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The secondary structures of nucleic acids form a particularly important class of
contact structures. Many important RNA molecules, however, contain pseudo-
knots, a structural feature that is excluded explicitly from the conventional definition
of secondary structures. We propose here a generalization of secondary structures
incorporating ‘non-nested’ pseudo-knots, which we callbi-secondary structures,
and discuss measures for the complexity of more general contact structures based
on their graph-theoretical properties. Bi-secondary structures are planar trivalent
graphs that are characterized by special embedding properties. We derive exact
upper bounds on their number (as a function of the chain lengthn) implying that
there are fewer different structures than sequences. Computational results show that
the number of bi-secondary structures grows approximately like 2.35n. Numerical
studies based on kinetic folding and a simple extension of the standard energy model
show that the global features of the sequence-structure map of RNA do not change
when pseudo-knots are introduced into the secondary structure picture. We find a
large fraction of neutral mutations and, in particular, networks of sequences that fold
into the same shape. These neutral networks percolate through the entire sequence
space.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

Presumably the most important problem and the greatest challenge in present
day theoretical biophysics is deciphering the code that transforms sequences of
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biopolymers into spatial molecular structures. A sequence is properly visualized
as a string of symbols which together with the environment encodes the molecular
architecture of the biopolymer. In case of one particular class of biopolymers, the
ribonucleic acid (RNA) molecules, decoding of information stored in the sequence
can be properly decomposed into two steps: (i) formation of the secondary structure,
that is, of the pattern of Watson–Crick (andGU) base pairs, and (ii) the embedding
of the contact structure in three-dimensional space.

The sequence structure relation of RNA was studied in detail in a series of papers
(Fontanaet al., 1991, 1993a, b; Bonhoefferet al., 1993; Schusteret al., 1994; Tacker
et al., 1994; Grüneret al., 1996a,b; Tackeret al., 1996) at the level of secondary
structures. The most salient findings of these investigations are:

(i) There are many more sequences than (secondary) structures.
(ii) There are few frequent and many rare structures. Almost all sequences fold

into frequent or ‘common’ structures.
(ii) Sequences that fold into a ‘common’ structure are distributed nearly uniformly

in sequence space.
(iv) A sequence folding into a ‘common’ structure has a large number of neutral

neighbors (folding into the same structure) and a large number of neighboring
sequences that fold into very different secondary structures.

(v) Neutral paths percolate sequence space along which all sequences fold into
the same secondary structure. In fact, there are extendedneutral networksof
sequences folding into the same ‘common’ structure (Gr¨uneret al., 1996b;
Reidys and Stadler, 1996).

(vi) Almost all ‘common’ structures can be found close to any point in sequence
space. This property is calledshape space covering.

The impact of these features on evolutionary dynamics is discussed in Schuster
(1995) and Huynenet al. (1996): a population explores sequence space in a
diffusion-like manner along the neutral network of a viable structure. Along the
fringes of the population novel structures are produced by mutation at a constant
rate (Huynen, 1996). Fast diffusion together with perpetual innovation makes these
landscapes ideal for evolutionary adaptation (Fontana and Schuster, 1998).

The ‘classical’ definition of secondary structures incorporates a quite restrictive
condition on the set of base pairs that implies a tree-like arrangement of the double-
helical regions, see Fig. 1. Additional interactions between different branches of this
tree are referred to aspseudo-knots(for an exact definition see Section 2). Pseudo-
knots are excluded from many studies for a mostly technical reason (Waterman
and Smith, 1978a, b): the folding problem for RNA can be solved efficiently by
dynamic programming (Waterman and Smith, 1978b; Zuker and Sankoff, 1984) in
their absence.

On the other hand, an increasing number of experimental findings, as well as re-
sults from comparative sequence analysis, suggest that pseudo-knots are important
structural elements in many RNA molecules (Westhof and Jaeger, 1992). Notably,
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Figure 1. The contact structure ofEscherichia coliRNAse P RNA contains two pseudo-
knots [http://jwbrown.mbio.ncsu.edu/RNaseP/home.html]. The conventional sec-
ondary structure is drawn on the l.h.s., the (four) regions forming the pseudo-knots are
marked by braces, interaction regions are connected. The arc diagram of the same structure
is obtained by arranging the backbone along a line and indicating base pairs by arcs con-
necting the corresponding bases. The base pairs of the conventional secondary structure
are drawn above the line, the two pseudo-knot stems are shown below the back-bone. For
details see Section 2.

functional RNAs such as RNAseP RNA (Loria and Pan, 1996) and ribosomal RNA
(Konings and Gutell, 1995) contain pseudo-knots. The diversity of molecular bio-
logical functions performed by pseudo-knots can be subdivided into three groups.
Pseudo-knots at the 5′-end of mRNAs appear to adopt a role in the control of mRNA
translation. For instance, the expression of replicase is controlled in several viruses
either by ribosomal frame shifting (Ten Damet al., 1990; Brierleyet al., 1991; Din-
manet al., 1991; Chamorroet al., 1992; Tzenget al., 1992) or by in-frame read-
through of stop codons (Willset al., 1991). Both mechanisms involve pseudo-knots.
Core pseudo-knots are necessary to form the reaction center of ribozymes. Most
of the enzymatic RNAs with core pseudo-knots, such as RNAseP, are involved in
cleavage or self-cleavage reactions (Michel and Westhof, 1990; Forster and Alt-
man, 1990; Brown, 1991; Haaset al., 1991). Pseudo-knots in the tRNA-like motifs
at the 3′-end of the genomic RNA mediate replication control in several groups of
plant viral RNA (Manset al., 1991).
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It is important, therefore, to include pseudo-knotted structures into investigations
of RNA sequence–structure relationships. In particular, we need to know whether
the findings (i) through (vi) described above remain true when pseudo-knots are
taken into account. Assertion (i), the existence of more sequences than structures,
is a necessary prerequisite for all subsequent statements concerning the sequence-
structure map of RNA. It is necessary therefore to estimate the number of RNA
structureswith pseudo-knotsin order to decide whether the results quoted above
can in fact be true for ‘real’ RNA molecules.

In the following two sections we give a detailed mathematical analysis of what
we call bi-secondary structures. In a nutshell, bi-secondary structures generalize
to the notion of secondary structures to include pseudo-knots without allowing
overly involved knotted structures or nested pseudo-knots. In fact, almost all known
pseudo-knotted structures, with the notable exception of the E. coliαmRNA, fall
into this class.

In Section 2 we review a variety of equivalent graph-theoretical characterizations
of bi-secondary structures and provide a way of efficiently determining whether a list
of base pairs corresponds to a bi-secondary structure. Then we briefly review a few
graph invariants that might be useful for determining the complexity of higher-order
structures beyond the realm of bi-secondary structures. At the end of Section 2 we
show that a convenient distance measure for comparing secondary structures can be
used also in the presence of pseudo-knots (Section 2.7). In Subsection 2.8 we argue
that theintersection theoremis valid for general nucleic acid contact structures. We
say that an RNA sequence iscompatiblewith a structures if it can in principle form
this structure irrespective of energetic constraints. This means that for each base
pair (i, j ) in s the sequence positionsxi andxj are one of the six possible RNA
base pairsAU, UA, GC, CG, GU, or UG. The set of sequences that actually fold
into a given structures is therefore a subset of the set of compatible sequences. The
intersection theorem (Reidyset al., 1997) now states that for any two structuress
ands′ there are sequences which are compatible with both of them. This result is the
reason why very different structures with very closely related sequences (Schuster
et al., 1994) can exist. The fact that the intersection theorem holds for structures
with pseudo-knots means that we have to expect shape space covering provided the
fraction of neutral mutations is large enough (Reidyset al., 1997).

