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Abstract: Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized,
and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were
evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a,
and 2i–l) with IC50 values in the range of 0.18–7.94 µM showed significant inhibitory effects on the
proliferation of both cancer cell lines. Analysis of the primary structure–activity relationships revealed
that different substituent groups at the C-6 position might have an effect on the antileukemia activity
of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence
the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiprolifera-
tive activity against Jurkat Clone E6-1 and THP-1 cells with good IC50 values (0.52 ± 0.03 µM and
0.48 ± 0.03 µM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which sug-
gests that compound 2j may represent a potentially useful start point to undergo further optimization
toward a lead compound.

Keywords: Zanthoxylum nitidum; benzophenanthridine alkaloid derivatives; synthesis; antileukemia
activity; cell cycle and apoptosis

1. Introduction

Leukemia is a broad term for a group of blood cell cancers that begin in stem cells
found in the bone marrow. Leukemia occurs most often in adults older than 55, but it
is also the most common cancer in children younger than 15; in particular, the incidence
rates of leukemia are the highest in early childhood and later adulthood [1,2]. Patients
with leukemia usually have serious complications, such as autoimmune cytopenia [3],
bleeding [4], electrolyte imbalance, and hyperuricemia [5]; therefore, leukemia seriously
threatens human health and quality of life.

Currently, chemotherapy and hematopoietic stem-cell bone marrow transplantation
are still the main treatments for leukemia. However, bone marrow transplantation involves
a complicated process that requires antigen compatibility between the donor and recipient.
Although these methods can lead to remission in most patients, the recurrence rate is very
high, and the long-term survival rate is low. Notably, high-dose combination chemotherapy
can cause patients to develop drug resistance and serious side-effects, such as bone marrow
suppression, gastrointestinal reactions, and cardiotoxicity [6–9].

Among the many available drugs to treat leukemia, imatinib and all-trans-retinoic acid
(ATRA) plus arsenic trioxide (ATO) are widely used worldwide. Although there has been
great success with reducing the symptoms of patients with leukemia after treatment with
these drugs, the side-effects and early mortality they can cause remain significant, which
are major barriers to treating leukemia patients [10,11]. In recent years, a number of new
treatments for leukemia emerged. For example, CEP-701, which is an FLT3 inhibitor, was
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assessed in leukemia, with the hope that it represents the development of an important new
molecularly targeted therapy for this disease [12,13]. Therefore, whether to improve the
treatment and long-term survival rates of patients with leukemia, or to find new treatments
for leukemia, it is extremely important to research and develop effective new drugs.

Natural products, as an important source of drugs and drug lead compounds, have the
advantages of unique mechanisms, remarkable results, low toxicity, and few side-effects.
Many well-known natural products with various applications, such as artemisinin, pa-
clitaxel, and vinblastine, come from a wide variety of Chinese herbal medicines found
abundantly in China. Therefore, drug candidates for treating leukemia could be obtained
through the structural optimization of natural lead compounds. Z. nitidum is an important
Chinese herbal medicine that possesses various antitumor active ingredients. Benzophenan-
thridine alkaloids are some of the most important active ingredients abundantly found in
this plant. At present, this type of alkaloid has been found to have a variety of biological
activities with antibacterial [14–16], analgesic, anti-inflammatory [17], antiviral [18], anti-
phytopathogenic [19] and antitumor [20–25] effects. However, there are few reports on the
antileukemia activity of benzophenanthridine alkaloids.

Our previous studies indicated that certain benzophenanthridine alkaloids showed
strong inhibitory effects on leukemia cell lines [26,27]. To continue our research, two active
benzophenanthridine alkaloids, chelerythrine (1) and sanguinarine (2) (Figure 1), which
were found in high abundance, were selected as the starting compounds for structural
modification to obtain antileukemia drug candidates with better activity. Therefore, thirty-
three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and
their antileukemia activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1)
were evaluated in vitro (According to the preliminary screening results in Table S2 in the
Supplementary Materials, we selected these two leukemia cells for activity test). Among
them, nine derivatives (1i–l, 2a and 2i–l) showed significant inhibitory effects on the
proliferation of Jurkat Clone E6-1 and THP-1 cells. In particular, compound 2j displayed
the strongest inhibition against Jurkat Clone E6-1 and THP-1 cells, with IC50 values of
0.52 ± 0.03 µM and 0.48 ± 0.03 µM, respectively. Furthermore, the influence of compound
2j on the cell-cycle and apoptosis in both leukemia cell lines was tested.
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Figure 1. The structures of chelerythrine (1), sanguinarine (2), and bocconoline.

Herein, we report the synthesis and antileukemia activity evaluation of a series of
novel benzophenanthridine alkaloid derivatives of chelerythrine (1) and sanguinarine
(2) (1a–1u and 2a–2l). Their cytotoxic activities and initial structure–activity relationships
(SARs) are also reported.

2. Results and Discussion
2.1. Design and Synthesis of the Benzophenanthridine Alkaloid Derivatives

In our previous studies, bocconoline (Figure 1), a benzophenanthridine alkaloid iso-
lated from Z. nitidum, showed good antiproliferative effects on leukemia cells and low
toxicity [27]. It differs structurally from other benzophenanthridine alkaloids due to the
hydroxymethyl group at the C-6 position. Therefore, it was speculated that this substitution
might play a crucial role in reducing the toxicity of this compound. In addition, through
literature investigation, we found that the introduction of appropriate groups (malonic
esters, dialkyl phosphites, nitro alkanes, or indoles) at the C-6 position could enhance its
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activities [21]. Hence, in order to discover more benzophenanthridine alkaloid derivatives
with good antileukemia activity and low toxicity, two natural benzophenanthridine alka-
loids with good antileukemia activity, chelerythrine (1) and sanguinarine (2), were chosen
as starting points, and a series of their derivatives, 1a–1u and 2a–2l, were synthesized
by changing the substituent at the C-6 position (The 1H- and 13C-NMR, HR-ESI-MS and
HPLC spectra of all compounds S5–S103, S106–S138 are shown in the Supplementary
Materials). The synthetic routes for the target compounds are shown in Figure 2. Briefly,
structural modification of chelerythrine (1) and sanguinarine (2) mainly involved changing
the substituent at the C-6 position by nucleophilic addition, including the introduction
of cyano [28], indole, malonic ester [21], ester [29], allyl [30], and acetonyl units. To ob-
tain compounds 1b and 2b, reduction of the C=N double bond at the C-6 position was
achieved by treatment with NaBH4 [14]. The ethyl acetate units in compounds 1e and 2e
were converted to hydroxyethyls in compounds 1f and 2f with LiAlH4 [31]. Additionally,
compounds 1n–q were synthesized via the Claisen–Schmidt reaction [32].
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2.2. In Vitro Antileukemia Activity and SAR Analysis
2.2.1. Inhibitory Effects on Leukemia Cell Proliferation

The cytotoxic activities of the 33 synthesized derivatives tested at 20 µM were evalu-
ated in two leukemia cell lines (Jurkat Clone E6-1 and THP-1) using a Cell Counting Kit-8
(CCK-8) assay with doxorubicin hydrochloride (DOX) as a positive control. The results of
the preliminary bioassay are listed in Table 1.

