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The secondary structures of nucleic acids form a particularly important class of
contact structures. Many important RNA molecules, however, contain pseudo-
knots, a structural feature that is excluded explicitly from the conventional definition

of secondary structures. We propose here a generalization of secondary structures
incorporating ‘non-nested’ pseudo-knots, which we &élsecondary structures

and discuss measures for the complexity of more general contact structures based
on their graph-theoretical properties. Bi-secondary structures are planar trivalent
graphs that are characterized by special embedding properties. We derive exact
upper bounds on their number (as a function of the chain lemgimplying that

there are fewer different structures than sequences. Computational results show that
the number of bi-secondary structures grows approximately l&&'2 Numerical
studies based on kinetic folding and a simple extension of the standard energy model
show that the global features of the sequence-structure map of RNA do not change
when pseudo-knots are introduced into the secondary structure picture. We find a
large fraction of neutral mutations and, in particular, networks of sequences that fold
into the same shape. These neutral networks percolate through the entire sequence
space.

© 1999 Society for Mathematical Biology

1. INTRODUCTION

Presumably the most important problem and the greatest challenge in present
day theoretical biophysics is deciphering the code that transforms sequences of
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biopolymers into spatial molecular structures. A sequence is properly visualized
as a string of symbols which together with the environment encodes the molecular
architecture of the biopolymer. In case of one particular class of biopolymers, the
ribonucleic acid (RNA) molecules, decoding of information stored in the sequence
can be properly decomposed into two steps: (i) formation of the secondary structure,
that is, of the pattern of Watson—Crick (a@dl) base pairs, and (ii) the embedding
of the contact structure in three-dimensional space.

The sequence structure relation of RNA was studied in detail in a series of papers
(Fontanaetal., 1991, 1993a, b; Bonhoeffetal.,, 1993; Schustest al., 1994; Tacker
et al, 1994; Grineret al., 1996a,b; Tackeet al., 1996) at the level of secondary
structures. The most salient findings of these investigations are:

(i) There are many more sequences than (secondary) structures.

(i) There are few frequent and many rare structures. Almost all sequences fold
into frequent or ‘common’ structures.

(i) Sequencesthatfoldintoa‘common’ structure are distributed nearly uniformly
in sequence space.

(iv) A sequence folding into a ‘common’ structure has a large number of neutral
neighbors (folding into the same structure) and a large number of neighboring
sequences that fold into very different secondary structures.

(v) Neutral paths percolate sequence space along which all sequences fold into
the same secondary structure. In fact, there are extemelgdal network®f
sequences folding into the same ‘common’ structureu(@rét al., 1996b;
Reidys and Stadler, 1996).

(vi) Almost all ‘common’ structures can be found close to any point in sequence
space. This property is callethape space covering

The impact of these features on evolutionary dynamics is discussed in Schuster
(1995) and Huyneret al. (1996): a population explores sequence space in a
diffusion-like manner along the neutral network of a viable structure. Along the
fringes of the population novel structures are produced by mutation at a constant
rate (Huynen, 1996). Fast diffusion together with perpetual innovation makes these
landscapes ideal for evolutionary adaptation (Fontana and Schuster, 1998).

The ‘classical’ definition of secondary structures incorporates a quite restrictive
condition on the set of base pairs that implies a tree-like arrangement of the double-
helical regions, see Fig. 1. Additionalinteractions between different branches of this
tree are referred to gseudo-knotéfor an exact definition see Section 2). Pseudo-
knots are excluded from many studies for a mostly technical reason (Waterman
and Smith, 1978a, b): the folding problem for RNA can be solved efficiently by
dynamic programming (Waterman and Smith, 1978b; Zuker and Sankoff, 1984) in
their absence.

On the other hand, an increasing number of experimental findings, as well as re-
sults from comparative sequence analysis, suggest that pseudo-knots are important
structural elements in many RNA molecules (Westhof and Jaeger, 1992). Notably,
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Figure 1. The contact structure Bbcherichia coliRNAse P RNA contains two pseudo-

knots fhttp://jwbrown.mbio.ncsu.edu/RNaseP/home.html]. The conventional sec-
ondary structure is drawn on the l.h.s., the (four) regions forming the pseudo-knots are
marked by braces, interaction regions are connected. The arc diagram of the same structure
is obtained by arranging the backbone along a line and indicating base pairs by arcs con-
necting the corresponding bases. The base pairs of the conventional secondary structure
are drawn above the line, the two pseudo-knot stems are shown below the back-bone. For
details see Section 2.
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functional RNAs such as RNAseP RNA (Loria and Pan, 1996) and ribosomal RNA
(Konings and Gutell, 1995) contain pseudo-knots. The diversity of molecular bio-
logical functions performed by pseudo-knots can be subdivided into three groups.
Pseudo-knots at thé-Bnd of MRNAs appear to adopt arole in the control of MRNA
translation. For instance, the expression of replicase is controlled in several viruses
either by ribosomal frame shifting (Ten Daehal., 1990; Brierleyet al., 1991; Din-
manet al., 1991; Chamorret al., 1992; Tzenget al.,, 1992) or by in-frame read-
through of stop codons (Wilkst al., 1991). Both mechanisms involve pseudo-knots.
Core pseudo-knots are necessary to form the reaction center of ribozymes. Most
of the enzymatic RNAs with core pseudo-knots, such as RNAseP, are involved in
cleavage or self-cleavage reactions (Michel and Westhof, 1990; Forster and Alt-
man, 1990; Brown, 1991; Haasal., 1991). Pseudo-knots in the tRNA-like motifs

at the 3-end of the genomic RNA mediate replication control in several groups of
plant viral RNA (Manset al., 1991).
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It is important, therefore, to include pseudo-knotted structures into investigations
of RNA sequence-structure relationships. In particular, we need to know whether
the findings (i) through (vi) described above remain true when pseudo-knots are
taken into account. Assertion (i), the existence of more sequences than structures,
is a necessary prerequisite for all subsequent statements concerning the sequence-
structure map of RNA. It is necessary therefore to estimate the number of RNA
structureswith pseudo-knotg order to decide whether the results quoted above
can in fact be true for ‘real’ RNA molecules.

In the following two sections we give a detailed mathematical analysis of what
we call bi-secondary structures. In a nutshell, bi-secondary structures generalize
to the notion of secondary structures to include pseudo-knots without allowing
overly involved knotted structures or nested pseudo-knots. In fact, almost all known
pseudo-knotted structures, with the notable exception of the E«o@RNA, fall
into this class.

In Section 2 we review a variety of equivalent graph-theoretical characterizations
of bi-secondary structures and provide a way of efficiently determining whether alist
of base pairs corresponds to a bi-secondary structure. Then we briefly review a few
graph invariants that might be useful for determining the complexity of higher-order
structures beyond the realm of bi-secondary structures. At the end of Section 2 we
show that a convenient distance measure for comparing secondary structures can be
used also in the presence of pseudo-knots (Section 2.7). In Subsection 2.8 we argue
that theintersection theoreris valid for general nucleic acid contact structures. We
say that an RNA sequencedsmpatiblewith a structures if it can in principle form
this structure irrespective of energetic constraints. This means that for each base
pair (i, j) in s the sequence positions andx; are one of the six possible RNA
base pairdAU, UA, GC, CG, GU, or UG. The set of sequences that actually fold
into a given structursis therefore a subset of the set of compatible sequences. The
intersection theorem (Reidyt al,, 1997) now states that for any two structuses
ands’ there are sequences which are compatible with both of them. This resultis the
reason why very different structures with very closely related sequences (Schuster
et al, 1994) can exist. The fact that the intersection theorem holds for structures
with pseudo-knots means that we have to expect shape space covering provided the
fraction of neutral mutations is large enough (Reidyal., 1997).