In Section 3 we determine the number of different structures with pseudo-knots.
Combinatorial aspects of RNA secondary structures have been studied in detail by
Waterman and co-workers (Stein and Waterman, 1978; Waterman, 1978; Waterman
and Smith, 1978a, b; Penner and Waterman, 1993; Schmitt and Waterman, 1994;
Waterman, 1995) and Hofackeret al. (1999). Using different techniques we give
analytical upper bounds on the number of different bi-secondary structures showing
that their number does not increasemuch faster than the number of secondary
structures. The analytical results are complemented by numerical data (see Table 2
at the end of Section 3) indicating that the numberSn of ‘reasonable’ bi-secondary
structures with chain lengthn grows approximately asSn ∼ 2.35n. ‘Reasonable’



Generalized Secondary Structures 441

means here that the structures have no isolated base pairs (i.e., the minimum stack
size isl = 2) and that hairpin loops contain at leastm = 3 unpaired bases. For
comparison, the number of secondary structures without pseudo-knots grows like
1.86n. Exhaustive enumeration for short sequences suggest that only 1.65n different
secondary structures appear as minimum energy structures of sequences of length
n (Grüneret al., 1996a). Hence the number 4n of RNA sequences of lengthn, is
much larger than the number of possible structures, independent of whether or not
one takes pseudo-knots into account.

This observation poses the questionhow the sequences that fold into a given
structure are distributed in sequence space. In Section 4 we describe a set of
numerical experiments strongly suggesting that the inclusion of pseudo-knots does
not alter the qualitative picture [properties (i) through (vi) above] of the RNA
sequence–structure map. A short discussion (Section 5) concludes this contribution.

Readers who are not interested in the mathematical details of defining, character-
izing, and counting contact structures of various types might want to skip Sections 2
and 3.

2. CONTACT STRUCTURES, DIAGRAMS AND BOOK-EMBEDDINGS

2.1. Diagrams and diagram graphs.The three-dimensional structure of a linear
biopolymer, such as RNA, DNA, or a protein can be approximated by itscontact
structure, i.e., by the list of all pairs of monomers that are spatial neighbors. Contact
structures of polypeptides have been introduced by Ken Dill and co-workers in
the context of lattice models of protein folding (Chan and Dill, 1988; Chen and
Dill, 1995). They arise implicitly in knowledge-based potentials for polypeptides
such as the Delauney–Tesselation potential described in Singhet al. (1996). Last
but not least, RNA secondary structures form a special class of contact structures.
The purpose of this section is to bring together different mathematical approaches
that can be used to describe biopolymer structures: contact graphs, linked diagrams,
book embeddings, and graph colorings.

A contact structure is represented by thecontact matrixC with the entriesCi j = 1
if the monomersi and j are spatial neighbors without being adjacent along the
backbone, andCi j = 0 otherwise. HenceCi j = 0 if |i − j | ≤ 1. We shall use the
notation[n] = {1, . . . , n}.

We define adiagram([n], �) to consists ofn vertices labeled 1 ton and a set�
of arcsthat connect non-consecutive vertices.

A closely related class of diagrams which also allow arcs between consecutive
vertices are thelinked diagramsintroduced by Touchard (1952). These are studied
in some detail in Hsieh (1973), Kleitman (1970), Stein (1978) and Stein and Everett
(1978).

It is customary to arrange the vertices along thex-axis and to draw the vertices in
such a way that they are confined in either the upper or the lower half-plane. The
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diagram of a contact structure with contact matrixC has the set of arcs

� = {{i, j }|Ci j = 1}. (1)

The contact matrix is thus the adjacency matrix of the corresponding diagram.
With each diagram we may associate adiagram graph0 with the following

properties:

(i) Then+ 1 vertices of0 are labeled 0, 1, . . . , n.
(ii) 0 contains the Hamiltonian cycle[0, 1, . . . , n, 0].

(iii) The ‘root’ vertex 0 has degree 2.

Let B be the adjacency matrix of the backbone, i.e., the matrix with the entries
Bi,i+1 = Bi+1,i = 1, i = 0, . . . , n − 1, andB0n = Bn0 = 1. Then the adjacency
matrix of a diagram graph withn+ 1 vertices is of the form

A = B+
(

0 0
0 C

)
. (2)

Equation (2) establishes the 1-1 correspondence of diagrams and the associated
diagram graphs.

Essentially the same construction can be used for contact structures of molecules
with a circular backbone, i.e., for circular ssRNA or ssDNA. The only restriction
is that{1, n} cannot be an arc in the case of a circular molecule. It is convenient
in this case to define the corresponding diagram graph without the artificial root
0. Each graph0 with a Hamiltonian cycle is then the diagram graph of a contact
structure with a circular backbone. The results in the following discussion hold for
both linear and circular nucleic acids.

DEFINITION 1. A diagram is a1-diagramif for any two arcsα, β ∈ � holds
α ∩ β = ∅ or α = β.

A diagram1 is a 1-diagram if and only if associated diagram graph0(1) has
vertex degrees less or equal to 3. Such graphs are often calledsub-cubicor trivalent.
The diagram graphs of 1-diagrams are closely related to cubic Hamiltonian graphs.
The latter are studied in detail in Section 9.4 of Wagner and Bodendiek (1990): a
graphS is homeomorphic froma graph0 if Scan be produced from0 by inserting
vertices of degree 2 into some edges of0. S is also called asubdivisionof 0.
Obviously each cubic Hamiltonian graph gives rise to a diagram graph onn vertices
by subdividing the edges of a Hamiltonian cycle. On the other hand, not all diagram
graphs are homeomorphic from a cubic Hamiltonian graph: suppose{1, 3} is an
arc and 2 is an unpaired vertex. The corresponding diagram graph cannot be cubic
because the triangle 1, 2, 3 cannot be obtained from a cubic graph.
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2.2. Secondary structures.The classical definition of secondary structures
(Waterman, 1978) requires that each base interacts with at most one other nu-
cleotide. Thus nucleic acid secondary structures are special types of 1-diagrams.
The second defining condition is that arcs do not cross. In terms of the contact
matrix this means: ifCi j = Ckl = 1 andi < k < j then i < l < j . With the
following notation we will find a simpler formulation of condition 2:

Letα = {i, j }with i < j be an arc of a diagram. We writeᾱ = [i, j ] ⊂ R for the
associated interval. Two arcs of a diagram areconsistentif they can be drawn in the
same half-plane without crossing each other. Equivalently, two arcsα, β ∈ � of a
diagram are consistent if either one of the following four conditions is satisfied:

(i) ᾱ ∩ β̄ = ∅.
(ii) ᾱ ⊆ β̄.
(ii) β̄ ⊆ ᾱ.
(iv) ᾱ ∩ β̄ = {k}, a single vertex.

Case (iv) is ruled out by definition in 1-diagrams. The non-crossing condition
thus may be expressed as follows: whenever the intervals of two arcs{i, j } and
{k, l } have non-empty intersection then one is contained in the other (Schmitt and
Waterman, 1994). Equivalently, we may simply define thata secondary structure
is a 1-diagram in which any two arcs are consistent.