As shown in Table 1, the in vitro activity data revealed that nine derivatives (1i–l, 2a,
and 2i–l) showed significant inhibitory effects on these leukemia cell lines with IC50 values
ranging from 0.5 to 8.0 µM and from 0.1 to 6.0 µM, respectively. Notably, compounds 2a and
2j exhibited excellent activities in both cell lines with good IC50 values of 0.53 ± 0.05 µM
and 0.52 ± 0.03 µM for Jurkat Clone E6-1 and 0.18 ± 0.03 µM and 0.48 ± 0.03 µM for
THP-1, respectively. From the results of the activity data, it could be seen that compound 2a
showed good activity, but 2a could not show a good dose dependence in the further study
of the cell cycle and apoptosis. However, compound 2j showed a better dose dependence
than 2a. Therefore, compound 2j might be a potential antileukemia compound and was
chosen for further evaluation.
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2.2.2. Effects of Compound 2j on Cellular Apoptosis 

Two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were treated with compound 

2j at concentrations of 0.25, 0.5, and 1.0 μM for 48 h at 37 °C. The apoptosis rates induced 

by treatment with compound 2j are shown in Figure 3. 
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2.2.2. Effects of Compound 2j on Cellular Apoptosis

Two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were treated with compound
2j at concentrations of 0.25, 0.5, and 1.0 µM for 48 h at 37 ◦C. The apoptosis rates induced
by treatment with compound 2j are shown in Figure 3.
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Figure 3. Compound 2j induced apoptosis in Jurkat Clone E6-1 and THP-1 cell lines. (A) Compound
2j induced apoptosis in Jurkat Clone E6-1 cell line. Jurkat Clone E6-1 cells were treated with 0.25, 0.5,
and 1.0 µM of compound 2j for 48 h, and cells were subsequently stained with Annexin V–FITC/PI
and subsequently analyzed by flow cytometry. (B) Compound 2j induced apoptosis in THP-1 cell
line. THP-1 cells were treated with 0.25, 0.5, and 1.0 µM of compound 2j for 48 h, and cells were
subsequently stained with Annexin V–FITC/PI and subsequently analyzed by flow cytometry. All
data are presented as means ± SD (n = 3); *** p < 0.001 vs. the control group.
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Compared with the control group (0.92% ± 0.09% for Jurkat Clone E6-1 cells and
0.69% ± 0.08% for THP-1 cells), after treating the cells with compound 2j for 48 h, the
rates of apoptosis increased in a dose-dependent manner. When Jurkat Clone E6-1 and
THP-1 cells were treated with 0.5 µM and 1.0 µM compound 2j, their apoptosis rates
increased significantly from 7.07% ± 0.43% to 17.84% ± 0.65% and from 6.01% ± 0.52%
to 16.23% ± 1.15%, respectively (p < 0.001 vs. control group). These results suggested that
compound 2j could slightly induce apoptosis in these two leukemia cell lines.

2.2.3. Effects of Compound 2j on the Cell-Cycle

Cell-cycle assays in the Jurkat Clone E6-1 and THP-1 cell lines were performed using
flow cytometry, and the results are shown in Figure 4. When these two types of cells
were treated with compound 2j for 48 h at concentrations ranging from 0 µM to 1.0 µM,
the numbers of cells in the G0/G1 phase increased significantly in a dose-dependent
manner, which was accompanied by decreases in the G2/M populations. However, the
percentages of cells in the S phase were not significantly different. These results showed
that compound 2j could induce cell-cycle arrest in the G0/G1 phase.
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Figure 4. Effects of compound 2j on Jurkat Clone E6-1 and THP-1 cell-cycle. (A) The cell-cycle
distribution of Jurkat Clone E6-1 using flow cytometry. (B) The percentage of Jurkat Clone E6-1 cells
in the G0/G1 phase. (C) The percentage of Jurkat Clone E6-1 cells in the S phase. (D) The percentage
of Jurkat Clone E6-1 cells in the G2/M phase. (E) The cell-cycle distribution of THP-1 using flow
cytometry. (F) The percentage of THP-1 cells in the G0/G1 phase. (G) The percentage of THP-1 cells
in the S phase. (H) The percentage of THP-1 cells in the G2/M phase. All data are presented as
means ± SD (n = 3); * p < 0.05 and *** p < 0.001 vs. the control group.

2.2.4. SAR Analysis

As shown in Table 1, preliminary SAR studies were undertaken on the basis of the
above cytotoxicity evaluation. Among the compounds synthesized, nine derivatives (1i–l,
2a, and 2i–l) showed significant inhibitory effects on the proliferation of Jurkat Clone E6-1
and THP-1 cells with IC50 values ranging from 0.1 to 8.0 µM. However, the other derivatives
displayed weak or no inhibitory activity against the two leukemia cell lines. These results
indicated that compounds containing cyano and malonic esters groups at the C-6 position
of the benzophenanthridine alkaloid scaffold showed higher cytotoxic activity than the
other types of compounds, and compounds with different substituents at the C-6 position
exhibited different inhibitory activities. Compounds 2a and 2i–l showed much stronger
cytotoxicity, with IC50 values of 0.53 µM, 1.30 µM, 0.52 µM, 1.23 µM, and 0.91 µM (in Jurkat
Clone E6-1 cells) and 0.18 µM, 1.46 µM, 0.48 µM, 1.38 µM, and 1.17 µM (in THP-1 cells),
respectively, than compounds 1i–l. These results implied that the antileukemia activities
of the derivatives substituted with a methylenedioxy moiety at the C-7 and C-8 positions
were greater than those of the derivatives substituted with methoxyl groups at the C-7 and
C-8 positions. In other words, the antileukemia activities of the sanguinarine derivatives
were significantly better than those of the chelerythrine derivatives. Therefore, it could
be speculated that suitable nucleophilic groups, such as malonic esters and cyano, might
enhance the antileukemia activity. Moreover, the substituents at the C-7 and C-8 positions
were key units that affected the inhibitory activity of the compounds against the tested
leukemia cell lines.
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3. Materials and Methods
3.1. General Chemistry

Unless otherwise noted, all solvents and reagents were purchased from commercial
sources, and some reactions were carried out under inert atmosphere and drying solvents
with relevant specifications (extra dry, with molecular sieves, water ≤ 50 ppm (by K.F.)
EnergySeal) purchased from commercial sources. All reactions were monitored by thin-
layer chromatography (TLC) on silica gel GF254 plates (Qingdao Haiyang Chem. Ind. Ltd.
P.R. Qingdao, China); spots were visualized with ultraviolet light (UV, Shanghai Jingke
Ind. Co., Ltd., Shanghai, China) and 5% H2SO4 in ethanol. The following abbreviations
are used: s = singlet, d = doublet, t = triplet, m = multiplet, and br.s = broad singlet. All
first-order splitting patterns were assigned on the basis of appearance. All derivatives
were purified by silica gel column chromatography. 1H- and 13C-NMR data were recorded
with an INOVA-600 MHz spectrometer in CDCl3, CD3OD, acetone-d6, or DMSO-d6 (Anhui
Zesheng Tech. Co., Ltd., Hefei, Anhui, China) at room temperature, and the chemical shifts
are shown relative to tetramethylsilane (TMS). High-resolution mass spectra were obtained
using a Bruker microTOF-Q mass spectrometer.

3.2. Preparation of Raw Materials

Due to the low content of chelerythrine (1) and sanguinarine (2) in Z. nitidum, and
it being difficult to enrich, we purchased the Macleaya cordata total alkaloids with higher
content for enrichment and separation to obtain raw materials. TLC was used to identify
the components of 1 and 2. The gradient elution of petroleum ether/ethyl acetate system
(v/v: 10:1→1:1) was carried out by silica gel column chromatography, and five fractions
(Fr.1–Fr.5) were obtained. Fr.2–Fr.4 were separated and purified by repeated silica gel
column chromatography (petroleum ether/ethyl acetate: 4/1, 2/1, 1/1; CH3Cl/CH3OH:
49/1, 20/1, etc.) to obtain these two raw materials. Their structure was further determined
by 1H- and 13C-NMR (The 1H- and 13C-NMR and HPLC spectra of the two compounds
S1–S4, S104–S105 are shown in the Supplementary Materials).

3.3. Procedure for Synthesizing Benzophenanthridine Alkaloid Derivatives
3.3.1. Synthesis of Compounds 1a and 2a

Trimethylsilyl cyanlde (TMSCN) (200 µL, 0.194 mmol) and 4-dimethylaminopyridine
(DMAP) (60 mg, 0.492 mmol) were added to a stirred solution of 1 or 2 (0.144 mmol) in
dry dichloromethane (DCM) (10 mL) at room temperature, and the reaction mixture was
stirred under reflux for 14 h. After the reaction was complete, the mixture was washed
with saturated NaHCO3 solution three times and filtered. The filtrate was washed with
an aqueous hydrochloric acid solution (0.1 mol/L, 5 × 10 mL), and then the organic layer
was collected, dried over anhydrous Na2SO4, and concentrated under vacuum. The crude
products were washed with methanol and filtered, and then dried under vacuum to obtain
target compounds 1a and 2a.