In Section 3 we determine the number of different structures with pseudo-knots.
Combinatorial aspects of RNA secondary structures have been studied in detail by
Waterman and co-workers (Stein and Waterman, 1978; Waterman, 1978; Waterman
and Smith, 1978a, b; Penner and Waterman, 1993; Schmitt and Waterman, 1994;
Waterman, 1995) and Hofacket al. (1999). Using different techniques we give
analytical upper bounds on the number of different bi-secondary structures showing
that their number does not increaseichfaster than the number of secondary
structures. The analytical results are complemented by numerical data (see Table 2
at the end of Section 3) indicating that the numBeof ‘reasonable’ bi-secondary
structures with chain length grows approximately a§, ~ 2.35". ‘Reasonable’
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means here that the structures have no isolated base pairs (i.e., the minimum stack
size isl = 2) and that hairpin loops contain at least= 3 unpaired bases. For
comparison, the number of secondary structures without pseudo-knots grows like
1.86". Exhaustive enumeration for short sequences suggest that 66Ndifferent
secondary structures appear as minimum energy structures of sequences of length
n (Grineret al,, 1996a). Hence the numbet éf RNA sequences of length, is

much larger than the number of possible structures, independent of whether or not
one takes pseudo-knots into account.

This observation poses the questioow the sequences that fold into a given
structure are distributed in sequence space. In Section 4 we describe a set of
numerical experiments strongly suggesting that the inclusion of pseudo-knots does
not alter the qualitative picture [properties (i) through (vi) above] of the RNA
sequence-structure map. Ashortdiscussion (Section 5) concludes this contribution.

Readers who are not interested in the mathematical details of defining, character-
izing, and counting contact structures of various types might want to skip Sections 2
and 3.

2. CONTACT STRUCTURES, DIAGRAMS AND BOOK-EMBEDDINGS

2.1. Diagrams and diagram graphs.The three-dimensional structure of a linear
biopolymer, such as RNA, DNA, or a protein can be approximated bgoitsact
structure i.e., by the list of all pairs of monomers that are spatial neighbors. Contact
structures of polypeptides have been introduced by Ken Dill and co-workers in
the context of lattice models of protein folding (Chan and Dill, 1988; Chen and
Dill, 1995). They arise implicitly in knowledge-based potentials for polypeptides
such as the Delauney—Tesselation potential described in 8ingh(1996). Last
but not least, RNA secondary structures form a special class of contact structures.
The purpose of this section is to bring together different mathematical approaches
that can be used to describe biopolymer structures: contact graphs, linked diagrams,
book embeddings, and graph colorings.

A contact structure is represented by toatact matrixC with the entrieC;; = 1
if the monomers and j are spatial neighbors without being adjacent along the
backbone, an€;; = 0 otherwise. Henc€;; = 0if |i — j| < 1. We shall use the
notation[n] = {1, ..., n}.

We define adiagram([n], 2) to consists oh vertices labeled 1 ta and a sef2
of arcsthat connect non-consecutive vertices.

A closely related class of diagrams which also allow arcs between consecutive
vertices are thénked diagramsntroduced by Touchard (1952). These are studied
in some detail in Hsieh (1973), Kleitman (1970), Stein (1978) and Stein and Everett
(1978).

Itis customary to arrange the vertices alongxhkexis and to draw the vertices in
such a way that they are confined in either the upper or the lower half-plane. The
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diagram of a contact structure with contact ma€ikas the set of arcs
Q= {{i, }IG;j = 1}. 1)

The contact matrix is thus the adjacency matrix of the corresponding diagram.
With each diagram we may associataliagram graphI" with the following
properties:

() Then+ 1 vertices ofl” are labeled 01, ..., n.
(i) T contains the Hamiltonian cycl®, 1, ..., n, Q].
(iif) The ‘root’ vertex 0 has degree 2.

Let B be the adjacency matrix of the backbone, i.e., the matrix with the entries
Biiz1 =Bijy1i = 1,1 =0,...,n—1, andBy, = By = 1. Then the adjacency
matrix of a diagram graph with 4 1 vertices is of the form

0 O
A=B+<O C). 0

Equation (2) establishes the 1-1 correspondence of diagrams and the associated
diagram graphs.

Essentially the same construction can be used for contact structures of molecules
with a circular backbone, i.e., for circular sSRNA or ssDNA. The only restriction
is that{1, n} cannot be an arc in the case of a circular molecule. It is convenient
in this case to define the corresponding diagram graph without the artificial root
0. Each grapi™ with a Hamiltonian cycle is then the diagram graph of a contact
structure with a circular backbone. The results in the following discussion hold for
both linear and circular nucleic acids.

DEFINITION 1. A diagram is al-diagramif for any two arcse, 8 € 2 holds
aNp=0ora=gp.

A diagramA is a 1-diagram if and only if associated diagram gr&giA) has
vertex degrees less or equal to 3. Such graphs are often salleclibicor trivalent.
The diagram graphs of 1-diagrams are closely related to cubic Hamiltonian graphs.
The latter are studied in detail in Section 9.4 of Wagner and Bodendiek (1990): a
graphSis homeomorphic frora graphl” if Scan be produced fromi by inserting
vertices of degree 2 into some edgeslof Sis also called asubdivisionof T'.
Obviously each cubic Hamiltonian graph gives rise to a diagram graptvertices
by subdividing the edges of a Hamiltonian cycle. On the other hand, not all diagram
graphs are homeomorphic from a cubic Hamiltonian graph: supfio$ is an
arc and 2 is an unpaired vertex. The corresponding diagram graph cannot be cubic
because the triangle 2, 3 cannot be obtained from a cubic graph.
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2.2. Secondary structures.The classical definition of secondary structures
(Waterman, 1978) requires that each base interacts with at most one other nu-
cleotide. Thus nucleic acid secondary structures are special types of 1-diagrams.
The second defining condition is that arcs do not cross. In terms of the contact
matrix this means: iCj; = Cy = landi < k < j theni < | < j. With the
following notation we will find a simpler formulation of condition 2:

Leta = {i, j}withi < | be an arc of a diagram. We wride= [i, j] C R forthe
associated interval. Two arcs of a diagramaasistenif they can be drawn in the
same half-plane without crossing each other. Equivalently, twocargss 2 of a
diagram are consistent if either one of the following four conditions is satisfied:

(i) anp =0.

(i) @ < B.

(i) pca.

(iv) @ N B = {k}, a single vertex.
Case (iv) is ruled out by definition in 1-diagrams. The non-crossing condition
thus may be expressed as follows: whenever the intervals of two{iargsand
{k, 1} have non-empty intersection then one is contained in the other (Schmitt and
Waterman, 1994). Equivalently, we may simply define #thatcondary structure
is a 1-diagram in which any two arcs are consistent.