As a consequence, each secondary structure can be encoded as a strings of
lengthn in the following way: if the vertexi is unpaired, thensi = ‘.’. Each
arc α = {p, q} with p < q translates tosp = ‘(’ andsq = ‘)’. As the arcs
are consistent their corresponding parentheses are either nested,(( )), or next
to each other,()(). As there are no arcs between neighboring vertices in a 1-
diagram there is at least one dot contained within each parenthesis. A variant of this
notation is themountain representationof RNA secondary structures (Hogeweg and
Hesper, 1984). The ‘dot-parenthesis’ notation is used as a convenient notation in
input and output of theVienna RNA Package, a piece of public domain software
for folding and comparing RNA molecules (Hofackeret al., 1994).

2.3. Book-embedding of graphs.A graph that can be embedded in the plane (or,
equivalently on the sphere) is calledplanar. If it can be embedded in the plane in
such a way that all its vertices lie on the exterior region it is calledouter-planar. This
class of graphs was introduced and characterized in terms of subgraphs in Chartrand
and Harary (1967) and SysÃlo (1979). Clearly, a 1-diagram1 is a secondary structure
if and only if its diagram graph0(1) is outer-planar. The outer-planar embedding
corresponds to the ‘circle representation’ of secondary structures.

A similar procedure leads to book-embeddings. Ap-book is a set ofp distinct
half-planes (thepagesof the book) that share a common boundary line`, called the
spineof the book. An embedding of a graph0 into a bookB consists of an ordering
of the vertices along the spine of the book together with an assignment of each edge
to a page of the book, in which edges assigned to the same page do not cross. The
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book-thickness(sometimes also called the page-number) bt(0) of a graph0 is the
minimal numberp of pages of a book into which it can be embedded (Bernhart
and Kainen, 1979). Book-embeddings have a practical application in the context
of VLSI design. For an overview see Chunget al. (1987) and Heathet al. (1992).

Not surprisingly, the book thickness is closely related to other embedding prop-
erties of graphs. Below we list a few important results:

(i) bt(0) = 0 if and only if0 is a path.
(ii) bt(0) ≤ 1 if and only if0 is outer-planar (Bernhart and Kainen, 1979).

(iii) bt(0) ≤ 2 if and only if 0 is a subgraph of a planar Hamiltonian graph
(Bernhart and Kainen, 1979). Such graphs are sometimes called subhamil-
tonian.

(iv) bt(0) ≤ 4 if 0 is planar (Yannakakis, 1988).
(v) bt(Kn) = dn/2e, whereKn is the complete graph withn vertices (Bernhart

and Kainen, 1979).
(vi) bt(Kmn) = min(dn/2e, dm/2e), whereKmn is the complete bipartite graph

with m+ n vertices.
(vii) bt(0) ≤ 3

2

√
n+ 6 for sub-cubic graphs (Chunget al., 1987).

(viii) bf(0) ≤ O(
√

m) if 0 is a graph withm edges(Malitz, 1994, b) .
(ix) bf(0) ≤ O(

√
g) if 0 is a graph of genusg (Malitz, 1994, b). (The genus

of a graph is the minimum number of ‘handles’ one needs to add to a sphere
so that the graph can be embedded on the resulting surface without crossing
edges.)

The book thickness of a variety of other graph classes has been studied in detail,
among them hypercubes (Chunget al., 1987), De Bruijn graphs (Obreni´c, 1993),
and various types of network graphs of practical interest (Games, 1986).

2.4. The inconsistency graph of a diagram.

DEFINITION 2. Let 1 = ([n], �) be a diagram. Theinconsistency graph2(1)

of the diagram has vertex set� and {α, β} is an edge of2(1) if and only if the
arcsα andβ are inconsistent in1.

Essentially the same construction is used for the investigation of cubic Hamilto-
nian graphs in Wagner and Bodendiek (1990). We shall see that the inconsistency
graph is a useful construction for characterizing embedding properties of diagram
graphs.

THEOREM 1. Let1 be a diagram. Then the following statements are equivalent.

(i) The diagram1 can be drawn without intersecting arcs.
(ii) The diagram graph0(1) is planar.

(iii) The inconsistency graph2(1) is bipartite.
(iv) 0(1) has a 2-page book embedding.
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Proof. (i ⇐⇒ ii) 1 can be drawn without intersection arcs if and only if0(1) is
planar because the Hamiltonian cycleH of 0(1) divides the plane into the interior
and the exterior ofH which correspond to the upper and lower half-plane of the
diagram1, respectively.

(ii ⇐⇒ iii) can be shown in the same way as the analogous result for cubic
Hamiltonian graphs in Wagner and Bodendiek (1990), see also Even and Itai (1971).
(ii ⇐⇒ iv) follows immediate from Bernhart and Kainen (1979, Theorem 2.5) as
a planar diagram graph is by construction Hamiltonian.

As noted in Even and Itai (1971), the determination of the book thickness of a0

is equivalent to finding a minimal vertex-coloring of a certain circle graph, which in
our case is the intersection graph2(1). This problem is in general NP-complete.
The following observation simplifies the task by reducing the number of arcs that
have to be considered.

Two arcsα = {i, j } andβ arestackedif β = {i −1, j +1} or β = {i +1, j −1}.
A stemis a subset9 of arcsα0 throughαh such thatαp andαp+1 are stacked for
p = 0, . . . , h − 1. It is easy to show that the arcs of a stem9 of a 1-diagram
are either all isolated vertices or they are contained in the same component of the
inconsistency graph2(1). Furthermore, all arcs of a stem have the same adjacent
vertices in2(1). We may therefore use a reduced intersection graph2̂(1), the
vertices of which are the stems. (In addition, we may recursively remove vertices of
degree 2 that are not contained in a triangle before forming the intersection graph.
This has the effect of removing bulges and interior loops that interrupt stems.)
Examples of reduced intersection graphs are given in Figs 3 and 4.

Most of the literature on linked diagrams deals withcompletediagrams, that is,
each vertexx ∈ [n] is incident with an arc (Touchard, 1952; Kleitman, 1970; Stein,
1978). It is straightforward to extend Touchard’s definition of reducible diagrams
to the incomplete diagrams considered here:

DEFINITION 3. A diagram([n], �) is reducibleif there exists an interval[p, q] ⊂
[n] such that

(i) For eachα ∈ � holds eitherα ∩ [p, q] = ∅ or α ⊆ [p, q].
(ii) There is an arcα ∈ � such thatα ∩ [p, q] = ∅.
(iii) There is an arcα ∈ � such thatα ⊆ [p, q]. If a diagram is not reducible, it

is irreducible.

The following equivalence is proved in Haslinger (1997):

LEMMA 1. A diagram1 is irreducible if and only if its inconsistency graph2(1)

is connected. A sub-diagram corresponds to one or more components of the incon-
sistency graph.

Reducible diagrams can therefore be viewed as being composed of substructures.
These substructures do not in general conform to the conventional decomposition
into stems and loops of an RNA that forms the basis of the standard energy model
of nucleic acid secondary structures (Freieret al., 1986).
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Figure 2. The contact structure of the proposed SRV-1 frameshift signal contains a pseudo-
knot, see Ref. Ten Damet al. (1994). Pseudo-knots such as this one belong to the class of
bi-secondary structures. Knots such as the one in the lower part of the figure do not belong
to the class of bi-secondary structures. Knots, in contrast to pseudo-knots, may contain
parallel stranded helices which so far have not been described for RNA.

2.5. Bi-secondary structures.

DEFINITION 4. A bi-secondary structureis a 1-diagram that can be drawn in the
plane without intersections of arcs.

We may draw the arcs in the upper or lower half-plane, but they are not al-
lowed to intersect thex-axis. In other words, it can be embedded in 2-page
book. Bi-secondary structures are therefore ‘superpositions’ of two secondary
structures.