Compound 1a: light-yellow powder; yield: 65.1%; 1H-NMR (600 MHz, CDCl3) δ 7.74
(d, J = 8.6 Hz, 1H), 7.68 (s, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.16 (s,
1H), 7.10 (d, J = 8.5 Hz, 1H), 6.09 (s, 2H), 5.67 (s, 1H), 4.03 (s, 3H), 3.98 (s, 3H), 2.65 (s, 3H);
13C-NMR (151 MHz, CDCl3) δ 152.37, 148.53, 147.97, 146.08, 138.61, 131.31, 126.66, 125.15,
125.05, 122.94, 120.72, 119.86, 119.37, 118.34, 113.50, 104.48, 101.22, 100.60, 61.29, 56.00, 48.58,
41.56. HR-ESI-MS (m/z) calculated for C22H19O4N2 [M + H]+ 375.1331, found 375.1339.

Compound 2a: khaki powder; yield: 61.2%; 1H-NMR (600 MHz, CDCl3) δ 7.72 (d,
J = 8.5 Hz, 1H), 7.68 (s, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.15 (s, 1H),
6.98 (d, J = 8.2 Hz, 1H), 6.14 (dd, J = 15.9, 1.6 Hz, 2H), 6.10 (d, J = 1.9 Hz, 2H), 5.35 (s, 1H),
2.69 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 148.61, 148.02, 147.82, 145.03, 138.48, 131.28,
126.70, 125.92, 125.35, 123.15, 120.08, 117.39, 117.11, 109.41, 107.62, 104.47, 102.20, 101.26,
100.57, 48.75, 41.44. HR-ESI-MS (m/z) calculated for C21H15O4N2 [M + H]+ 359.1018,
found 359.1026.
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3.3.2. Synthesis of Compounds 1b and 2b

NaBH4 (10 mg, 0.264 mmol) was added to a solution of 1 or 2 (0.052 mmol) in MeOH
(5 mL) at room temperature. The reaction mixture was stirred for 0.5 h at the same
temperature. After the reaction was complete, acetic acid was added to remove the excess
NaBH4 and concentrated under vacuum. The residue was dissolved in dry DCM and
extracted with saturated aqueous NaCl (3 × 10 mL). The organic layer was collected, dried
over anhydrous Na2SO4, and concentrated under vacuum. Finally, the crude products
were purified by silica gel column chromatography (petroleum ether (PE)/ethyl acetate
(EA), 10:1) to obtain the target compounds.

Compound 1b: light-yellow powder; yield: 89.7%; 1H-NMR (600 MHz, CDCl3) δ 7.73
(d, J = 8.5 Hz, 1H), 7.70 (s, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.14 (s,
1H), 6.97 (d, J = 8.4 Hz, 1H), 6.07 (s, 2H), 4.32 (s, 2H), 3.95 (s, 3H), 3.90 (s, 3H), 2.62 (s, 3H);
13C-NMR (151 MHz, CDCl3) δ 152.30, 148.09, 147.49, 146.14, 142.75, 130.83, 126.41, 126.30,
126.27, 124.28, 123.80, 120.15, 118.70, 111.00, 104.37, 101.04, 100.75, 61.12, 55.84, 48.76, 41.32.
HR-ESI-MS (m/z) calculated for C21H20O4N [M + H]+ 350.1381, found 350.1387.

Compound 2b: white powder; yield: 94.7%; 1H-NMR (600 MHz, CDCl3) δ 7.71
(d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.5 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.13 (s, 1H), 6.88 (d,
J = 8.1 Hz, 1H), 6.07 (d, J = 7.7 Hz, 4H), 4.23 (s, 2H), 2.65 (s, 3H); 13C-NMR (151 MHz, CDCl3)
δ 148.17, 147.54, 147.13, 144.66, 142.54, 130.84, 127.29, 126.55, 124.43, 123.97, 120.38, 116.22,
113.65, 107.21, 104.37, 101.35, 101.07, 100.77, 48.47, 41.59. HR-ESI-MS (m/z) calculated for
C20H16O4N [M + H]+ 334.1069, found 334.1074.

3.3.3. Synthesis of Compounds 1c, 1d, 1r–u, and 2c, 2d

The indole compounds (two equivalents) were added to a solution of 1 or 2 (0.052 mmol)
in CH3CN (10 mL) at room temperature. Each reaction mixture was stirred at the same
temperature until the reaction was complete and then concentrated under vacuum. After
that, the crude products were purified by silica gel column chromatography to obtain the
target compounds.

Compound 1c: The crude product was purified by silica gel column chromatography
(PE/EA, 1.5:1) to obtain the target compound 1c: white powder; yield: 43.5%; 1H-NMR
(600 MHz, acetone-d6) δ 9.39 (s, 1H), 7.82–7.75 (m, 2H), 7.71 (d, J = 8.5 Hz, 1H), 7.66 (s, 1H),
7.62 (d, J = 2.4 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.17 (d, J = 8.6 Hz, 1H), 7.05 (s, 1H), 7.01
(d, J = 8.5 Hz, 1H), 6.63 (dd, J = 8.6, 2.4 Hz, 1H), 6.18 (q, J = 1.2 Hz, 1H), 6.05 (d, J = 1.0 Hz,
1H), 5.99 (d, J = 1.0 Hz, 1H), 5.96 (d, J = 1.1 Hz, 1H), 3.96 (s, 3H), 3.77 (s, 3H), 2.88 (s, 3H);
13C-NMR (151 MHz, Acetone-d6) δ 152.46, 150.59, 147.87, 147.38, 146.41, 141.07, 131.77,
131.00, 128.23, 128.14, 127.44, 125.62, 124.32, 123.92, 123.27, 119.77, 118.74, 115.88, 111.65,
111.41, 111.28, 104.30, 103.85, 101.06, 100.71, 60.13, 55.23, 54.52, 41.61. HR-ESI-MS (m/z)
calculated for C29H25O5N2 [M + H]+ 481.1755, found 481.1758.

Compound 1d: The crude product was purified by silica gel column chromatography
(PE/EA, 4:1) to obtain the target compound 1d: white powder; yield: 41.9%; 1H-NMR
(600 MHz, DMSO-d6) δ 10.69 (d, J = 2.6 Hz, 1H), 8.05 (d, J = 2.1 Hz, 1H), 7.78 (d, J = 8.7 Hz,
1H), 7.72 (d, J = 8.6 Hz, 1H), 7.51 (s, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.20 (d, J = 8.6 Hz, 1H),
7.19–7.16 (m, 2H), 7.00 (dd, J = 8.6, 2.1 Hz, 1H), 6.22–6.20 (m, 1H), 6.07 (d, J = 6.0 Hz, 2H),
5.86 (d, J = 1.1 Hz, 1H), 3.91 (s, 3H), 3.72 (s, 3H), 2.78 (s, 3H); 13C-NMR (151 MHz, DMSO-d6)
δ 152.47, 148.16, 147.52, 146.15, 140.73, 135.41, 130.91, 128.18, 127.46, 126.98, 125.42, 125.21,
124.20, 123.83, 123.50, 121.33, 120.29, 119.66, 119.57, 116.19, 113.43, 112.48, 104.53, 101.58,
100.26, 61.04, 56.17, 54.27, 42.32. HR-ESI-MS (m/z) calculated for C29H24O3N2Cl [M + H]+

499.1413, found 499.1419.
Compound 1r: The crude product was purified by silica gel column chromatogra-

phy (PE/EA, 4:1) to obtain the target compound 1r: white solid; yield: 52.5%; 1H-NMR
(600 MHz, CDCl3) δ 8.18 (dd, J = 7.8, 1.1 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.68 (s, 1H), 7.63
(d, J = 8.6 Hz, 1H), 7.56 (s, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.20–7.18 (m, 1H), 7.17–7.15 (m, 1H),
7.11 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.98 (s, 1H), 6.26 (dd, J = 2.5,
1.1 Hz, 1H), 6.04 (d, J = 1.2 Hz, 1H), 6.00 (d, J = 1.4 Hz, 1H), 5.94 (d, J = 1.4 Hz, 1H), 3.98 (s,
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3H), 3.80 (s, 3H), 2.89 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 152.23, 147.76, 147.26, 146.31,
141.13, 136.51, 130.89, 128.20, 127.46, 127.23, 125.85, 124.01, 123.30, 122.99, 121.65, 120.49,
119.64, 119.22, 118.95, 117.60, 111.35, 110.85, 104.08, 101.21, 100.81, 61.19, 55.83, 54.35, 42.32.
HR-ESI-MS (m/z) calculated for C29H23O4N2 [M − H]− 463.1646, found 463.1652.