As a consequence, each secondary structure can be encoded as a sfring
lengthn in the following way: if the vertex is unpaired, thers, = ¢.’. Each
arca = {p,q} with p < g translates ts, = ‘(’ ands; = “)’. As the arcs
are consistent their corresponding parentheses are either nééted, or next
to each other() (). As there are no arcs between neighboring vertices in a 1-
diagram there is at least one dot contained within each parenthesis. A variant of this
notation is thenountain representatioof RNA secondary structures (Hogeweg and
Hesper, 1984). The ‘dot-parenthesis’ notation is used as a convenient notation in
input and output of th#ienna RNA Package, a piece of public domain software
for folding and comparing RNA molecules (Hofacladral.,, 1994).

2.3. Book-embedding of graphs A graph that can be embedded in the plane (or,
equivalently on the sphere) is callpthnar. If it can be embedded in the plane in
such away that all its vertices lie on the exterior region itis callger-planar This

class of graphs was introduced and characterized in terms of subgraphs in Chartrand
and Harary (1967) and Slgg(1979). Clearly, a 1-diagram is a secondary structure

if and only if its diagram grapliv (A) is outer-planar. The outer-planar embedding
corresponds to the ‘circle representation’ of secondary structures.

A similar procedure leads to book-embeddingspMAook is a set ofp distinct
half-planes (th@agesof the book) that share a common boundary linealled the
spineof the book. An embedding of a graphinto a book3 consists of an ordering
of the vertices along the spine of the book together with an assignment of each edge
to a page of the book, in which edges assigned to the same page do not cross. The
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book-thicknesgsometimes also called the page-numbef)'bof a graphl is the
minimal numberp of pages of a book into which it can be embedded (Bernhart
and Kainen, 1979). Book-embeddings have a practical application in the context
of VLSI design. For an overview see Chuegal (1987) and Heatbt al. (1992).

Not surprisingly, the book thickness is closely related to other embedding prop-
erties of graphs. Below we list a few important results:

(i) bt(I') = 0ifand only ifI" is a path.

(i) bt(I") < 1if and only ifT" is outer-planar (Bernhart and Kainen, 1979).

(i) by(I') < 2 if and only if I" is a subgraph of a planar Hamiltonian graph
(Bernhart and Kainen, 1979). Such graphs are sometimes called subhamil-
tonian.

(iv) bt(I') < 4if ' is planar (Yannakakis, 1988).

(v) bt(K,) = [n/2], whereK, is the complete graph with vertices (Bernhart
and Kainen, 1979).

(vi) bt(Knn) = min([n/2], [m/2]), whereKn,, is the complete bipartite graph
with m + n vertices.

(vi) bt(T") < gﬁ + 6 for sub-cubic graphs (Churgg al., 1987).

(viii) bf(T") < O(/m) if T is a graph withm edges(Malitz, 1994, b) .

(ix) bf(I") < O(,/9) if I' is a graph of genug (Malitz, 1994, b). (The genus
of a graph is the minimum number of ‘handles’ one needs to add to a sphere
so that the graph can be embedded on the resulting surface without crossing
edges.)

The book thickness of a variety of other graph classes has been studied in detail,
among them hypercubes (Chuegal., 1987), De Bruijn graphs (Obreni1993),
and various types of network graphs of practical interest (Games, 1986).

2.4. The inconsistency graph of a diagram.

DEFINITION 2. LetA = ([n], ) be a diagram. Thénconsistency grap®(A)
of the diagram has vertex s& and {«, 8} is an edge of(A) if and only if the
arcso andg are inconsistent im.

Essentially the same construction is used for the investigation of cubic Hamilto-
nian graphs in Wagner and Bodendiek (1990). We shall see that the inconsistency
graph is a useful construction for characterizing embedding properties of diagram
graphs.

THEOREM 1. LetA be adiagram. Then the following statements are equivalent.

(i) The diagramA can be drawn without intersecting arcs.
(i) The diagram grapi'(A) is planar.
(iif) The inconsistency grapB(A) is bipartite.
(iv) T'(A) has a 2-page book embedding.



Generalized Secondary Structures 445

Proof. (i <= ii) A can be drawn without intersection arcs if and only {fA) is
planar because the Hamiltonian cyéteof I'(A) divides the plane into the interior
and the exterior of{ which correspond to the upper and lower half-plane of the
diagramA, respectively.

(ii < iii) can be shown in the same way as the analogous result for cubic
Hamiltonian graphs in Wagner and Bodendiek (1990), see also Even and Itai (1971).
(il < iv) follows immediate from Bernhart and Kainen (1979, Theorem 2.5) as
a planar diagram graph is by construction Hamiltonian.

As noted in Even and Itai (1971), the determination of the book thicknes§ of a
is equivalent to finding a minimal vertex-coloring of a certain circle graph, which in
our case is the intersection graghi{A). This problem is in general NP-complete.
The following observation simplifies the task by reducing the number of arcs that
have to be considered.

Two arcse = {i, j} andg arestackedf g ={i — 1, j+1}org ={i +1, ] —1}.

A stemis a subsetl of arcsag throughay, such thatv, andap, 1 are stacked for
p=20,...,h—1. Itis easy to show that the arcs of a stdnmof a 1-diagram

are either all isolated vertices or they are contained in the same component of the
inconsistency grap® (A). Furthermore, all arcs of a stem have the same adjacent
vertices in®(A). We may therefore use a reduced intersection graph), the
vertices of which are the stems. (In addition, we may recursively remove vertices of
degree 2 that are not contained in a triangle before forming the intersection graph.
This has the effect of removing bulges and interior loops that interrupt stems.)
Examples of reduced intersection graphs are given in Figs 3 and 4.

Most of the literature on linked diagrams deals withtmpletediagrams, that is,
each vertex € [n] is incident with an arc (Touchard, 1952; Kleitman, 1970; Stein,
1978). Itis straightforward to extend Touchard’s definition of reducible diagrams
to the incomplete diagrams considered here:

DEerFINITION 3. Adiagram([n], ) isreduciblefthere exists anintervdlp, q] C
[n] such that

(i) For eacha € 2 holds eithetw N [p,q] =Y ora < [p, ql.
(i) Thereis an arex € Q such thatx N [p, q] = 9.
(i) There is an arax € 2 such thatx C [p, q]. If a diagram is not reducible, it
isirreducible

The following equivalence is proved in Haslinger (1997):

LEMMA 1. AdiagramA isirreducible if and only if its inconsistency gragh(A)
is connected. A sub-diagram corresponds to one or more components of the incon-
sistency graph.

Reducible diagrams can therefore be viewed as being composed of substructures.
These substructures do not in general conform to the conventional decomposition
into stems and loops of an RNA that forms the basis of the standard energy model
of nucleic acid secondary structures (Fregeal., 1986).
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Figure 2. The contact structure of the proposed SRV-1 frameshift signal contains a pseudo-
knot, see Ref. Ten Damt al. (1994). Pseudo-knots such as this one belong to the class of
bi-secondary structures. Knots such as the one in the lower part of the figure do not belong
to the class of bi-secondary structures. Knots, in contrast to pseudo-knots, may contain
parallel stranded helices which so far have not been described for RNA.
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2.5. Bi-secondary structures.