The virtue of bi-secondary structures is that they capture a wide variety of RNA
pseudo-knots, [Figs 1 and 2 (upper part)], while at the same time they exclude
true knots. Knotted RNAs could in principle arise either from parallel stranded
helices (Fig. 2), or in very large molecules from sufficiently complicated cross-
linking patterns. Parallel-stranded RNA has not been observed (so far), see, how-
ever, Fortschet al. (1996) on parallel-stranded DNA. Wollenzien Cantoret al.
(1980) have searched unsuccessfully for knots in large RNAs. The definition of
bi-secondary structures, by allowing a planar drawing of the structure, rules out
both possibilities.

Among the RNA structures with pseudo-knots, almost all are bi-secondary struc-
tures. Our examples include several viral RNAs such as Coronavirus (Brierley
et al., 1991), Luteovirus (Ten Damet al., 1990), and Retrovirus RNA (Chamorro
et al., 1992), as well as catalytic RNAs such as RNAseP RNA (Loria and Pan, 1996),
tmRNA (Vlassovet al., 1995; Feldenet al., 1997), and ribosomal RNAs (Gutell
et al., 1994). We have encountered only a single exception, namelyαmRNA (Tang
and Draper, 1990).
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Figure 3. Theorem 2 is not valid for general diagrams. The inconsistency graph of the
diagram15 is a pentagon and hence is neither bipartite nor does it contain a triangle.

THEOREM 2. Let 1 be a 1-diagram. Then the following statements are equiva-
lent:

(i) 1 is a bi-secondary structure.
(ii) 0(1) is planar.

(iii) 2(1) is bipartite.
(iv) 0(1) has a 2-page book-embedding.
(v) Among any three arcs of1 at least two are consistent.

(vi) 2(1) does not contain a triangle.

Proof. The equivalence of (i), through (iv) is proved in Theorem 1 for all dia-
grams. The equivalence of (v) and (vi) follows immediately from the definition of
2(1). The implication (iiiH⇒v) is obvious. Finally, it is possible to show that
¬(ii) implies¬(v) based on Kuratowski’s (1930) theorem. For the details we refer
to Haslinger (1997).

The practical importance of Theorem 2 lies in the fact that existence or non-
existence of triangles in2(1) can be checked very easily, and hence we have a
very efficient (polynomial time) method for deciding whether a diagram1 is a
bi-secondary structure or not. Note that the equivalence of (iii) and (vi) does not
hold for general diagrams. A counterexample is shown in Fig. 3.

Being the union of the two secondary structures([n], �U ) and([n], �L) we can
represent each bi-secondary structure as a strings using two types of parentheses:
as in a secondary structure we write a dot‘.’ for all unpaired vertices. A pair
{p, q} ∈ �U becomessp = ‘(’ andsq = ‘)’, while an arc{p, q} ∈ �L becomes
sp = ‘[’ and sq = ‘]’. Unfortunately, the decomposition of a bi-secondary
structure into two secondary structures is in general not unique, see Fig. 4.

The fact that2(1) is bipartite allows us to define anormal formfor this rep-
resentation by means of the following rule: the leftmost arc of each connected
component of2(1) belongs to�U . In particular, all isolated vertices of2(1)

are contained in�U . The normal form of a secondary structure therefore contains
only dots and (round) parentheses. Within each non-trivial connected component of
2(1) the distribution of arcs between�U and�L is unique because the component
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A A 0 1 E Z 2 I K 3 M N

BA 0 1 E Z 2 K
I

3 M N

Figure 4. Two diagrams encoding the 3′ non-coding region of tobacco mosaic virus RNA
(Abrahamset al., 1990). The upper diagram corresponds to the normal form, the lower
diagram maximizes the number of upper arcs. Stems are labeled by uppercase greek letters.
The third line shows the inconsistency graph (see Section 2.4) of the tmvRNA structure. It
is bipartite and hence, by Theorem 2, the tmvRNA structure is a bi-secondary structure.

is bipartite. All arcs in a stack have a common neighboring vertex in2(1), hence
they all belong to the same class of the partition. Therefore, in normal form, all
arcs belonging to the same stack are written with the same type of brackets.

2.6. Beyond bi-secondary structures.The following example shows that there
are natural RNA structures that are more complicated than bi-secondary struc-
tures. TheEscherichia coliα-operon mRNA folds into a structure that is required
for allosteric control of translational initiation (Tang and Draper, 1990). Com-
pensatory mutations have defined an unusual pseudo-knotted structure (Tang and
Draper, 1989), the thermodynamics of which were subsequently investigated in
detail (Gluick and Draper, 1994). The diagram of its contact structure cannot be
drawn without intersections, see Fig. 5. To our knowledge it is the only known
RNA structure that cannot be embedded in a 2-page book.

In this subsection we briefly discuss a few graph properties that could be used for
a classification of polymer structure complexity beyond the realm of bi-secondary
structures. Clearly, one may use its book thickness. A closely related quantity is
the chromatic number of the intersection graph: acolor partition of a graph0 is
partitionV = V1∪ V2∪ · · · ∪ Vc of its vertex set intoc subsetsVi such that no two
vertices inVi are adjacent. Thechromatic numberχ(0) is the smallest numberc
of colors for which a color partition of0 can be found.

An arbitrary diagram1 can be decomposed into substructures by means of the
following obvious result: let1 = ([n], �) be a diagram and letV : � = �1 ∪
�2 ∪ · · · ∪ �c be a partition of the set of arcs. Then the sub-diagram([n], �i ),
i = 1, . . . , c, can be drawn without intersection if and only ifV is a color partition of
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Figure 5. Diagram of the contact structure ofE. coli α-mRNA. The structure contains five
stems, labeled by uppercase Greek letters. We may choose the color partition if2(1) such
that all arcs in a stem have the same color. It therefore suffices to draw the inconsistency
graph for stems (r.h.s. of the figure). It contains triangles, thus the diagram of this RNA
structure is not a bi-secondary structure. It is easy to check thatχ(2(1)) = 3.

the inconsistency graph2(1). Noticing thatχ(0) = 1 if 0 contains no edges and
χ(0) = 2 if 0 is bipartite with non-empty edge set, the following characterization
follows immediately:

(i) 1 is a secondary structure iffχ(2(1)) = 1;
(ii) 1 is a bi-secondary structure iffχ(2(1)) ≤ 2.

Clearly,χ(2(1)) equals the minimum number of pages of all book embeddings
in which the the ordering of the vertices along the spine coincided with the natural
ordering along the backbone. In general, we have bt(0(1)) ≤ χ(2(1)) for all
diagrams. We remark that graphs with moderate chromatic numbers can be charac-
terized by results similar to Kuratowski’s theorem for planar graphs. For instance,
one can show fork ≤ 4, that a graph0 with chromatic numberχ(0) ≥ k contains
a subdivision of the complete graphKk (Dirac, 1952). The generalization of this
proposition tok > 4 is known as Haj´os’ conjecture. It is false fork ≥ 7 and un-
solved fork = 5 andk = 6 (Holton and Sheehan, 1993). It seems thatχ(2(1)) is
in fact the more useful quantity, as there are no efficient algorithms to determine the
book-thickness of a given graph, andχ(2(1)) accounts for the immutable ordering
of the backbone vertices, whereas the book-thickness might decrease by changing
this ordering.