Compound 1s: The crude product was purified by silica gel column chromatography
(PE/EA, 1:1) to obtain the target compound 1s: brown powder; yield: 40.0%; 1H-NMR
(600 MHz, DMSO-d6) δ 9.96 (d, J = 2.7 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.71 (d, J = 8.6 Hz,
1H), 7.53 (s, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.25 (d, J = 2.2 Hz, 1H), 7.18 (s, 1H), 7.15 (d,
J = 8.6 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 6.42 (dd, J = 8.5, 2.2 Hz, 1H), 6.07 (s, 1H), 6.03 (s,
1H), 5.87 (d, J = 2.5 Hz, 1H), 5.74 (s, 1H), 3.90 (s, 3H), 3.67 (s, 3H), 2.77 (s, 3H); 13C-NMR
(151 MHz, DMSO-d6) δ 152.40, 147.98, 147.44, 145.99, 141.23, 141.03, 130.88, 130.68, 128.27,
128.15, 127.20, 125.35, 124.30, 123.58, 123.41, 120.25, 119.33, 114.72, 112.28, 112.18, 111.83,
104.44, 103.52, 101.46, 100.71, 60.89, 56.12, 54.49, 42.54. HR-ESI-MS (m/z) calculated for
C29H26O4N3 [M + H]+ 480.1914, found 480.1918.

Compound 1t: The crude product was purified by silica gel column chromatography
(PE/EA, 3:1) to obtain the target compound 1t: white powder; yield: 36.4%; 1H-NMR
(600 MHz, CDCl3) δ 8.00 (d, J = 7.9 Hz, 1H), 7.73–7.66 (m, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.33
(d, J = 8.5 Hz, 1H), 7.19 (s, 1H), 7.15–7.04 (m, 2H), 6.95 (s, 1H), 6.87 (d, J = 7.1 Hz, 1H), 6.06
(dd, J = 2.5, 1.2 Hz, 1H), 6.01 (d, J = 1.1 Hz, 1H), 5.99 (s, 1H), 5.92 (d, J = 1.4 Hz, 1H), 3.99
(s, 3H), 3.77 (s, 3H), 2.88 (s, 3H), 2.15 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 152.24, 147.79,
147.26, 146.31, 141.15, 136.01, 130.87, 128.34, 127.45, 126.62, 125.84, 124.04, 123.28, 122.83,
122.12, 119.96, 119.64, 119.35, 118.89, 118.08, 117.78, 111.33, 104.10, 101.19, 100.81, 61.19,
55.86, 54.36, 42.32, 16.22. HR-ESI-MS (m/z) calculated for C30H27O4N2 [M + H]+ 479.1959,
found 479.1065.

Compound 1u: The crude product was purified by silica gel column chromatography
(PE/EA, 4:1) to obtain the target compound 1u: white powder; yield: 43.3%; 1H-NMR
(600 MHz, DMSO-d6) δ 10.59 (s, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.75–7.68 (m, 2H), 7.54 (s,
1H), 7.42 (d, J = 8.6 Hz, 1H), 7.17 (d, J = 8.4 Hz, 3H), 6.84 (td, J = 9.2, 2.6 Hz, 1H), 6.22
(d, J = 2.5 Hz, 1H), 6.07 (d, J = 11.6 Hz, 2H), 5.84 (s, 1H), 3.91 (s, 3H), 3.72 (s, 3H), 2.78 (s,
3H); 13C-NMR (151 MHz, DMSO-d6) δ 156.20, 152.46, 148.12, 147.51, 146.13, 140.80, 133.60,
130.91, 127.53, 127.01, 125.69, 125.24, 124.18, 123.77, 120.28, 119.56, 116.47, 112.82, 112.42,
109.61, 109.43, 104.90, 104.53, 101.56, 100.33, 61.02, 56.15, 54.35, 42.30. HR-ESI-MS (m/z)
calculated for C29H24O4N2F [M + H]+ 483.1710, found 483.1715.

Compound 2c: The crude product was purified by silica gel column chromatography
(PE/EA, 1:1) to obtain the target compound 2c: khaki powder; yield: 35.8%; 1H-NMR
(600 MHz, CDCl3) δ 7.69 (d, J = 7.9 Hz, 2H), 7.52 (d, J = 2.5 Hz, 1H), 7.50 (s, 1H), 7.40
(dd, J = 9.7, 8.3 Hz, 2H), 7.02 (d, J = 9.2 Hz, 2H), 6.94 (d, J = 8.1 Hz, 1H), 6.70 (dd, J = 8.6,
2.5 Hz, 1H), 6.35–6.30 (m, 1H), 6.06 (dd, J = 9.4, 1.5 Hz, 2H), 6.01 (d, J = 1.4 Hz, 1H), 5.96
(d, J = 1.3 Hz, 1H), 5.73 (d, J = 1.1 Hz, 1H), 2.88 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ
149.22, 147.89, 147.35, 147.07, 144.90, 140.92, 131.86, 130.91, 127.68, 127.53, 126.66, 125.24,
123.97, 123.57, 119.95, 116.58, 111.83, 111.60, 111.54, 107.50, 104.75, 104.16, 102.06, 101.42,
101.14, 100.89, 54.33, 42.70. HR-ESI-MS (m/z) calculated for C28H21O5N2 [M + H]+ 465.1441,
found 465.1445.

Compound 2d: The crude product was purified by silica gel column chromatography
(PE/EA, 4:1) to obtain the target compound 2d: white powder; yield: 27.5%; 1H-NMR
(600 MHz, CDCl3) δ 8.09 (s, 1H), 7.70–7.66 (m, 2H), 7.64 (s, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.39
(d, J = 2.5 Hz, 1H), 7.06 (d, J = 1.5 Hz, 2H), 7.02 (s, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.38 (dd,
J = 2.6, 1.2 Hz, 1H), 6.09 (q, J = 1.5 Hz, 2H), 6.01 (dd, J = 18.7, 1.3 Hz, 2H), 5.75 (d, J = 1.2 Hz,
1H), 2.89 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 148.09, 147.46, 147.14, 144.85, 140.72, 134.82,
130.90, 127.84, 127.40, 126.51, 125.08, 124.11, 123.95, 123.68, 122.11, 119.91, 119.63, 116.71,
116.37, 115.47, 111.92, 107.62, 104.15, 101.46, 100.97, 54.18, 42.70, 14.21. HR-ESI-MS (m/z)
calculated for C28H20O4N2Cl [M + H]+ 483.1102, found 483.1106.
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3.3.4. Synthesis of Compounds 1e and 2e

Ethyl trimethylsilyl acetate (24 mg, 0.164 mmol) and CsF (23 mg, 0.151 mmol) were
added to a stirred solution of 1 or 2 (0.052 mmol) in CH3CN (15 mL) at room temperature.
Each reaction mixture was stirred for 4–5 h at the same temperature until the reaction
was complete and then concentrated under vacuum. After that, the crude products were
purified by silica gel column chromatography to obtain the target products.

Compound 1e: The crude product was purified by silica gel column chromatogra-
phy (PE/EA, 4:1) to obtain the target compound 1e: white solid; yield: 52.0%; 1H-NMR
(600 MHz, CDCl3) δ 7.73 (d, J = 8.6 Hz, 1H), 7.59–7.55 (m, 2H), 7.50 (d, J = 8.4 Hz, 1H), 7.12
(s, 1H), 6.99 (d, J = 8.5 Hz, 1H), 6.06 (s, 2H), 5.03 (dd, J = 11.1, 4.4 Hz, 1H), 4.22–4.13 (m, 2H),
3.99 (s, 3H), 3.95 (s, 3H), 2.67 (s, 3H), 2.42–2.29 (m, 2H), 1.21 (t, J = 7.2 Hz, 3H); 13C-NMR
(151 MHz, CDCl3) δ 171.70, 152.11, 147.96, 147.51, 145.76, 139.40, 131.07, 127.96, 127.56,
124.92, 123.80, 123.09, 119.76, 118.81, 111.61, 104.30, 100.99, 100.94, 61.04, 60.27, 55.83, 55.10,
42.88, 39.19, 14.23. HR-ESI-MS (m/z) calculated for C25H25O6N Na [M + Na]+ 458.1569,
found 458.1574.