DEFINITION 4. Abi-secondary structuiis a 1-diagram that can be drawn in the
plane without intersections of arcs.

We may draw the arcs in the upper or lower half-plane, but they are not al-
lowed to intersect thex-axis. In other words, it can be embedded in 2-page
book. Bi-secondary structures are therefore ‘superpositions’ of two secondary
structures.

The virtue of bi-secondary structures is that they capture a wide variety of RNA
pseudo-knots, [Figs 1 and 2 (upper part)], while at the same time they exclude
true knots. Knotted RNAs could in principle arise either from parallel stranded
helices (Fig. 2), or in very large molecules from sufficiently complicated cross-
linking patterns. Parallel-stranded RNA has not been observed (so far), see, how-
ever, Fortschet al (1996) on parallel-stranded DNA. Wollenzien Canétral.
(1980) have searched unsuccessfully for knots in large RNAs. The definition of
bi-secondary structures, by allowing a planar drawing of the structure, rules out
both possibilities.

Among the RNA structures with pseudo-knots, almost all are bi-secondary struc-
tures. Our examples include several viral RNAs such as Coronavirus (Brierley
et al, 1991), Luteovirus (Ten Darat al.,, 1990), and Retrovirus RNA (Chamorro
etal, 1992), as well as catalytic RNAs such as RNAseP RNA (Loria and Pan, 1996),
tmRNA (Vlassovet al., 1995; Felderet al., 1997), and ribosomal RNAs (Gutell
etal, 1994). We have encountered only a single exception, nammRNA (Tang
and Draper, 1990).
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Figure 3. Theorem 2 is not valid for general diagrams. The inconsistency graph of the
diagramAs is a pentagon and hence is neither bipartite nor does it contain a triangle.

THEOREM 2. LetA be a 1-diagram. Then the following statements are equiva-
lent:

(i) A is a bi-secondary structure.
(i) T'(A) is planar.
(i) ®(A) is bipartite.
(iv) T'(A) has a 2-page book-embedding.
(v) Among any three arcs df at least two are consistent.
(vi) ®(A) does not contain a triangle.

Proof. The equivalence of (i), through (iv) is proved in Theorem 1 for all dia-
grams. The equivalence of (v) and (vi) follows immediately from the definition of
O(A). The implication (ii==V) is obvious. Finally, it is possible to show that
—(ii) implies —(v) based on Kuratowski’'s (1930) theorem. For the details we refer
to Haslinger (1997).

The practical importance of Theorem 2 lies in the fact that existence or non-
existence of triangles i®(A) can be checked very easily, and hence we have a
very efficient (polynomial time) method for deciding whether a diagrans a
bi-secondary structure or not. Note that the equivalence of (iii) and (vi) does not
hold for general diagrams. A counterexample is shown in Fig. 3.

Being the union of the two secondary structutgd, ©2y) and([n], ) we can
represent each bi-secondary structure as a s#rirgjng two types of parentheses:
as in a secondary structure we write a dot for all unpaired vertices. A pair
{p,q} € Qu becomes, =  (’ ands; = ¢)’, while an arc{p, g} € Q. becomes
sp = ‘[’ andsy = ‘1’. Unfortunately, the decomposition of a bi-secondary
structure into two secondary structures is in general not unique, see Fig. 4.

The fact that® (A) is bipartite allows us to define mormal formfor this rep-
resentation by means of the following rule: the leftmost arc of each connected
component of® (A) belongs to2y. In particular, all isolated vertices @ (A)
are contained if2y. The normal form of a secondary structure therefore contains
only dots and (round) parentheses. Within each non-trivial connected component of
®(A) the distribution of arcs betwedh, and$2, is unique because the component
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77—

Figure 4. Two diagrams encoding therfbn-coding region of tobacco mosaic virus RNA
(Abrahamset al., 1990). The upper diagram corresponds to the normal form, the lower
diagram maximizes the number of upper arcs. Stems are labeled by uppercase greek letters.
The third line shows the inconsistency graph (see Section 2.4) of the tmvRNA structure. It
is bipartite and hence, by Theorem 2, the tmvRNA structure is a bi-secondary structure.

is bipartite. All arcs in a stack have a common neighboring vert&x(n), hence
they all belong to the same class of the partition. Therefore, in normal form, all
arcs belonging to the same stack are written with the same type of brackets.

2.6. Beyond bi-secondary structuresThe following example shows that there
are natural RNA structures that are more complicated than bi-secondary struc-
tures. TheEscherichia colix-operon mRNA folds into a structure that is required
for allosteric control of translational initiation (Tang and Draper, 1990). Com-
pensatory mutations have defined an unusual pseudo-knotted structure (Tang and
Draper, 1989), the thermodynamics of which were subsequently investigated in
detail (Gluick and Draper, 1994). The diagram of its contact structure cannot be
drawn without intersections, see Fig. 5. To our knowledge it is the only known
RNA structure that cannot be embedded in a 2-page book.

In this subsection we briefly discuss a few graph properties that could be used for
a classification of polymer structure complexity beyond the realm of bi-secondary
structures. Clearly, one may use its book thickness. A closely related quantity is
the chromatic number of the intersection graphcotor partition of a graphl” is
partitionV =V, UV, U --- UV, of its vertex set int@ subsetd/; such that no two
vertices inV; are adjacent. Thehromatic numbely (I') is the smallest number
of colors for which a color partition df can be found.

An arbitrary diagramA can be decomposed into substructures by means of the
following obvious result: leA = ([n], Q) be a diagram and le¢f : Q = Q1 U
Qo U --- U Q¢ be a partition of the set of arcs. Then the sub-diagtamh €2;),
i =1,...,c, canbedrawn withoutintersection if and onlyifs a color partition of



Generalized Secondary Structures 449

o
=)

m

)

)y v
v

Figure 5. Diagram of the contact structurefafcoli «-mRNA. The structure contains five
stems, labeled by uppercase Greek letters. We may choose the color parétian) isuch

that all arcs in a stem have the same color. It therefore suffices to draw the inconsistency
graph for stems (r.h.s. of the figure). It contains triangles, thus the diagram of this RNA
structure is not a bi-secondary structure. It is easy to checktitatA)) = 3.

the inconsistency grapB(A). Noticing thaty (I") = 1 if T’ contains no edges and
x (") = 2if T is bipartite with non-empty edge set, the following characterization
follows immediately:

(i) A is asecondary structure iff(®(A)) = 1;
(i) A is a bi-secondary structure iff(®(A)) < 2.

Clearly, x (®(A)) equals the minimum number of pages of all book embeddings
in which the the ordering of the vertices along the spine coincided with the natural
ordering along the backbone. In general, we hav& tt)) < x(®(A)) for all
diagrams. We remark that graphs with moderate chromatic numbers can be charac-
terized by results similar to Kuratowski's theorem for planar graphs. For instance,
one can show fok < 4, that a grapii” with chromatic numbey (I') > k contains
a subdivision of the complete graptx (Dirac, 1952). The generalization of this
proposition tok > 4 is known as Haj$’ conjecture. Itis false fok > 7 and un-
solved fork = 5 andk = 6 (Holton and Sheehan, 1993). It seems th@(A)) is
in fact the more useful quantity, as there are no efficient algorithms to determine the
book-thickness of a given graph, apd® (A)) accounts for the immutable ordering
of the backbone vertices, whereas the book-thickness might decrease by changing
this ordering.