A quite different algebraic graph invariantµ, introduced by de Verdi`ere (1990),
leads to the same classification of structures for smallµ:

µ = 1 0(1) is a circle,1 has no arcs.
µ ≤ 2 0(1) is outer-planar,1 is a secondary structure.
µ ≤ 3 0(1) is planar,1 is a bi-secondary structure.

The graphs withµ ≤ 4 have recently been identified as theflat or linklessly embed-
dablegraphs (Lovász and Schrijver, 1996). A useful characterization of this class
of graphs is proved in Robertsonet al. (1995, b): ‘A graph is non-flat if and only if
it has no minor in the so-called Petersen family’. The graphV∗8 , Fig. 6, is a valid
diagram graph. It is easy to check thatV∗8 is flat and that its inconsistency graph is
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Figure 6. The graphV∗8 and its inconsistency graph.

2(V∗8 ) = K4. Hence there are flat diagram graphs for whichχ(2(1)) ≥ 4. Thus
there is no direct correspondence betweenχ(2(1)) andµ, not even for 1-diagrams.

2.7. A metric for 1-diagrams. An interesting algebraic interpretation of sec-
ondary structures was proposed in Reidys and Stadler (1996). Interpreting each arc
{i, j } as a transposition(i, j ) on [n] we may assign the permutation

π(1) =
∏
α∈�

(iα, jα) (3)

to each diagram1. One observes: (i) if1 a 1-diagram thenπ(1) is an involution.
(ii) An involution π is the permutation representation of a 1-diagram if and only if its
cycle decomposition does not contain a canonical transposition, i.e., a transposition
of the form(i, i + 1). (iii) Different 1-diagrams give rise to different involutions.

A natural set of generators for the symmetric groupSn is the setT of all transpo-
sitions. The corresponding length function is

`(π) = n− cyc(π), π ∈ Sn, (4)

where cyc(π) is the number of cycles into whichπ decomposes. We have`(τ ) = 1
if and only if τ ∈ T is a transposition. The associated metric is the canonical
metric on the Cayley graph0(Sn, T ), see Reidys and Stadler (1996) for a detailed
discussion. As the involutions form a subset ofSn we have

THEOREM 3. The function

d(1, 1′) = `(π(1)π(1′)−1) = n− cyc(π(1)π(1′)−1), (5)

whereπ(1) denotes the permutation representation of a diagram1, is a metric on
the set of all 1-diagrams with n vertices.

In particular, two 1-diagrams1 and1′ have distanced(1, 1′) = 1 if and only
if they differ by a single arc. Metrics on ‘shape space’ are necessary for a detailed
quantitative study of sequence–structure maps. Applications to RNA secondary
structures are reported for instance in Fontanaet al. (1993a) and Schusteret al.
(1994).
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2.8. The Intersection Theorem.The virtue of equation (3) is not limited to defin-
ing a metric on the set of structures. Suppose we are given an alphabet of monomers
(for instance{A, U, G, C} in the case of RNA) and a rule that determines which
pairs of monomers may form a base pair (AU, UA, GC, CG, GU, UG in the case
of RNA).

DEFINITION 5. A sequence s iscompatiblewith a structure (1-diagram)1 if for
each arc{i, j } the letters (monomers) si and sj fulfill the pairing rule. The set of
all sequences that are compatible with1 is denoted byC[1].
THEOREM 4. (Intersection Theorem) Let1 and1′ be 1-diagrams. ThenC[1]∩
C[1′] is non-empty.

The proof of this result in Reidyset al. (1997) is valid for all 1-diagrams, not only
for secondary structures. The intersection theorem sets the stage for shape space
covering: it allows close-by sequences to fold into structures that are as different as
desired — given a suitable folding potential. Further applications of equation (3)
can be found in Weber (1997).

3. COMBINATORICS

3.1. Enumeration 1-diagrams. The numberXn of all diagrams onn vertices is
Xn = 2(n−1)(n−2)/2 as there are(n−1)(n−2)/2 possible arcs (S¨oler and Jankowski,
1991), which can be arbitrarily combined to form a diagram.

In Section 2.7 we have shown that all 1-diagrams correspond to involutions,
therefore the numberTn of involutions on[n] is an upper bound for the numberDn

of 1-diagrams on[n]. The combinatorics of involutions is discussed for instance in
the book by Wilf (1994):

PROPOSITION 1. The number Tn of involutions fulfills the recursion

Tn = Tn−1+ (n− 1)Tn−2 n ≥ 2 and T0 = T1 = 1 ,

and has the asymptotic form

Tn ∼ 1√
2

nn/2 exp

(
−n

2
+√n− 1

4

)
.

The number of involutionsTn therefore grows faster than exponential in the sense
that n
√

Tn → ∞. 1-Diagrams can be counted by a very similar recursion as the
following result shows:

THEOREM 5. The number of 1-diagrams fulfills the recursion

Dn+2 = Dn+1+ (n+ 1)Dn − Dn−1+ Dn−2 n ≥ 2

D0 = D1 = D2 = 1, D3 = 2.
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Proof. The first few values ofDn are obvious,D0 = 1 is a convenient definition.
The recursion is derived as follows: a 1-diagram onn+ 2 vertices can be formed
either by adding a lone vertex to a 1-diagram onn+ 1 vertices or by adding an arc
{1, k} to a 1-diagram1 onn vertices by inserting the vertex labeledk between the
k− 1st and thekth vertex of1. Note, however, that1 must be a 1-diagram, but in
addition it might have an arc{k− 1, k} in 1, as these vertices are separated by the
endpoint of the newly introduced arc in the new structure. Viewing this differently,
we may either add the arc{1, k} or the9-like structure consisting of the arcs{1, k}
and{k−1, k+1}, which leaves us with a 1-diagram onn−2 vertices and the same
problem. Repeating this argument we arrive at the following expansion:

Hence we haveDn+2 = Dn+1 + nDn + (n − 1)Dn−2 + (n − 3)Dn−4 + · · · .
Observing thatDn+1 can of course be written in the same form and substituting into
the above equations yields

Dn+2 = (n+1)Dn+nDn−1+(n−1)Dn−2+(n−2)Dn−3+· · ·+2D1+D0−Dn−1 .

Subtracting the corresponding expansion forDn+1 yields

Dn+2− Dn+1 = (n+ 1)Dn − Dn−1+ Dn−2 .

A simple rearrangement now completes the proof.

COROLLARY 1. limn→∞ n
√

Dn = ∞.

Proof. The seriesDn is obviously monotonically increasing. Hence the series
an+2 = (n+1)an, a0 = a1 = 1 is a lower bound. It is well known thatan = (n−1)!!
grows faster than exponentially.

REMARK 1. A very similar formula is obtained for the case of a circular back-
bone. There areDn−2 diagrams with arc{1, n} on n vertices. Thus the number of
1-diagrams with circular backbone isD′n = Dn − Dn−2.

An exponential upper bound can be found, however, on the numbersDn(c) of
1-diagrams whose inconsistency graph has chromaticχ(2(1)) ≤ c. We find

THEOREM 6. Dn(c) ≤ (2c+ 1)n.

Proof. Consider a 1-diagram1 = ([n], �) with χ(2(1)) ≤ c. Then there is
a color partition of� with c colors. As([n], �i ) is a secondary structure, it can
be encoded in dot-parenthesis notation. Coloring the parenthesis with a different
color for each class�i of the color partition hence yields a unique representation
of 1. This representation can be interpreted as a string of lengthn over an alphabet
consisting of‘.’ andc different pairs of brackets, i.e., with 2c+ 1 letters.

