vitro assays. Because this approach is not scalable, most public resources also provide access through bulk 
data downloads, or programmatically through RESTful API or RDF technologies.

In a RESTful query, the data request is constructed into a single URL which is simple to use and platform 
independent. Out of the 19 resources in our study, 10 provided free access to their RESTful API. The DrugBank 
API can be accessed for a fee. Data in RDF compatible formats can be supplied as a bulk download, or through 
public SPARQL endpoints, which facilitate querying the service provider directly, thus always retrieving the 
most up-to-date data. In our study, only BioSamples, ChEMBL, ExpressionAtlas and UniProt provided a public 
SPARQL endpoint. Acquiring data using a SPARQL endpoint can be slower compared to RESTful data access, 
since the latter is better optimized for specific, recurrent query requests. In contrast, SPARQL queries have the 
benefit of being customizable, providing flexibility that caters to the researchers’ unique needs. Also, since RDF 
is an inherent part of the “linked data” concept, it can be used to find relationships between datasets in different 
resources. This is useful for data integration purposes, such as connecting a compound’s effect in one resource to 
its physicochemical properties in another.

Ontology terms can be used to directly associate and retrieve samples with keywords related to in vitro exper-
iments. Using BioSamples’ public SPARQL endpoint as our target database, we found samples for all our model 
compounds using ChEBI universal reference identifiers (URI) (Table 1). We were also able to find data for our 
sample compounds retrieved with ChEBI ontology terms, that had been annotated with the molarity unit term 
(http://purl.obolibrary.org/obo/UO_0000061, Units of measurement ontology, UO7) and the cell-line ontology 
term (http://www.ebi.ac.uk/efo/EFO_0000322, Experimental Factor Ontology, EFO8), both indicators of in vitro 

Database
Number of 
compounds

Last 
checked Data type Link

ArrayExpress12 — — Raw ebi.ac.uk/arrayexpress

BindingDB13 717,572 04-2019 Curated bindingdb.org

BioSamples14 — — Raw ebi.ac.uk/biosamples

ChEBI15 55,660 04-2019 Curated ebi.ac.uk/chebi

ChEMBL16 1,879,206 04-2019 Curated ebi.ac.uk/chembl

ChemIDPlus17 421,602 04-2019 Curated chem.nlm.nih.gov/chemidplus

ChemSpider18 ~71 million 04-2019 Curated chemspider.com

CompTox19 ~870,000 04-2019 Raw/Curated comptox.epa.gov/dashboard

CTD20 15,913 04-2019 Curated ctdbase.org

DrugBank21 11,926 04-2019 Curated drugbank.ca

ExpressionAtlas22 — — Raw/Curated ebi.ac.uk/gxa/home

GEO23 — — Raw ncbi.nlm.nih.gov/geo/

HMDB24 114,100 04-2019 Curated hmdb.ca

HSDB25 6,016 04-2019 Curated toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

PRIDE26 — — Raw ebi.ac.uk/pride/archive/

PubChem1 >97,400,000 04-2019 Raw/Curated pubchem.ncbi.nlm.nih.gov

T3DB27 3,678 04-2019 Curated t3db.ca

UniProt28 — — Curated uniprot.org

ZINC29 >100,000,000 04-2019 Curated zinc15.docking.org

Table 2.  A list of resources used in the study, their categorization and the number of estimated compounds in 
these resources at the time of the study.
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assays. Using the latter, we were able to identify several examples of rosiglitazone and tamoxifen samples and a 
single example for valproic acid. With the exception of these few examples, we observed that most data for our 
compounds had been deposited without associated ontology terms. Nevertheless, we are confident that further 
uptake of the ontologies and improved annotations will be a powerful feature in future search strategies leading 
to increased data integration capabilities.

Compound data is generated by researchers, screening facilities and assay developers

Data for compound of interest is (A) curated from publications into compound-specific
databases or (B) raw data is stored in high-throughput omics databases.

A SINGLE COMPOUND DATA ACCESS POINT WOULD RESOLVE
COMPOUND IDENTIFICATION ISSUES BETWEEN RESOURCES AND

ACCELERATE DATA RETRIEVAL AND ANALYSIS

Curation of dataOntologies Semantic-web technologies

+ +AZ

Identification of compound data in compound-specific resources (A) can be done
easily but attention must be given to compound naming and identifiers that can
differ between resources.

There is little communication between compound-specific (A) and high-throughput
omics (B) data resources.

Due to compound naming and identifier ambinguity the identification of compound
data in high-throughput omics resources (B) is complicated and time consuming.

com
pound of intere

st

=

Semantic web tech-
nologies can be used 
to connect knowledge 
in different resources 
based on shared 
ontology terms.

A unifying resources that takes advantage of ontologies, semantic web technologies and 
clean data annotation will provide an invaluable service to researchers globally, improve 
metadata quality, researcher’s efficiency and save considerable amount of time and 
money. 

Curation of existing and 
new data with ontology 
terms will improve data 
annotation. This will 
reduce ambiquity in 
accessing relevant 
compound information.

Standardized ontolo-
gies can be used to 
identify relevant data 
associated with specific 
keywords (e.g. in vitro) 
that fit experimental 
description.

Fig. 1  A graphics illustrating the problems of integrating knowledge between compound of interest and 
different types of data resources. The problems can be solved with integrated approaches using ontologies, 
semantic-web technologies and better annotation of the data.
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Final Thoughts
There already exists a substantial corpus of resources that contain data on a large number of chemical com-
pounds. These data and their sources are diverse and they need to be integrated in order to attain a complete 
understanding on a compound (Fig. 1). Accessing published data with correct compound information is essen-
tial. The problems encountered in accessing data on our model compounds, demonstrate, that using the results 
from publications stored in public resources and cross-referencing them with omics data still requires substantial 
investigative capacity. Efforts similar to SourceData9, that allows to annotate already published figures in exist-
ing publication, and RepositiveIO (https://repositive.io/), that makes improving metadata a crowd-sourced task, 
could provide a potential remedy. Would the efforts necessary for general accession to in vitro compound data 
be worth the money and time? Considering the success of UniProt which incorporates extensively curated and 
trustworthy protein data, the answer is yes. Indeed an analysis published in the EMBL-EBI value report10 esti-
mated 46% increase in research efficiency for scientists accessing information relevant to their research question. 
With around 400,000 unique visitors per month, the reported estimation had an enormous cost-effect benefit for 
the researcher community. The interest in chemical compounds is even bigger: PubChem alone receives about 
1 million unique users per month11. This highlights the need for an improved resource that would enhance the 
efficiency and speed of accessing raw and analyzed compound data in a reliable, simplified and intuitive manner. 
It would allow researchers to focus on data analysis and its interpretation instead of collection and curation.
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