A quite different algebraic graph invariant introduced by de Verdre (1990),
leads to the same classification of structures for spall

uw=1T(A)Iisacircle,A has no arcs.
uw < 2 I'(A) is outer-planarA is a secondary structure.
u < 3 I'(A) is planar,A is a bi-secondary structure.

The graphs withw < 4 have recently been identified as fta or linklessly embed-
dablegraphs (Lowasz and Schrijver, 1996). A useful characterization of this class
of graphs is proved in Robertsetal. (1995, b): ‘A graph is non-flat if and only if

it has no minor in the so-called Petersen family’. The gr&jghFig. 6, is a valid
diagram graph. Itis easy to check thét is flat and that its inconsistency graph is
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Figure 6. The grapNg and its inconsistency graph.

©(Vg) = Ka. Hence there are flat diagram graphs for whyai® (A)) > 4. Thus
there is no direct correspondence betwg€® (A)) andu, not even for 1-diagrams.

2.7. A metric for 1-diagrams. An interesting algebraic interpretation of sec-
ondary structures was proposed in Reidys and Stadler (1996). Interpreting each arc
{i, j} as a transpositiofi, j) on[n] we may assign the permutation

7(A) = [ liar jo) 3)
e

to each diagramh. One observes: (i) iA a 1-diagram them (A) is an involution.
(i) Aninvolution r is the permutation representation of a 1-diagram if and only if its
cycle decomposition does not contain a canonical transposition, i.e., a transposition
of the form(i, i + 1). (iii) Different 1-diagrams give rise to different involutions.

A natural set of generators for the symmetric gr&jps the setZ” of all transpo-
sitions. The corresponding length function is

L(r) =n —cyc(n), TES, (4)

where cy€r) is the number of cycles into whichdecomposes. We hadér) = 1

if and only if t € 7 is a transposition. The associated metric is the canonical
metric on the Cayley graph(S,, 7), see Reidys and Stadler (1996) for a detailed
discussion. As the involutions form a subse&fwe have

THEOREM 3. The function
d(A, A) = (@A) (AN = n —cycm (A)m(A) ™, (5)

wherern (A) denotes the permutation representation of a diagrans a metric on
the set of all 1-diagrams with n vertices.

In particular, two 1-diagrama and A’ have distance(A, A’) = 1 if and only
if they differ by a single arc. Metrics on ‘shape space’ are necessary for a detailed
guantitative study of sequence-structure maps. Applications to RNA secondary
structures are reported for instance in Fontahal. (1993a) and Schustet al.
(1994).
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2.8. The Intersection Theorem.The virtue of equation (3) is not limited to defin-

ing a metric on the set of structures. Suppose we are given an alphabet of monomers
(for instance{A, U, G, C} in the case of RNA) and a rule that determines which
pairs of monomers may form a base pd&it, UA, GC, CG, GU, UG in the case

of RNA).

DEFINITION 5. A sequence s isompatiblewith a structure (1-diagram} if for
each arcfi, j} the letters (monomers) and g fulfill the pairing rule. The set of
all sequences that are compatible withis denoted byC[A].

THEOREM 4. (Intersection Theorem) Let and A’ be 1-diagrams. The@[A]N
C[A'] is non-empty.

The proof of this result in Reidyst al. (1997) is valid for all 1-diagrams, not only

for secondary structures. The intersection theorem sets the stage for shape space
covering: it allows close-by sequences to fold into structures that are as different as
desired — given a suitable folding potential. Further applications of equation (3)
can be found in Weber (1997).

3. COMBINATORICS

3.1. Enumeration 1-diagrams. The numberX, of all diagrams om vertices is
X = 2-D(=2/2 g5 there arén — 1)(n — 2) /2 possible arcs @ér and Jankowski,
1991), which can be arbitrarily combined to form a diagram.

In Section 2.7 we have shown that all 1-diagrams correspond to involutions,
therefore the numbér, of involutions on[n] is an upper bound for the numbBy,
of 1-diagrams orin]. The combinatorics of involutions is discussed for instance in
the book by Wilf (1994):

ProrosITION 1. The number Jof involutions fulfills the recursion
Th=Th-1+ M —=DTh_> n>2 and =T =1,

and has the asymptotic form
1 n 1
anﬁnn/zexp(—§+«/_—z> .

The number of involution$, therefore grows faster than exponential in the sense
that /T, — oo. 1-Diagrams can be counted by a very similar recursion as the
following result shows:

THEOREM 5. The number of 1-diagrams fulfills the recursion
Dn+2 = Dn+1 + (n + 1) Dh—Dno1+Dn2 n> 2
Dp=D1=D,=1, Dz3=2.
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Proof. The first few values oD,, are obviousDg = 1 is a convenient definition.
The recursion is derived as follows: a 1-diagramnos 2 vertices can be formed
either by adding a lone vertex to a 1-diagrammos 1 vertices or by adding an arc
{1, k} to a 1-diagram onn vertices by inserting the vertex labelkdetween the
k — 1st and thekth vertex ofA. Note, however, thah must be a 1-diagram, but in
addition it might have an arik — 1, k} in A, as these vertices are separated by the
endpoint of the newly introduced arc in the new structure. Viewing this differently,
we may either add the af&, k} or theWw-like structure consisting of the ar¢s, k}
and{k — 1, k + 1}, which leaves us with a 1-diagram on- 2 vertices and the same
problem. Repeating this argument we arrive at the following expansion:

Hence we haveDp,» = Dpy1 +NDy+ (N — 1)Dp_2 + (N — 3)Dpg + - --.
Observing thaD,; can of course be written in the same form and substituting into
the above equations yields

Dni2=(+1)Dy+nDy_1+(n—-1) Dhn2+(N—=2)Dp_3+---+2D1+Do—Dn_1.
Subtracting the corresponding expansionigy, ; yields
Dn+2 - Dn+l =+ 1) Dn — Dn-1+ Dn_2.

A simple rearrangement now completes the proof.
COROLLARY 1. limy_ o ~/Dp = 0.

Proof. The seriesD, is obviously monotonically increasing. Hence the series
ans2 = (N+1Da,, a0 = a; = lisalowerbound. Itiswell knownthat = (n—21)!!
grows faster than exponentially.

REMARK 1. A very similar formula is obtained for the case of a circular back-
bone. There ar®,_, diagrams with ar¢1, n} onn vertices. Thus the number of
1-diagrams with circular backbone®, = D, — Dy_».

An exponential upper bound can be found, however, on the nunigi® of
1-diagrams whose inconsistency graph has chromati(A)) < c. We find

THEOREM 6. Dp(c) < (2c+ D",

Proof. Consider a 1-diagram\ = ([n], ) with x (®(A)) < c. Then there is
a color partition ofQ2 with ¢ colors. As([n], @) is a secondary structure, it can
be encoded in dot-parenthesis notation. Coloring the parenthesis with a different
color for each clas$; of the color partition hence yields a unigue representation
of A. This representation can be interpreted as a string of langtler an alphabet
consisting of* . > andc different pairs of brackets, i.e., witlc2+ 1 letters.