Theorem 6 is not a very good estimate as we shall see in Section 3.3.
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Table 1. The constantsAml in equation (7) for secondary structures without pseudo-knots.
m l

1 2 3
1 2.618 1.986 1.716
2 2.414 1.899 1.680
3 2.289 1.849 1.652
5 2.147 1.783 1.612

3.2. Secondary structures.A secondary structure onn+1 digits may be obtained
from a structure onn digits either by adding a free end at the right-hand end or by
inserting a base pair 1≡ (k + 2). In the second case the substructure enclosed
by this pair is an arbitrary structure onk digits, and the remaining part of length
n− k − 1 is also an arbitrary valid secondary structure. Therefore, we obtain the
following recursion formula for the numberSn of secondary structures:

Sn+1 = Sn +∑n−1
k=m SkSn−k−1, n ≥ m+ 1

S0 = S1 = · · · = Sm+1 = 1.
(6)

This expression has first been derived by Waterman (1978);mdenotes the minimum
number of unpaired digits in a hairpin loop. Similar recursions can be derived for
the numbers9(m,l )

n of secondary structures with minimum hairpin lengthm and
minimum stack lengthl , see Hofackeret al. (1999) for details. Asymptotically,
these numbers behave as

9(m,l )
n ∼ Bm,l n

−3/2An
m,l . (7)

The most important numbers are collected in Table 1. A more detailed table can be
found in Hofackeret al. (1999).

Detailed combinatorial studies on various aspects of secondary structure graphs
are based on equation (6), see for instance Penner and Waterman (1993), Stein and
Waterman (1978), Waterman (1978, 1995), Waterman and Smith (1978a, b) and
Hofackeret al. (1999). In the following we shall make use of the number

s(n, k) = 1

k

(
n− k

k+ 1

)(
n− k− 1

k− 1

)
(8)

of secondary structures of lengthn with k base pairs. This closed formula was
recently derived in Schmitt and Waterman (1994).

3.3. Bi-secondary structure.A first naive upper bound isDn(2) ≤ S2
n, because

on each side of thex-axis we have a secondary structure onn vertices. Theorem 5
implies Dn(2) ≤ 5n. A slightly better bound can be derived using the enumeration
of secondary structures:
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LEMMA 2. Dn(2) ≤ max
0≤k+l≤n/2

l≤k

n

2

(
n− k− 1

k− 1

)(
n− k

k+ 1

)(
n− 2k

2l

)(
2l

l

)
.

Proof. We start with thes(n, k) secondary structures withk arcs. In order to
produce a bi-secondary structure we use 2l of the n − 2k unpaired positions for
introducingl additional arcs. There are

(n−2k
2l

)
possible choices for these additional

pairs, which may form any of theCl = 1
l+1

(2l
l

)
possible configurations ofl matched

parentheses.Cl is a Catalan number. Without losing generality we may assume
that l ≤ k, i.e., the partial secondary structure with the larger number of pairs is
drawn above thex-axis. Thus

Dn(2) ≤
n/2∑
k=0

k∑
l=0

s(n, k)

(
n− 2k

2l

)
Cl .

Replacing the sums by appropriate multiples of the maximum entry is trivial.

Note that this bound is still a gross overestimate: (i) it contains all the redundancy
of the ().[]-representation. (ii) The numberCl also counts conformations of
square brackets of the form[], which do not correspond to a graph at all, and it
counts conformations in which not all square brackets are inconsistent with an arc
that is represented by a round bracket. These latter configurations are counted more
than once.

COROLLARY 2. lim
n→∞

n
√

Dn(2) ≤ 4.76136931.

Proof. Let An(k, l ) denote argument of the maximum in Lemma 2. It is straight-
forward to compute

A(x, y)= lim
n→∞

1

n
log An(nx, xy)

= 2(1− x) log(1− x)− 2x logx − (1− 2x) log(1− 2x)

−(1− 2x − 2y) log(1− 2x − 2y)− 2y log(y).

Set A = max{ A(x, y) |0 ≤ x + y ≤ 1/2 ∧ y ≤ x }. Then lim n
√

Dn(2) ≤
exp(A). Solving the optimization problem that definesA is straightforward. A
short computation shows thatŷ = 1/

√
21 andx̂ = (7−√21)/14 is the only local

maximum withx, y ≤ 1/2. It violates the conditiony ≤ x, however. The solution
thus lies on the boundary of the triangle(0, 0), (1/2, 0) and(1/4, 1/4). Setting
y = 0 one obtains the maximum̂x = 1/2− 1/

√
20. Along the edgex + y = 1/2

we find ŷ = 1/
√

12 violating the conditiony ≤ x. With x = y we arrive at
the cubic equation 31x3 − 31x2 + 10x − 1 = 0 which has a single real solution
x̂ ≈ 0.1942. We findA(x̂, x̂) ≈ 1.5605329= A, because this value is much larger
than the values ofA(x, y) at the three corners of the triangle.
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Table 2. Best estimates for the constantA(2)
ml . The counting data were fitted by the model

a n−b cn.
m l

1 2 3
1 4.42 2.49 2.00
2 4.03 2.43 1.94
3 3.81 2.35 1.89
5 3.44 2.22 1.74

More sophisticated models of RNA take into account that (i) base pairs must
enclose at leastm= 3 other bases, and (ii) that isolated base pairs are energetically
disfavored. In Hofackeret al. (1999) the numbers9(m,l )

n of secondary structures
with stack size at leastl base pairs and separation of the vertices incident with an
arc at leastm is derived. We define9(m,l ;κ)

n to be the number of 1-diagrams with
χ(2(1)) ≤ κ and with the same restrictions, and set

A(κ)
ml = lim

n→∞
n
√

9
(m,l ;κ)
n . (9)

Clearly we have9(m,l ;2)
n ≤ [9(m,l )

n ]κ because the 1-diagram1 is a superposition of
at mostκ secondary structures. In particular, we find the upper boundA(2)

3,2 ≤ 3.418
for the biophysical case.

We have not been able to derive an exact counting series for bi-secondary struc-
tures. Hence we resorted to a numerical survey. We pursued three different strategies
for estimating the number of bi-secondary structures:

(1) Complete enumeration is feasible only for very small values ofn because the
number of structures grows faster than 2n.

(2) As an alternative we produce random strings from the alphabet().[] and
check each string if it is the normal form of a bi-secondary structure. The
number of secondary structures is then estimated by 5n× Nnf/Nsample, where
Nsampleis the size of the random sample andNnf is the number of detected
normal forms in the sample.

(3) Using the recursion for secondary structures with given minimal stack length
l and given minimal hairpin sizem, described in detail in Tackeret al. (1996),
we randomly generate a sample of pairs of secondary structures. Interpreting
these as the upper and lower part of bi-secondary structure we check their su-
perpositions for being normal forms of bi-secondary structures. The number
of bi-secondary structures is then approximately9(m,l )

n × Nnf/Nsample, where
the numbers9(m,l )

n of secondary structures with hairpins of length at leastm
and minimal stack lengthm can be obtained recursively, see Hofackeret al.
(1999).
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Our best estimates are compiled in Table 2. In the biologically interesting case,
m = 3 andl = 2, we findA(2)

3,2 ≈ 2.35. Judging from the exhaustive enumeration
data (Grüner et al., 1996a) we should expect that the number of structures that
actually occur as minimum energy structures is still smaller.

4. STATISTICS

4.1. A simplified energy model for pseudo-knots.In order to incorporate pseudo-
knots into secondary structure computations we first have to devise an energy model.
Naturally, we require that this energy function extends the standard model for RNA
secondary structures without pseudo-knots.