Compound 2e: The crude product was purified by silica gel column chromatography
(PE/EA, 6:1) to obtain the target compound 2e: white powder; yield: 47.5%; 1H-NMR
(600 MHz, CDCl3) δ 7.71 (d, J = 8.6 Hz, 1H), 7.57 (s, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.37 (d,
J = 8.2 Hz, 1H), 7.12 (s, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.13–6.01 (m, 4H), 4.85 (dd, J = 8.5,
6.9 Hz, 1H), 4.18 (m, J = 10.8, 7.2 Hz, 2H), 2.68 (s, 3H), 2.41 (d, J = 7.8 Hz, 2H), 1.23 (t,
J = 7.2 Hz, 3H); 13C-NMR (151 MHz, CDCl3) δ 171.40, 148.07, 147.57, 147.11, 144.48, 139.27,
131.06, 127.67, 125.81, 124.01, 123.24, 119.99, 116.46, 115.73, 107.68, 104.30, 101.56, 101.02,
100.91, 60.41, 54.81, 43.14, 39.00, 14.25. HR-ESI-MS (m/z) calculated for C24H21O6N Na
[M + Na]+ 442.1257, found 442.1261.

3.3.5. Synthesis of Compounds 1f and 2f

Compound 1e or 2e (0.043 mmol) in dry tetrahydrofuran (THF, 5 mL) was cooled to
5 ◦C. After 5 min, LiAlH4 (0.75 mmol, 300 µL) was slowly added to the mixture under an
argon atmosphere, followed by stirring for 0.5 h at 5 ◦C. After the reaction was complete, it
was quenched with a 15% NaOH aqueous solution and extracted with DCM (3 × 5 mL).
The combined organic layers were collected, dried over anhydrous Na2SO4, and concen-
trated under vacuum. After that, the crude products were purified by silica gel column
chromatography to obtain the target compounds.

Compound 1f: The crude product was purified by silica gel column chromatogra-
phy (PE/EA, 2:1) to obtain the target compound 1f: white solid; yield: 73.8%; 1H-NMR
(600 MHz, CDCl3) δ 7.73 (d, J = 8.6 Hz, 1H), 7.58 (s, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.52 (d,
J = 8.5 Hz, 1H), 7.14 (s, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.06 (dd, J = 12.0, 1.4 Hz, 2H), 4.68 (dd,
J = 9.4, 5.4 Hz, 1H), 3.97 (s, 3H), 3.96 (s, 3H), 3.79 (ddd, J = 11.2, 9.3, 3.5 Hz, 1H), 3.71 (dt,
J = 10.9, 4.6 Hz, 1H), 2.70 (s, 3H), 1.81 (dtd, J = 14.0, 9.4, 4.5 Hz, 1H), 1.51 (dtd, J = 14.1, 5.1,
3.4 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ 152.13, 148.47, 147.59, 145.69, 139.20, 131.11,
128.74, 127.06, 124.62, 124.23, 123.80, 119.89, 119.26, 111.33, 104.63, 101.14, 99.95, 61.76, 61.14,
57.14, 55.81, 42.63, 35.47. HR-ESI-MS (m/z) calculated for C23H24O5N [M + H]+ 394.1643,
found 394.1649.

Compound 2f: The crude product was purified by silica gel column chromatogra-
phy (PE/EA, 4:1) to obtain the target compound 2f: white solid; yield: 70.5%; 1H-NMR
(600 MHz, CDCl3) δ 7.71 (d, J = 8.5 Hz, 1H), 7.57 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.35 (d,
J = 8.1 Hz, 1H), 7.13 (s, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.07 (dd, J = 3.1, 1.5 Hz, 2H), 6.05 (dd,
J = 3.3, 1.5 Hz, 2H), 4.50 (dd, J = 10.0, 4.9 Hz, 1H), 3.87–3.78 (m, 3H), 2.71 (s, 3H), 1.85–1.76
(m, 1H), 1.58 (dq, J = 14.5, 4.8 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ 148.52, 147.61, 147.10,
144.34, 139.01, 131.09, 127.18, 125.55, 124.38, 123.90, 120.13, 116.91, 116.71, 107.50, 104.62,
101.47, 101.16, 99.93, 61.58, 56.81, 43.08, 35.20. HR-ESI-MS (m/z) calculated for C22H20O5N
[M + H]+ 378.1331, found 378.1336.
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3.3.6. Synthesis of Compounds 1g, 1h, 2g and 2h

RMgBr (1.0 mol/L, 1.5 equivalents) was added to a solution of 1 or 2 (0.052 mmol) in
dry THF (10 mL) under an argon atmosphere at room temperature. The reaction mixture
was stirred at the same temperature until the reaction was complete and then concen-
trated under vacuum. After that, the crude products were purified by silica gel column
chromatography to obtain the target compounds.

Compound 1g: white solid; yield: 80.5%; the crude product was purified by silica
gel column chromatography (PE/EA, 49:1) to obtain the pure compound 1g. 1H-NMR
(600 MHz, CDCl3) δ 7.77–7.70 (m, 2H), 7.57 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.14
(s, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.08–6.07 (m, 2H), 6.06–5.99 (m, 1H), 4.99 (ddd, J = 10.2, 2.2,
1.1 Hz, 1H), 4.88 (dq, J = 17.2, 1.4 Hz, 1H), 4.52 (dd, J = 9.7, 5.3 Hz, 1H), 3.97 (s, 3H), 3.95 (s,
3H), 2.66 (s, 3H), 2.28–2.05 (m, 2H); 13C-NMR (151 MHz, CDCl3) δ 152.14, 147.95, 147.45,
145.83, 140.06, 136.37, 130.99, 129.74, 127.54, 124.78, 123.68, 123.53, 119.87, 118.84, 115.78,
111.09, 104.32, 100.99, 100.73, 61.02, 58.23, 55.78, 42.71, 38.47. HR-ESI-MS (m/z) calculated
for C24H24O4N [M + H]+ 390.1694, found 390.1700.

Compound 1h: white solid; yield: 78.9%; the crude product was purified by silica
gel column chromatography (PE/EA, 47:1) to obtain the target compound 1h. 1H-NMR
(600 MHz, CDCl3) δ 7.78 (s, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.48 (d,
J = 8.5 Hz, 1H), 7.12 (s, 1H), 7.00 (d, J = 8.6 Hz, 1H), 6.07 (s, 2H), 5.83 (ddd, J = 17.2, 10.4,
4.5 Hz, 1H), 5.13 (dt, J = 4.2, 2.0 Hz, 1H), 4.94–4.80 (m, 2H), 3.96 (s, 3H), 3.95 (s, 3H), 2.69
(s, 3H); 13C-NMR (151 MHz, CDCl3) δ 152.16, 148.08, 147.45, 146.31, 140.61, 138.12, 130.89,
127.79, 127.23, 125.18, 123.78, 123.65, 119.87, 118.93, 115.15, 111.38, 104.41, 101.02, 100.78,
60.97, 59.32, 55.80, 42.38. HR-ESI-MS (m/z) calculated for C23H22O4N [M + H]+ 376.1539,
found 376.1543.

Compound 2g: white solid; yield: 80.1%; the crude product was purified by silica
gel column chromatography (PE/EA, 49:1) to obtain the target compound 2g. 1H-NMR
(600 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.5 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H),
7.13 (s, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.10–6.03 (m, 4H), 5.98 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H),
5.05–4.98 (m, 1H), 4.92 (dq, J = 17.2, 1.6 Hz, 1H), 4.30 (dd, J = 9.1, 6.0 Hz, 1H), 2.67 (s, 3H),
2.20 (ddt, J = 50.5, 14.3, 7.4 Hz, 2H); 13C-NMR (151 MHz, CDCl3) δ 148.04, 147.50, 146.95,
144.61, 139.99, 135.72, 130.96, 127.65, 125.74, 123.73, 123.72, 120.10, 117.46, 116.44, 116.27,
107.24, 104.31, 101.32, 101.01, 100.98, 58.13, 43.03, 38.32. HR-ESI-MS (m/z) calculated for
C23H20O4N [M + H]+ 374.1384, found 374.1387.