Theorem 6 is not a very good estimate as we shall see in Section 3.3.
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Table 1. The constan®sy,| in equation (7) for secondary structures without pseudo-knots.

m |

1 2 3
1 2618 1986 1.716
2 2414 1.899 1.680
3 2289 1.849 1.652
5 2147 1.783 1.612

3.2. Secondary structures.A secondary structure att-1 digits may be obtained
from a structure om digits either by adding a free end at the right-hand end or by
inserting a base pair £ (k + 2). In the second case the substructure enclosed
by this pair is an arbitrary structure dndigits, and the remaining part of length

n — k — 1 is also an arbitrary valid secondary structure. Therefore, we obtain the
following recursion formula for the numbé&, of secondary structures:

St = S+ emSSkn  n=m+l )
S = S==Smu=1

This expression has first been derived by Waterman (1978gnotes the minimum
number of unpaired digits in a hairpin loop. Similar recursions can be derived for
the numbersy(™D of secondary structures with minimum hairpin lengthand
minimum stack length, see Hofackeet al. (1999) for details. Asymptotically,
these numbers behave as

W™D~ Brn~Y2AL (7)

The most important numbers are collected in Table 1. A more detailed table can be
found in Hofackeret al. (1999).

Detailed combinatorial studies on various aspects of secondary structure graphs
are based on equation (6), see for instance Penner and Waterman (1993), Stein and
Waterman (1978), Waterman (1978, 1995), Waterman and Smith (1978a, b) and
Hofackeret al. (1999). In the following we shall make use of the number

1/n—k\/n—k-1
k) =—
s(n. &) k<k+1>( k-1 ) ®
of secondary structures of lengthwith k base pairs. This closed formula was
recently derived in Schmitt and Waterman (1994).

3.3. Bi-secondary structure. A first naive upper bound i®,(2) < §, because

on each side of thrg-axis we have a secondary structurerovertices. Theorem 5
implies D, (2) < 5". A slightly better bound can be derived using the enumeration
of secondary structures:
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LEMMA 2. Dn(2) < max - n—k—1)/n—kjn-2k\ 2
. n _Osk|+<|§n/22 k_l k+1 2I | .

Proof. We start with thes(n, k) secondary structures witharcs. In order to
produce a bi-secondary structure we us@fthe n — 2k unpaired positions for
introducingl additional arcs. There a(,”) possible choices for these additional
pairs, which may form any of thg, = Hil(zl') possible configurations dfmatched
parenthesesC, is a Catalan number. Without losing generality we may assume
thatl < k, i.e., the partial secondary structure with the larger number of pairs is

drawn above the&-axis. Thus

n/2 k _ 2k
Da@ = >3 stn k) (n 2| )C|.
1=0

k=0 1=
Replacing the sums by appropriate multiples of the maximum entry is trivial.

Note that this bound is still a gross overestimate: (i) it contains all the redundancy
of the (). [I-representation. (i) The numb&; also counts conformations of
square brackets of the forifi, which do not correspond to a graph at all, and it
counts conformations in which not all square brackets are inconsistent with an arc
that is represented by a round bracket. These latter configurations are counted more
than once.

COROLLARY 2. lim {/Dn(2) < 4.76136931
n—o00

Proof. Let Ay(k, I) denote argument of the maximum in Lemma 2. Itis straight-
forward to compute

AX,y) = nIim % log An(nX, XY)
=2(1—x)log(1 — x) — 2xlogx — (1 — 2x) log(1 — 2x)
—(1—2x —2y)log(1l— 2x — 2y) — 2y log(y).

SetA = max A(X,y)|0 < x+Yy < 1/2 Ay < x}. Then limy/Dn(?2) <
exp(A). Solving the optimization problem that definésis straightforward. A
short computation shows thiit= 1/+/21 andg = (7 — +/21)/14 is the only local
maximum withx, y < 1/2. It violates the conditioly < x, however. The solution
thus lies on the boundary of the triangl@, 0), (1/2,0) and(1/4, 1/4). Setting

y = 0 one obtains the maximu= 1/2 — 1/4/20. Along the edge + y = 1/2
we find y = 1/+/12 violating the conditiory < x. With x = y we arrive at
the cubic equation 3® — 31x? 4+ 10x — 1 = 0 which has a single real solution
X ~ 0.1942. We findA(X, X) ~ 1.5605329= A, because this value is much larger
than the values oA(X, y) at the three corners of the triangle.
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Table 2. Best estimates for the constaﬁf. The counting data were fitted by the model

anben.
m |
1 2 3
1 442 249 2.00
2 403 243 194
3 381 235 1.89
5 344 222 1.74

More sophisticated models of RNA take into account that (i) base pairs must
enclose at leash = 3 other bases, and (ii) that isolated base pairs are energetically
disfavored. In Hofackeet al. (1999) the numberd(™D of secondary structures
with stack size at leastbase pairs and separation of the vertices incident with an
arc at leastn is derived. We definas(™:©) to be the number of 1-diagrams with
x(®(A)) <« and with the same restrictions, and set

Anl = Jim_ i ©)

Clearly we havey (™2 < [w(mD]« pecause the 1-diagramis a superposition of
at most secondary structures. In particular, we find the upper bd\fﬁdﬁ 3418
for the biophysical case.

We have not been able to derive an exact counting series for bi-secondary struc-
tures. Hence we resorted to a numerical survey. We pursued three different strategies
for estimating the number of bi-secondary structures:

(1) Complete enumeration is feasible only for very small valueslécause the
number of structures grows faster than 2

(2) As an alternative we produce random strings from the alph&@bet] and
check each string if it is the normal form of a bi-secondary structure. The
number of secondary structures is then estimated' by B¢/ Nsampie Where
NsampleiS the size of the random sample aNg is the number of detected
normal forms in the sample.

(3) Using the recursion for secondary structures with given minimal stack length
| and given minimal hairpin siz@, described in detail in Tacket al. (1996),
we randomly generate a sample of pairs of secondary structures. Interpreting
these as the upper and lower part of bi-secondary structure we check their su-
perpositions for being normal forms of bi-secondary structures. The number
of bi-secondary structures is then approximatb,[y‘v') % Nnf/ Nsample Where
the numbersy (™! of secondary structures with hairpins of length at least
and minimal stack lengtim can be obtained recursively, see Hofackeal.
(1999).
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Our best estimates are compiled in Table 2. In the biologically interesting case,
m = 3 andl = 2, we findAY) ~ 2.35. Judging from the exhaustive enumeration
data (Gtiheret al., 1996a) we should expect that the number of structures that
actually occur as minimum energy structures is still smaller.

4, STATISTICS

4.1. Asimplified energy model for pseudo-knotdn order to incorporate pseudo-
knots into secondary structure computations we first have to devise an energy model.
Naturally, we require that this energy function extends the standard model for RNA
secondary structures without pseudo-knots.

The standard energy model is based on decomposing a secondary structure into its
‘loops’ (Zuker and Sankoff, 1984). For secondary structures without pseudo-knots
this decomposition is unique and coincides with the so-called minimum cycle basis
of the secondary structure graph (Leydold and Stadler, 1998). The free energy of
a particular secondary structure is computed as the sum of the contributions of the
individual loops. These contributions depend on the type of the loop (stacked base
pairs, hairpin loop, bulge, interior loop, or multi-branch loop), its size, and on the
sequence of nucleotides, see e.g., Wadteal. (1994).