The standard energy model is based on decomposing a secondary structure into its
‘loops’ (Zuker and Sankoff, 1984). For secondary structures without pseudo-knots
this decomposition is unique and coincides with the so-called minimum cycle basis
of the secondary structure graph (Leydold and Stadler, 1998). The free energy of
a particular secondary structure is computed as the sum of the contributions of the
individual loops. These contributions depend on the type of the loop (stacked base
pairs, hairpin loop, bulge, interior loop, or multi-branch loop), its size, and on the
sequence of nucleotides, see e.g., Walteret al. (1994).

We emphasize that the energy model for pseudo-knotted structures introduced in
this section is not intended as an accurate potential for predicting pseudo-knots in
particular (biologically relevant) sequences. It is intended as a simplified model that
allows us to investigate the likelihood of pseudo-knots in an ensemble of sequences
and the stability of pseudo-knots against point mutations of the sequence. It is
shown in Tackeret al. (1996) for (pseudo-knot-free) RNA secondary structures that
such statistical properties are surprisingly robust against changes in the parameter
set and the choice of the folding algorithm. For instance, most global properties of
RNA folding are already present in the ‘maximum matching’ model, which, instead
of an elaborate energy model, simply seeks to maximize the number of base pairs
(Tackeret al., 1996). A potential function that captures the most salient features of
pseudo-knots is therefore sufficient for our purposes.

Very little experimental information is available on the thermodynamics of pseudo-
knots, see, however, Wyattet al. (1990). On the other hand, the geometric con-
straints of RNA structures are well understood (Saenger, 1984; Pleijet al., 1985).
Hence we start from the following three principles:

(i) Loops that are not involved in pseudo-knots have the same energy contribu-
tions as in pseudo-knot-free RNA secondary structures.

(ii) The stacking energies of base pairs are not affected by pseudo-knot formation
even in stems that are part of pseudo-knots.

(iii) Steric hindrance is the major contribution to the pseudo-knot energies.

The energy parameters detailed in Walteret al. (1994), and implemented in release
1.2 of theVienna RNA Package (Hofackeret al., 1994), are used in this study for
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Figure 7. Schematic drawing of an RNA structure with pseudo-knots. The three loops A, B,
C and the four stems 1, 2, 3, and 6 are involved in pseudo-knots. The evaluation of loops A
and C is straightforward as they contain only a single paired region, namely stack 3. Three
stems are contained in loop B; we assume that stack 6 is the longest one. Theν-parameters
of the three pseudo-knotted loops are listed on the r.h.s. The energy contributions of base
pair stacking and the contributions of all unmarked loops are evaluated according to the
standard model.

the non-pseudo-knot contributions. The basic idea for parameterizing the pseudo-
knot contributions rests on two simplifications: (i) RNA stacks are viewed as stiff
rods and (ii) unpaired regions are assumed to be very flexible. Within a loop that
is involved in pseudo-knot formation, we assume that each of the stacks formed
by the pseudo-knotted base pairs is a stiff helix. This reasoning leads to an ansatz
based upon the following quantities:

u = number of unpaired bases in the loop.
Lmax = number of base pairs in the longest pseudo-knot stack.
Li = number of bases in pseudo-knot stacki .
K = number of stacked base pairs that can be bridged by one unpaired base.

First we define a measure for the sterical hindrance in the pseudo-knotted loop:

ν = Ku− Lmax+
n∑

i 6=max

Li . (10)

This expression assumes that all other parts of a loop can be used to meet the
constraint introduced by the longest stacked regionLmax within the loop, see Fig. 7.

The free energy contributions of the unpaired regions can be estimated from a
theory by Jacobson and Stockmeyer (1950). The same approach is used for long
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loops in the standard energy model for RNA secondary structures. If the free energy
needed to join the ends of an unrestricted, zero volume polymer is known, the theory
predicts the free energy needed to form a similar but larger loop. The minimum
length of an RNA loop that behaves according to the Jacobson–Stockmayer theory
is not known. We therefore introduce a parameterν̄ and define the energy function
as follows:

E(L) =

∞ if ν < 0
Eps if 0 ≤ ν ≤ ν̄

Eps+ α log(ν/ν̄) if ν > ν̄.

(11)

Our energy model therefore has four free parameters that need to be estimated from
the available experimental data, namelyK , ν̄, Epsandα. For simplicity we fixedα at
the same value that is used for all non-pseudo-knotted loops:α = 1078.56 cal mol−1

(at 37◦C).

4.2. Folding. Given the sequence, one can compute the secondary structure with
the minimum energy by means of dynamic programming (Waterman, 1978; Zuker
and Sankoff, 1984). In the presence of pseudo-knots this is no longer true. In the
present study we use Tacker’s kinetic folding algorithm (Tackeret al., 1996) which
is based on (Martinez, 1984). It first produces a list of all possible stems of a given
sequence and then determines the free energies of the loops and stacks. The most
stable stem is the first one added to the folding structure. Using this as a constraint,
we compile a list of the remaining possible stems and add the most stable one to the
growing structure. This procedure is repeated until the free energy of the structure
cannot be decreased anymore.

The parametersK , ν̄, and Eps are adjusted by predicting the structures of a
sample of sequences that are known to form pseudo-knots. This set includes seven
fragments with about 80 nt from bacteriophages that form H-type pseudo-knots,E.
coli tmRNA containing five pseudo-knots, and RNAse P sequences from several
different species [for details see Haslinger (1997)]. The best results were obtained
using K = 4, ν̄ = 9, Eps = 4.2 kcal mol−1. The same value ofEps was used
in Abrahamset al. (1990). In order to check the influence of these parameters
on the sequence–structure relation of RNA we also used a parameter set leading
to an unrealistically large number of predicted pseudo-knots in the test sequences
(K = 3, ν̄ = 10, Eps = 2.0 kcal mol−1).

4.3. The sequence–structure map with pseudo-knots.The average number of
base pairs and related statistical properties of the predicted structures depend very
little on the inclusion of pseudo-knots and the choice of the pseudo-knot parameters.
This is not surprising as the relative stability of base pairs and unpaired regions re-
mains essentially unchanged. The average loop size decreases with the ‘unrealistic’
pseudo-knot potential because loop regions may take part in pseudo-knots at very
little entropic cost.
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Table 3. Average Number of Pseudo-knots per Structure.
Potential 30 50 70 100 Slope
Realistic 0.009 0.020 0.028 0.038 0.000408
Exaggerated 0.150 0.311 0.450 0.628 0.006784
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Figure 8. The frequency distribution of RNA contact structures. Shapes are ranked by their
frequencies. The particular example shown here deals with the loop structures (Shapiro
and Zhang, 1990) of 1 million RNA molecules of chain lengthn = 100 which are derived
from the contact structures by further eliminating all details concerning stack lengths and
loop sizes. The full line is the distribution for the realistic pseudo-knot potential, the dashed
line refers to secondary structures only, and the dotted line to the exaggerated pseudo-knot
potential. While the inclusion of pseudo-knots somewhat increases the fraction and the
diversity of rare structures it does not change the general shape of the distribution.

The frequency of pseudo-knots in random sequences is tabulated in Table 3. For
the realistic potential we find a pseudo-knot every∼2500 bases, while with the
exaggerated potential one would expect one pseudo-knot in every random sequence
of lengthn = 148.