Compound 2h: white solid; yield: 78.6%; the crude product was purified by silica
gel column chromatography (PE/EA, 49:1) to obtain the target compound 2h. 1H-NMR
(600 MHz, CDCl3) δ 7.78 (s, 1H), 7.70 (d, J = 8.6 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.37
(d, J = 8.1 Hz, 1H), 7.13 (s, 1H), 6.90 (d, J = 8.1 Hz, 1H), 6.16–6.03 (m, 4H), 5.91–5.76 (m,
1H), 5.02–4.91 (m, 1H), 4.93–4.86 (m, 2H), 2.72 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ

148.18, 147.51, 147.02, 145.08, 140.41, 137.12, 130.90, 127.38, 126.07, 123.89, 123.86, 120.10,
116.52, 115.57, 115.29, 107.52, 104.40, 101.47, 101.05, 100.79, 59.34, 42.77. HR-ESI-MS (m/z)
calculated for C22H18O4N [M + H]+ 360.1225, found 360.1230.

3.3.7. Synthesis of Compounds 1i–l and 2i–l

Malonate diester compounds (1.5 equivalents) were added to a solution of 1 or 2
(0.115 mmol) in CH3CN (20 mL) at room temperature. The reaction mixture was stirred for
5–14 h at the same temperature until the reaction was complete and then concentrated under
vacuum. After that, the crude products were purified by silica gel column chromatography
(PE/EA, 4:1) to obtain the target products.

Compound 1i: white solid; yield: 36.3%; 1H-NMR (600 MHz, CDCl3) δ 7.76 (d,
J = 8.6 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.44 (s, 1H), 7.13 (s, 1H),
7.02 (d, J = 8.5 Hz, 1H), 6.06 (dd, J = 8.6, 1.4 Hz, 2H), 5.24 (d, J = 10.8 Hz, 1H), 3.94 (s,
3H), 3.94 (s, 3H), 3.66 (s, 3H), 3.59 (s, 3H), 3.40 (d, J = 10.9 Hz, 1H), 2.71 (s, 3H); 13C-NMR
(151 MHz, CDCl3) δ 168.39, 167.22, 151.93, 148.10, 147.56, 146.81, 138.45, 131.07, 127.11,
125.08, 124.31, 124.02, 123.26, 119.81, 118.97, 112.45, 104.45, 101.06, 100.60, 61.01, 57.56, 55.91,
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55.28, 52.43, 52.10, 42.22. HR-ESI-MS (m/z) calculated for C26H26O8N [M + H]+ 480.1643,
found 480.1653.

Compound 1j: white solid; yield: 30.9%; 1H-NMR (600 MHz, CDCl3) δ 7.76 (d,
J = 8.5 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.46 (s, 1H), 7.12 (d,
J = 2.2 Hz, 1H), 7.01 (d, J = 8.5 Hz, 1H), 6.05 (s, 2H), 5.25 (d, J = 10.8 Hz, 1H), 4.25–4.11 (m,
2H), 4.05–3.96 (m, 2H), 3.94 (s, 3H), 3.93 (s, 3H), 3.37 (d, J = 10.8 Hz, 1H), 2.72 (s, 3H), 1.12
(t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H); 13C-NMR (151 MHz, CDCl3) δ 168.03, 167.03,
151.92, 148.01, 147.50, 146.87, 138.62, 131.05, 127.17, 125.14, 124.53, 123.92, 123.37, 119.81,
118.85, 112.15, 104.41, 101.04, 100.76, 61.25, 61.01, 60.96, 57.35, 55.82, 55.33, 42.11, 13.96,
13.64. HR-ESI-MS (m/z) calculated for C28H29O8N Na [M + Na]+ 530.1776, found 530.1785.

Compound 1k: white solid; yield: 30.9%; 1H-NMR (600 MHz, CDCl3) δ 7.76 (d,
J = 8.5 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.52–7.45 (m, 2H), 7.12 (s, 1H), 6.99 (d, J = 8.5 Hz,
1H), 6.04 (s, 2H), 5.27 (d, J = 10.9 Hz, 1H), 5.11 (h, J = 6.3 Hz, 1H), 4.84 (p, J = 6.3 Hz, 1H), 3.94
(s, 3H), 3.92 (s, 3H), 3.32 (d, J = 10.9 Hz, 1H), 2.71 (s, 3H), 1.24 (d, J = 6.2 Hz, 3H), 1.11 (dd,
J = 9.0, 6.3 Hz, 6H), 0.95 (d, J = 6.4 Hz, 3H); 13C-NMR (151 MHz, CDCl3) δ 167.65, 166.42,
151.96, 147.98, 147.48, 146.92, 138.71, 131.04, 127.22, 125.24, 124.50, 123.82, 123.52, 119.82,
118.76, 112.00, 104.38, 101.00, 100.90, 68.59, 68.40, 60.85, 56.91, 55.76, 55.48, 41.95, 21.68,
21.62, 21.57, 21.08. HR-ESI-MS (m/z) calculated for C30H33O8N Na [M + Na]+ 558.2089,
found 558.2098.

Compound 1l: white solid; yield: 38.6%; 1H-NMR (600 MHz, CDCl3) δ 7.76 (d,
J = 8.6 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.46 (s, 1H), 7.12 (s, 1H), 7.00
(d, J = 8.6 Hz, 1H), 6.05 (dd, J = 8.1, 1.4 Hz, 2H), 5.25 (d, J = 10.8 Hz, 1H), 4.17 (t, J = 6.7 Hz,
2H), 4.09 (qt, J = 10.7, 6.8 Hz, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 3.39 (d, J = 1.9 Hz, 1H), 2.71
(s, 3H), 1.47–1.35 (m, 4H), 1.27–1.11 (m, 4H), 0.85 (dt, J = 12.9, 7.4 Hz, 6H); 13C-NMR
(151 MHz, CDCl3) δ 168.09, 167.05, 151.95, 148.02, 147.50, 146.82, 138.65, 131.03, 127.19,
125.14, 124.54, 123.90, 123.41, 119.80, 118.84, 112.06, 104.38, 101.02, 100.79, 65.40, 64.97, 60.95,
57.28, 55.74, 55.31, 42.06, 30.45, 30.21, 19.03, 18.90, 13.70, 13.67. HR-ESI-MS (m/z) calculated
for C32H37O8N Na [M + Na]+ 586.2406, found 586.2411.

Compound 2i: light-orange solid; yield: 35.9%; 1H-NMR (600 MHz, CDCl3) δ 7.73 (d,
J = 8.6 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.42 (s, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.13 (s, 1H),
6.92 (d, J = 8.1 Hz, 1H), 6.09–6.01 (m, 4H), 5.12 (d, J = 11.1 Hz, 1H), 3.70 (s, 3H), 3.61 (s,
3H), 3.47 (d, J = 11.1 Hz, 1H), 2.69 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 167.98, 167.01,
148.16, 147.62, 147.13, 145.35, 138.40, 131.08, 124.48, 124.27, 123.99, 123.34, 120.00, 117.03,
112.39, 108.33, 104.43, 101.51, 101.08, 100.57, 57.33, 55.16, 52.40, 52.31, 42.38. HR-ESI-MS
(m/z) calculated for C25H21O8N Na [M + Na]+ 486.1150, found 486.1159.

Compound 2j: white solid; yield: 33.8%; 1H-NMR (600 MHz, CDCl3) δ 7.74 (d,
J = 8.6 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.45 (s, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.12 (s, 1H),
6.91 (d, J = 8.1 Hz, 1H), 6.09–5.97 (m, 4H), 5.13 (d, J = 11.1 Hz, 1H), 4.21 (ddq, J = 40.9, 10.7,
7.1 Hz, 2H), 4.11–3.90 (m, 2H), 3.43 (d, J = 11.1 Hz, 1H), 2.69 (s, 3H), 1.16 (t, J = 7.1 Hz,
3H), 1.11 (t, J = 7.1 Hz, 3H); 13C-NMR (151 MHz, CDCl3) δ 167.58, 166.80, 148.08, 147.57,
147.12, 145.40, 138.57, 131.07, 127.26, 126.10, 124.20, 123.44, 120.01, 116.94, 112.57, 108.18,
104.41, 101.44, 101.07, 100.72, 61.34, 61.29, 57.14, 55.33, 42.28, 13.99, 13.77. HR-ESI-MS (m/z)
calculated for C27H25O8N Na [M + Na]+ 514.1461, found 514.1472.