We emphasize that the energy model for pseudo-knotted structures introduced in
this section is not intended as an accurate potential for predicting pseudo-knots in
particular (biologically relevant) sequences. Itisintended as a simplified model that
allows us to investigate the likelihood of pseudo-knots in an ensemble of sequences
and the stability of pseudo-knots against point mutations of the sequence. It is
shown in Tackeet al. (1996) for (pseudo-knot-free) RNA secondary structures that
such statistical properties are surprisingly robust against changes in the parameter
set and the choice of the folding algorithm. For instance, most global properties of
RNA folding are already present in the ‘maximum matching’ model, which, instead
of an elaborate energy model, simply seeks to maximize the number of base pairs
(Tackeret al., 1996). A potential function that captures the most salient features of
pseudo-knots is therefore sufficient for our purposes.

Very little experimental information is available on the thermodynamics of pseudo-
knots, see, however, Wyadt al. (1990). On the other hand, the geometric con-
straints of RNA structures are well understood (Saenger, 1984;e®lelj 1985).
Hence we start from the following three principles:

() Loops that are not involved in pseudo-knots have the same energy contribu-

tions as in pseudo-knot-free RNA secondary structures.
(ii) The stacking energies of base pairs are not affected by pseudo-knot formation

even in stems that are part of pseudo-knots.
(iif) Steric hindrance is the major contribution to the pseudo-knot energies.

The energy parameters detailed in Wadieal. (1994), and implemented in release
1.2 of thevienna RNA Package (Hofackeret al, 1994), are used in this study for
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va=Kuy—L,
vg=Kug-Lg+L;+1L,
ve=Kus—Lg

6
C
Figure 7. Schematic drawing of an RNA structure with pseudo-knots. The three loops A, B,
C and the four stems 1, 2, 3, and 6 are involved in pseudo-knots. The evaluation of loops A
and C is straightforward as they contain only a single paired region, namely stack 3. Three
stems are contained in loop B; we assume that stack 6 is the longest onepa@temeters
of the three pseudo-knotted loops are listed on the r.h.s. The energy contributions of base

pair stacking and the contributions of all unmarked loops are evaluated according to the
standard model.

the non-pseudo-knot contributions. The basic idea for parameterizing the pseudo-
knot contributions rests on two simplifications: (i) RNA stacks are viewed as stiff
rods and (ii) unpaired regions are assumed to be very flexible. Within a loop that
is involved in pseudo-knot formation, we assume that each of the stacks formed
by the pseudo-knotted base pairs is a stiff helix. This reasoning leads to an ansatz
based upon the following quantities:

u = number of unpaired bases in the loop.

Lmax = number of base pairs in the longest pseudo-knot stack.

L; = number of bases in pseudo-knot stack

K = number of stacked base pairs that can be bridged by one unpaired base.

First we define a measure for the sterical hindrance in the pseudo-knotted loop:

n
v=KuU-Lmxt+ »_ Li. (10)

i Zmax

This expression assumes that all other parts of a loop can be used to meet the
constraint introduced by the longest stacked redigg within the loop, see Fig. 7.

The free energy contributions of the unpaired regions can be estimated from a
theory by Jacobson and Stockmeyer (1950). The same approach is used for long
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loops in the standard energy model for RNA secondary structures. If the free energy
needed to join the ends of an unrestricted, zero volume polymer is known, the theory
predicts the free energy needed to form a similar but larger loop. The minimum
length of an RNA loop that behaves according to the Jacobson—Stockmayer theory
is not known. We therefore introduce a parameétand define the energy function

as follows:

o0 ifv<0O
E(L) = { Eps fo<v<wv (12)
Eps+alog(v/v) ifv>v.

Our energy model therefore has four free parameters that need to be estimated from
the available experimental data, nami€lyv, E,sande. For simplicity we fixedy at

the same value thatis used for all non-pseudo-knotted lapps107856 cal mot™

(at 37C).

4.2. Folding. Given the sequence, one can compute the secondary structure with
the minimum energy by means of dynamic programming (Waterman, 1978; Zuker
and Sankoff, 1984). In the presence of pseudo-knots this is no longer true. In the
present study we use Tacker’s kinetic folding algorithm (Taeke., 1996) which

is based on (Martinez, 1984). It first produces a list of all possible stems of a given
sequence and then determines the free energies of the loops and stacks. The most
stable stem is the first one added to the folding structure. Using this as a constraint,
we compile a list of the remaining possible stems and add the most stable one to the
growing structure. This procedure is repeated until the free energy of the structure
cannot be decreased anymore.

The parameterK, v, and Eps are adjusted by predicting the structures of a
sample of sequences that are known to form pseudo-knots. This set includes seven
fragments with about 80 nt from bacteriophages that form H-type pseudo-Enots,
coli tmRNA containing five pseudo-knots, and RNAse P sequences from several
different species [for details see Haslinger (1997)]. The best results were obtained
usingK = 4,v = 9, Eps = 4.2 kcal mol!. The same value OE ;s was used
in Abrahamset al. (1990). In order to check the influence of these parameters
on the sequence-structure relation of RNA we also used a parameter set leading
to an unrealistically large number of predicted pseudo-knots in the test sequences
(K = 3,v =10, Eps = 2.0 kcal mol?).

4.3. The sequence-structure map with pseudo-knotEhe average number of

base pairs and related statistical properties of the predicted structures depend very
little on the inclusion of pseudo-knots and the choice of the pseudo-knot parameters.
This is not surprising as the relative stability of base pairs and unpaired regions re-
mains essentially unchanged. The average loop size decreases with the ‘unrealistic’
pseudo-knot potential because loop regions may take part in pseudo-knots at very
little entropic cost.
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Table 3. Average Number of Pseudo-knots per Structure.
Potential 30 50 70 100 Slope
Realistic 0.009 0.020 0.028 0.038 0.000408
Exaggerated 0.150 0.311 0.450 0.628 0.006784

log (frequency)

_6 L Ll L Ll L Ll L Ll L L
1 10 100 1000 10000 100000
Rank

Figure 8. The frequency distribution of RNA contact structures. Shapes are ranked by their
frequencies. The particular example shown here deals with the loop structures (Shapiro
and Zhang, 1990) of 1 million RNA molecules of chain lengtk 100 which are derived

from the contact structures by further eliminating all details concerning stack lengths and
loop sizes. The full line is the distribution for the realistic pseudo-knot potential, the dashed
line refers to secondary structures only, and the dotted line to the exaggerated pseudo-knot
potential. While the inclusion of pseudo-knots somewhat increases the fraction and the
diversity of rare structures it does not change the general shape of the distribution.

The frequency of pseudo-knots in random sequences is tabulated in Table 3. For
the realistic potential we find a pseudo-knot ever500 bases, while with the
exaggerated potential one would expect one pseudo-knot in every random sequence
of lengthn = 148.