As we have seen in the previous section, there are still many more sequences than
structures. In order to obtain a better impression of the relationship between the
numbers of sequences and structures that arise through folding, we determine the
rank order statisticsof folded structures. To this end we compute the structures
of a large number of randomly chosen sequences and rank them according to their
frequency f of occurrence in the sample. A plot of logf versus the logarithm of
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Figure 9. Lengths of neutral paths were determined for a large sample of initial sequences
with n = 100. The average lengths areL = 92.25 in the absence of pseudo-knots (black
dots),L = 89.69 for the realistic pseudo-knot potential (thin line), andL = 87.22 for the
exaggerated version (thick line).

the rank reveals a generalized Zipf’s law (Zipf, 1949), Fig. 8. While the inclusion
of pseudo-knots somewhat increases the fraction and the diversity of rare structures
(large ranks) it does not change the general shape of the distribution. As for ‘pure’
secondary structures there is only a small number of common structures into which
almost all sequences fold.

Naturally, we ask how sequences folding into the same (common) secondary
structure are distributed in sequence space. We call the setS(ψ) of all sequences
(genotypes) folding into phenotype (contact structure)ψ theneutral setof ψ . More
precisely,S(ψ) is the pre-image ofψ w.r.t. the folding map algorithm. As for ‘pure’
secondary structures, a large fractionλ of point mutations is neutral, i.e., does not
change the structure. On the other hand, RNA sequences folding into a particular
structure are not significantly clustered: they form a percolating network spanning
the entire sequence.

The fractionλ of neutral point mutations was estimated from 6000 independently
generated random sequences, see Table 4. As observed in Gr¨uneret al. (1996a, b),
we find thatλ decreases somewhat with chain length (the large values forn = 30
being caused in part by the large number of short sequences that ‘fold’ into the
open structure). The fraction of neutral neighbors approaches an asymptotic value
slightly above 0.5. Surprisingly, this value is almost independent of the potential
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Table 4. Fractionλ of neutral mutants.
Potential n = 30 n = 50 n = 70 n = 100 n = 200 ∞
Secondary structures 0.708 0.628 0.604 0.578 0.548 0.523
Realistic 0.709 0.625 0.598 0.576 0.550 0.529
Exaggerated 0.680 0.588 0.547 0.540 0.533 0.529

function: even a potential leading to a large fraction of pseudo-knotted structures
decreasesλ only by a few percent.

A random graph theory (Reidyset al., 1997; Reidys, 1997) shows that there is
threshold value of aboutλ∗ = 0.307 (for a 4-letter alphabet). If the fraction of
neutral neighbors exceeds this threshold, then the set of all sequences folding into
a given structures forms a single connected network, which has been termed the
neutral networkof s.

These neutral networks can be conveniently detected by means of a simple com-
puter experiment. Aneutral pathstarts at a randomly chosen sequence. Then we
construct a series of subsequent mutants such that each sequence along the path folds
into the same structure as the initial sequence, and such that each step increases the
Hamming distance from the starting point. The strict logic on base pairing in RNA
makes it necessary to consider two types of mutations: (i) point mutations in the
unpaired regions of the molecules, and (ii) the substitution of one possible base pair
(GC, CG, GU, UG, AU, UA). All other mutations in paired regions necessarily
change the structure, for instance by changing aGU pair into aGG mismatch. If
there are neutral networks in sequence space the neutral path will reach a lengthL
close ton before there is no neutral mutant further away from the starting point (n
is the maximal Hamming distance between sequences of lengthn). On the other
hand, if the neutral setsS(ψ) form isolated clusters we will findL � n. When
interpreting the lengths of neutral paths we have to keep in mind that (i) the search
procedure only produced lower bounds on the diameter of neutral networks, and
(ii) that a pair of random sequences has an expected distance of 0.75n for a 4-letter
alphabet. The data in Fig. 9 are therefore a clear indication for the existence of
percolating neutral networks in the presence of pseudo-knots.

5. DISCUSSION

Secondary structures form a particular class of contact structures. In this con-
tribution we have considered a natural generalization of this class. Indeed, most
known RNA structures with pseudo-knots are bi-secondary structures (which do not
involve nested pseudo-knots). Bi-secondary structures correspond to planar graphs
while secondary structures form the sub-class of outer-planar graphs.

The inconsistency graph introduced in Section 2.4 is a useful construction captur-
ing most of the geometrical features of nucleic acid structure. Its chromatic number
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may serve as a measure of structural complexity. It seems possible that an analogous
construction will be useful for classifying and comparing protein structures as well.
The analysis of graph-theoretical properties of classes of contact structures might
also be useful for designing energy models that are more realistic and/or algorithmi-
cally easier than pair potentials. The standard folding potential for RNA and DNA
secondary structures, for instance, is based on loops, that is, induced subgraphs
of the diagram graph that are circles. The total energy of a secondary structure is
defined as the sum of the sequence-dependent energy contributions of all loops [see,
e.g., Freieret al. (1986)]. It is by no means obvious how this energy function should
be generalized to include non-secondary structure features such as pseudo-knots,
G-quartets, or knots, because in general there is no unique decomposition of a graph
into loops.

In order to understand the sequence–structure mapping of a class of biopolymers it
is necessary to have bounds on the number of structures that can possibly be formed
for a given set of sequences. We can expect the existence of neutral networks and
shape space covering only if the number of sequences by far exceeds the number
of structures. While the number of possible contact structures grows faster than
exponentially with the length of the molecules we find exponential upper bounds
when the structural complexity is limited. In particular, there are not more than some
4.7n possible bi-secondary structures. If we enforce in addition the sterical (loop-
length at least 3) and thermodynamic (no isolated base pairs) constraints of natural
RNA sequences, then this bound drops to 3.42n. Exhaustive enumeration indicates
that the actual number of bi-secondary structures with biophysical constraints grows
roughly as 2.35n. Therefore the number of RNA sequences, 4n, exceeds by far the
number of possible bi-secondary structures.

We have then devised a simple energy function extending the standard model
to incorporate pseudo-knots. Our ansatz assumes that steric hindrance is the ma-
jor contribution to pseudo-knot energies counteracting the stabilizing effect of the
additional base pairings. Based on this approach we used a kinetic folding pro-
cedure to show that the inclusion of pseudo-knots does not significantly change
the global features of the sequence structure map of RNA: there are many more
sequences than structures, and almost all sequences fold into one of a small number
of common structures. Common structures are uniformly distributed over sequence
space.

Neutral networks in sequence space can therefore be modeled as random graphs
(Reidys et al., 1997). This ansatz generalizes from secondary structures to
1-diagrams without modifications. The only input parameter in this model, namely
the fractionλ of neutral neighbors, has been determined computationally. Com-
puter simulations agree with the prediction of a random graph theory: the fraction
of neutral mutations,λ > 0.5, is well above the threshold value ofλ∗ ≈ 0.306,
hence all sequences folding into a given common structure form a single percolating
network that spans the entire sequence space. This is verified by the detection of
neutral paths that extend through the entire sequence space.
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The intersection theorem is valid for bi-secondary structures, hence the random
graph approach (Reidyset al., 1997), can be used to predict the relative locations of
the neutral networks of two different common structures. In particular, we have to
expect shape space covering, i.e., the neutral networks of any two common structure
come very close to each other at least in some parts of the sequence space. This sets
the stage for the evolutionary transitions between different structures described in
detail in Weber (1997) and Fontana and Schuster (1998).

In summary, the mathematical results and the computer simulations presented in
this contribution indicate that pseudo-knots do not change the qualitative picture
of the RNA sequence–structure map as it was obtained from studying secondary
structures.
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