Compound 2k: white solid; yield: 25.6%; 1H-NMR (600 MHz, CDCl3) δ 7.74 (d,
J = 8.6 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.46 (s, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.12 (s, 1H),
6.90 (d, J = 8.1 Hz, 1H), 6.12–5.76 (m, 4H), 5.17–5.06 (m, 2H), 4.91–4.76 (m, 1H), 3.38 (d,
J = 11.1 Hz, 1H), 2.69 (s, 3H), 1.29 (d, J = 6.3 Hz, 3H), 1.16 (d, J = 6.3 Hz, 3H), 1.13 (d,
J = 6.2 Hz, 3H), 1.00 (d, J = 6.2 Hz, 3H); 13C-NMR (151 MHz, CDCl3) δ 167.03, 166.35, 148.04,
147.55, 147.14, 145.47, 138.65, 131.06, 127.26, 126.18, 124.11, 123.53, 119.99, 116.87, 112.58,
108.04, 104.37, 101.36, 101.03, 100.87, 68.80, 68.70, 56.71, 55.59, 42.14, 21.76, 21.61, 21.47,
21.23. HR-ESI-MS (m/z) calculated for C29H29O8N Na [M + Na]+ 542.1781, found 542.1785.

Compound 2l: white solid; yield: 28.3%; 1H-NMR (600 MHz, CDCl3) δ 7.74 (d,
J = 8.6 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.45 (s, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.12 (s, 1H),
6.91 (d, J = 8.1 Hz, 1H), 6.11–5.99 (m, 4H), 5.12 (d, J = 11.1 Hz, 1H), 4.18 (dt, J = 10.9, 6.7 Hz,
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1H), 4.10 (dt, J = 10.7, 6.8 Hz, 1H), 4.03–3.90 (m, 2H), 3.43 (d, J = 3.2 Hz, 1H), 2.69 (s,
3H), 1.55–1.38 (m, 4H), 1.30–1.23 (m, 2H), 1.22–1.14 (m, 2H), 0.89–0.84 (m, 6H); 13C-NMR
(151 MHz, CDCl3) δ 167.59, 166.85, 148.08, 147.56, 147.16, 145.39, 138.59, 131.05, 127.26,
126.09, 124.18, 123.44, 119.98, 116.94, 112.58, 108.15, 104.37, 101.45, 101.05, 100.74, 65.23,
65.19, 57.07, 55.34, 42.24, 30.47, 30.26, 18.98, 18.87, 13.66, 13.63. HR-ESI-MS (m/z) calculated
for C31H33O8N Na [M + Na]+ 570.2095, found 570.2098.

3.3.8. Synthesis of Compound 1m

To a stirred solution of 1 (100 mg, 0.287 mmol) in acetone (100 mL) was added a
20% solution of Na2CO3 in water at room temperature. The reaction mixture was stirred
under reflux for 24 h. After the reaction was complete, the mixture was concentrated under
vacuum. The residue was dissolved in DCM and extracted with saturated aqueous NaCl
(3 × 10 mL). The combined organic layers were collected, dried over anhydrous Na2SO4,
and concentrated under vacuum. After that, the crude product was purified by silica gel
column chromatography (PE/EA, 4:1) to obtain the target compound.

Compound 1m: white solid; yield: 90.2%; 1H-NMR (600 MHz, CDCl3) δ 7.73 (d,
J = 8.6 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.54 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.13 (s, 1H),
6.98 (d, J = 8.5 Hz, 1H), 6.11–6.04 (m, 2H), 5.07 (dd, J = 11.2, 3.7 Hz, 1H), 3.98 (s, 3H), 3.95 (s,
3H), 2.66 (s, 3H), 2.60 (dd, J = 15.0, 11.2 Hz, 1H), 2.28 (dd, J = 15.0, 3.7 Hz, 1H), 2.09 (s, 3H);
13C-NMR (151 MHz, CDCl3) δ 194.64, 145.84, 142.33, 141.82, 140.00, 134.55, 127.31, 124.79,
124.05, 121.81, 120.98, 120.48, 117.40, 116.55, 110.13, 103.85, 100.94, 100.57, 65.75, 61.19, 60.40,
53.31, 49.78, 39.52. HR-ESI-MS (m/z) calculated for C24H23O5N Na [M + Na]+ 428.1465,
found 428.1468.

3.3.9. Synthesis of Compounds 1n–q

Aromatic aldehydes (3 equivalents), benzoic acid (30 mg, 0.246 mmol), and piperidine
(300 µL) were added to a stirred solution of 1m (30 mg, 0.074 mmol) in toluene (10 mL)
at room temperature. The reaction mixture was stirred under reflux until the reaction
was complete and then concentrated under vacuum. After that, the crude products were
purified by silica gel column chromatography to obtain the target compounds.

Compound 1n: The crude product was purified by silica gel column chromatography
(PE/EA, 7:1) to obtain the target compound 1n: yellow solid; yield: 62.0%; 1H-NMR
(600 MHz, CDCl3) δ 7.79 (d, J = 8.6 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H),
7.36 (s, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 7.8 Hz, 2H), 6.92–6.86 (m, 2H), 6.70–6.65
(m, 1H), 6.63 (t, J = 2.0 Hz, 1H), 6.48 (d, J = 16.2 Hz, 1H), 5.90 (d, J = 1.5 Hz, 1H), 5.63 (d,
J = 1.6 Hz, 1H), 5.14 (dd, J = 11.4, 4.1 Hz, 1H), 4.02 (s, 3H), 3.96 (s, 3H), 3.80 (s, 3H), 2.98
(dd, J = 13.4, 11.4 Hz, 1H), 2.63 (s, 3H), 2.41 (dd, J = 13.5, 4.1 Hz, 1H); 13C-NMR (151 MHz,
CDCl3) δ 199.99, 159.58, 152.24, 148.01, 147.41, 145.64, 142.97, 139.42, 135.85, 131.05, 129.42,
128.51, 127.68, 127.15, 124.86, 123.84, 123.37, 121.06, 119.79, 118.87, 116.16, 112.57, 111.60,
103.97, 101.50, 100.93, 61.13, 56.81, 55.85, 55.23, 42.94, 42.74. HR-ESI-MS (m/z) calculated
for C32H29O6N Na [M + Na]+ 546.1876, found 546.1887.

Compound 1o: The crude product was purified by silica gel column chromatography
(PE/EA, 8:1) to obtain the target compound 1o: yellow liquid; yield: 58.6%; 1H-NMR
(600 MHz, CDCl3) δ 7.80 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H),
7.36 (s, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.05 (s, 1H), 7.01 (d, J = 8.5 Hz,
1H), 6.96 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 16.3 Hz, 1H), 6.77 (s, 1H), 6.47 (d, J = 16.3 Hz, 1H),
5.88 (d, J = 1.6 Hz, 1H), 5.54 (d, J = 1.6 Hz, 1H), 5.14 (dd, J = 11.4, 4.0 Hz, 1H), 4.02 (s,3H),
3.97 (s, 3H), 2.97 (dd, J = 13.4, 11.4 Hz, 1H), 2.63 (s, 3H), 2.39 (dd, J = 13.4, 4.1 Hz, 1H), 2.32
(s, 3H); 13C-NMR (151 MHz, CDCl3) δ 200.01, 152.25, 148.00, 147.40, 145.65, 143.28, 139.47,
138.08, 134.43, 131.05, 130.76, 128.96, 128.59, 128.37, 127.35, 127.17, 125.25, 124.87, 123.85,
123.40, 119.82, 118.88, 111.59, 103.87, 101.56, 100.88, 61.14, 56.83, 55.85, 42.97, 42.72, 21.16.
HR-ESI-MS (m/z) calculated for C32H29O5N Na [M + Na]+ 530.1925, found 530.1938.