As we have seen in the previous section, there are still many more sequences than
structures. In order to obtain a better impression of the relationship between the
numbers of sequences and structures that arise through folding, we determine the
rank order statisticof folded structures. To this end we compute the structures
of a large number of randomly chosen sequences and rank them according to their
frequencyf of occurrence in the sample. A plot of Idgversus the logarithm of
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Figure 9. Lengths of neutral paths were determined for a large sample of initial sequences
with n = 100. The average lengths afe= 92.25 in the absence of pseudo-knots (black
dots),£ = 89.69 for the realistic pseudo-knot potential (thin line), ahe= 87.22 for the
exaggerated version (thick line).

the rank reveals a generalized Zipf’s law (Zipf, 1949), Fig. 8. While the inclusion
of pseudo-knots somewhat increases the fraction and the diversity of rare structures
(large ranks) it does not change the general shape of the distribution. As for ‘pure’
secondary structures there is only a small number of common structures into which
almost all sequences fold.

Naturally, we ask how sequences folding into the same (common) secondary
structure are distributed in sequence space. We call thg(getof all sequences
(genotypes) folding into phenotype (contact structuyréheneutral seof . More
precisely,S(y) is the pre-image of w.r.t. the folding map algorithm. As for ‘pure’
secondary structures, a large fractionf point mutations is neutral, i.e., does not
change the structure. On the other hand, RNA sequences folding into a particular
structure are not significantly clustered: they form a percolating network spanning
the entire sequence.

The fraction. of neutral point mutations was estimated from 6000 independently
generated random sequences, see Table 4. As observedriarétral. (1996a, b),
we find thath. decreases somewhat with chain length (the large values 0130
being caused in part by the large number of short sequences that ‘fold’ into the
open structure). The fraction of neutral neighbors approaches an asymptotic value
slightly above (6. Surprisingly, this value is almost independent of the potential
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Table 4. Fractiork of neutral mutants.

Potential N=30 n=50 n=70 n=100 n=200 00
Secondary structures 0.708 0.628 0.604 0.578 0.548 0.523
Realistic 0.709 0.625 0.598 0.576 0.550 0.529
Exaggerated 0.680 0.588 0.547 0.540 0.533 0.529

function: even a potential leading to a large fraction of pseudo-knotted structures
decreases only by a few percent.

A random graph theory (Reidyt al., 1997; Reidys, 1997) shows that there is
threshold value of about* = 0.307 (for a 4-letter alphabet). If the fraction of
neutral neighbors exceeds this threshold, then the set of all sequences folding into
a given structure forms a single connected network, which has been termed the
neutral networlof s.

These neutral networks can be conveniently detected by means of a simple com-
puter experiment. Aeutral pathstarts at a randomly chosen sequence. Then we
construct a series of subsequent mutants such that each sequence along the path folds
into the same structure as the initial sequence, and such that each step increases the
Hamming distance from the starting point. The strict logic on base pairing in RNA
makes it necessary to consider two types of mutations: (i) point mutations in the
unpaired regions of the molecules, and (ii) the substitution of one possible base pair
(GC, CG, GU, UG, AU, UA). All other mutations in paired regions necessarily
change the structure, for instance by changir@lapair into aGG mismatch. If
there are neutral networks in sequence space the neutral path will reach adength
close ton before there is no neutral mutant further away from the starting point (
is the maximal Hamming distance between sequences of lengtdn the other
hand, if the neutral setS(y/) form isolated clusters we will find <« n. When
interpreting the lengths of neutral paths we have to keep in mind that (i) the search
procedure only produced lower bounds on the diameter of neutral networks, and
(i) that a pair of random sequences has an expected distancébnffor a 4-letter
alphabet. The data in Fig. 9 are therefore a clear indication for the existence of
percolating neutral networks in the presence of pseudo-knots.

5. DISCUSSION

Secondary structures form a particular class of contact structures. In this con-
tribution we have considered a natural generalization of this class. Indeed, most
known RNA structures with pseudo-knots are bi-secondary structures (which do not
involve nested pseudo-knots). Bi-secondary structures correspond to planar graphs
while secondary structures form the sub-class of outer-planar graphs.

The inconsistency graph introduced in Section 2.4 is a useful construction captur-
ing most of the geometrical features of nucleic acid structure. Its chromatic number
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may serve as a measure of structural complexity. It seems possible that an analogous
construction will be useful for classifying and comparing protein structures as well.
The analysis of graph-theoretical properties of classes of contact structures might
also be useful for designing energy models that are more realistic and/or algorithmi-
cally easier than pair potentials. The standard folding potential for RNA and DNA
secondary structures, for instance, is based on loops, that is, induced subgraphs
of the diagram graph that are circles. The total energy of a secondary structure is
defined as the sum of the sequence-dependent energy contributions of all loops [see,
e.g., Freieetal (1986)]. Itis by no means obvious how this energy function should

be generalized to include non-secondary structure features such as pseudo-knots,
G-quartets, or knots, because in general there is no unique decomposition of a graph
into loops.

In order to understand the sequence—structure mapping of a class of biopolymers it
is necessary to have bounds on the number of structures that can possibly be formed
for a given set of sequences. We can expect the existence of neutral networks and
shape space covering only if the number of sequences by far exceeds the number
of structures. While the number of possible contact structures grows faster than
exponentially with the length of the molecules we find exponential upper bounds
when the structural complexity is limited. In particular, there are not more than some
4.7" possible bi-secondary structures. If we enforce in addition the sterical (loop-
length at least 3) and thermodynamic (no isolated base pairs) constraints of natural
RNA sequences, then this bound drops @3. Exhaustive enumeration indicates
that the actual number of bi-secondary structures with biophysical constraints grows
roughly as 235". Therefore the number of RNA sequencey,ekceeds by far the
number of possible bi-secondary structures.

We have then devised a simple energy function extending the standard model
to incorporate pseudo-knots. Our ansatz assumes that steric hindrance is the ma-
jor contribution to pseudo-knot energies counteracting the stabilizing effect of the
additional base pairings. Based on this approach we used a kinetic folding pro-
cedure to show that the inclusion of pseudo-knots does not significantly change
the global features of the sequence structure map of RNA: there are many more
sequences than structures, and almost all sequences fold into one of a small number
of common structures. Common structures are uniformly distributed over sequence
space.

Neutral networks in sequence space can therefore be modeled as random graphs
(Reidys et al, 1997). This ansatz generalizes from secondary structures to
1-diagrams without modifications. The only input parameter in this model, namely
the fractioni of neutral neighbors, has been determined computationally. Com-
puter simulations agree with the prediction of a random graph theory: the fraction
of neutral mutationsy > 0.5, is well above the threshold value bf ~ 0.306,
hence all sequences folding into a given common structure form a single percolating
network that spans the entire sequence space. This is verified by the detection of
neutral paths that extend through the entire sequence space.
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The intersection theorem is valid for bi-secondary structures, hence the random
graph approach (Reidy al.,, 1997), can be used to predict the relative locations of
the neutral networks of two different common structures. In particular, we have to
expect shape space covering, i.e., the neutral networks of any two common structure
come very close to each other at least in some parts of the sequence space. This sets
the stage for the evolutionary transitions between different structures described in
detail in Weber (1997) and Fontana and Schuster (1998).

In summary, the mathematical results and the computer simulations presented in
this contribution indicate that pseudo-knots do not change the qualitative picture
of the RNA sequence—structure map as it was obtained from studying secondary
structures.
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