Compound 1p: The crude product was purified by silica gel column chromatography
(PE/EA, 8:1) to obtain the target compound 1p: yellow liquid; yield: 47.2%; 1H-NMR
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(600 MHz, CDCl3) δ 7.80 (d, J = 8.6 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H),
7.44 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.32 (s, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 1.8 Hz,
1H), 7.06 (s, 1H), 7.02 (dd, J = 8.8, 2.0 Hz, 2H), 6.76 (d, J = 16.3 Hz, 1H), 6.43 (d, J = 16.3 Hz,
1H), 5.91 (d, J = 1.6 Hz, 1H), 5.68 (d, J = 1.6 Hz, 1H), 5.12 (dd, J = 11.4, 4.3 Hz, 1H), 4.02 (s,
3H), 3.97 (s, 3H), 2.98 (dd, J = 13.2, 11.4 Hz, 1H), 2.62 (s, 3H), 2.39 (dd, J = 13.3, 4.2 Hz, 1H);
13C-NMR (151 MHz, CDCl3) δ 199.84, 152.27, 148.02, 147.35, 145.63, 141.19, 139.30, 136.59,
132.61, 131.09, 130.80, 129.91, 128.62, 128.37, 127.00, 126.62, 124.78, 123.96, 123.42, 122.61,
119.86, 118.94, 111.65, 104.11, 101.35, 101.00, 61.15, 57.03, 55.85, 42.90, 42.71. HR-ESI-MS
(m/z) calculated for C31H27O5NBr [M + Na]+ 572.1057, found 572.1067.

Compound 1q: The crude product was purified by silica gel column chromatography
(PE/EA, 6:1) to obtain the target compound 1q: yellow solid; yield: 29.9%; 1H-NMR
(600 MHz, CDCl3) δ 7.77 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.4 Hz,
1H), 7.33 (s, 1H), 7.17–7.12 (m, 1H), 7.01 (d, J = 8.5 Hz, 1H), 6.95 (s, 1H), 6.93 (s, 1H), 6.85
(s, 1H), 6.38 (d, J = 16.2 Hz, 1H), 5.89 (d, J = 1.6 Hz, 1H), 5.72 (d, J = 1.6 Hz, 1H), 5.15 (dd,
J = 11.3, 4.2 Hz, 1H), 4.03 (s, 3H), 3.97 (s, 3H), 3.91 (s, 3H), 3.87 (s, 3H), 3.06 (dd, J = 13.3,
11.3 Hz, 1H), 2.63 (s, 3H), 2.42 (dd, J = 13.4, 4.2 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ
200.08, 152.23, 151.09, 148.21, 147.70, 147.10, 145.69, 141.30, 139.29, 131.23, 128.44, 127.80,
127.03, 126.26, 124.93, 124.18, 123.42, 119.77, 118.88, 117.79, 115.28, 111.63, 109.18, 104.10,
101.47, 100.96, 61.15, 56.96, 56.32, 55.87, 42.76, 31.45, 30.21; HR-ESI-MS (m/z) calculated for
C33H30O7NBr Na [M + Na]+ 654.1085, found 654.1098.

3.4. Biological Evaluations
3.4.1. Cytotoxic Bioassay

According to the literature [33–38], the CCK-8 assay was used to determine cell
(National Collection of Authenticated Cell Cultures, Shanghai, China) viability, and the
cell survival rate was calculated according to optical density (OD) measurements. Single-
cell suspensions were prepared with RPMI-1640 culture medium containing 10% fetal
bovine serum (Gibco, CA, USA). Then, each well in a 96-well plate (Corning Life Sciences
(Wujiang) Co., Ltd. Wujiang, China) was inoculated with 100 µL of this medium containing
approximately 5 × 104 cells/mL for 24 h of culture at 37 ◦C with 5% CO2. Then, solutions
of the test compounds were added in each well. Eight different concentrations of the
test compounds were employed. Each treatment consisted of three wells, with three
parallel replicates.

After that, to the cell suspensions, 10 µL of CCK-8 stock solution (MedChemExpress,
Shanghai, China) was directly added after 48 h of cell cultivation at 37 ◦C, followed by
further cultivation for 1 to 4 h in the dark operation, real-time observation. The OD value
of each well was measured and recorded at 450 nm using a microplate reader (Multiskan
MK3, Thermo, Suzhou Science Instrument Co., Ltd. Suzhou, Jiangsu, China) to generate
cell growth curves. The IC50 values of the compounds were calculated using GraphPad
Prism 8 software (version 8.0.2, GraphPad Software Inc., Santiago, MN, USA), and the
experimental results are expressed as the means ± SD.

3.4.2. Cell Apoptosis Assay

The Annexin V–FITC/PI double-staining was used to detect cell apoptosis (DOJINDO,
Kumamoto-ken, Japan). Compound-treated cells were trypsinized, washed twice with PBS,
and transferred to microcentrifuge tubes for centrifugation at 1000 rpm for 5 min at room
temperature. The cell suspension density was adjusted to 1 × 106/mL with 1× Annexin
V binding solution. Then, Annexin V–FITC (5 µL) and PI (5 µL) solutions were added to
100 µL of the cell suspension. The cells were incubated at room temperature for 15 min in
the dark, and then 400 µL of 1× Annexin V binding solution was added. Finally, the cells
were analyzed by flow cytometry (ACEN, NovoCyte, ACEA Biosciences Inc., Santiago,
MN, USA).
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3.4.3. Cell-Cycle Assay

After the cells were treated with compound 2j, they were trypsinized, prepared
as a single-cell suspension (1 × 106/mL), and transferred to microcentrifuge tubes for
centrifugation at 1500 rpm for 5 min at room temperature; to prevent cell clumping, the
cells were fixed by adding ice-cold 70% ethanol (1 mL) and blocking for 15 min at 4 ◦C.
Then, the cells were centrifuged at 1500 rpm for 5 min, and 500 µL of PI solution was
added (50 µg/mL PI, 100 µg/mL RNase A, 0.05% Triton X-100) for 40 min of incubation at
37 ◦C. The cells were centrifuged at 1500 rpm for 5 min, and 1 mL of PBS (HyClone, Logan,
UT, USA) was added. After another centrifugation at 1500 rpm for 5 min, the cells were
resuspended in 500 µL PBS and analyzed by flow cytometry.

4. Conclusions

In summary, 33 derivatives of chelerythrine and sanguinarine were designed and
synthesized by using suitable nucleophilic substances for addition reactions, and their
antileukemia activities against the Jurkat Clone E6-1 and THP-1 cell lines were evaluated
for the first time. By analyzing these derivatives, some initial SARs were revealed. For
example, the presence of cyano and malonic esters groups at the C-6 position of the
benzophenanthridine skeleton resulted in stronger antileukemia activity, whereas the
introduction of hydroxyethyl, acetonyl, or other groups at this position led to decreased
activity. Moreover, compounds containing methylenedioxy moieties at the C-7 and C-8
positions had better antileukemia activity. Thus, when methylenedioxy groups were at
the C-7 and C-8-positions, the introduction of cyano or malonic esters groups at the C-6
position could result in the best antileukemia activity.

Further studies indicated that compound 2j induced apoptosis in both Jurkat Clone
E6-1 and THP-1 cells in a dose-dependent manner, and these results were consistent with
those from the CCK-8 assay. The inhibitory effects of compound 2j might be related to
cell-cycle changes, and these data were consistent with the apoptosis detection results.
These findings became clearer after treatment with 1.0 µM 2j for 48 h. In conclusion,
compound 2j induced apoptosis in Jurkat Clone E6-1 and THP-1 cells and arrested these
cells in the G0/G1 phase, possibly by disrupting the cell-cycle, reducing DNA synthesis,
and inducing apoptosis. These mechanisms led to inhibition of the proliferation and growth
of leukemia cells.

Among all of the prepared compounds, compound 2j showed satisfactory activity
against Jurkat Clone E6-1 and THP-1 cells, and it could be considered for further inves-
tigation and optimization. However, since we selected transformed leukemia cells, this
might have some drawbacks. In order to explore whether the cytotoxicity observed is
specific to the leukemia lines, we will continue to test the compounds on a non-transformed
cell type in future experiments. Lastly, our research suggested that compound 2j might
be a potentially useful starting point for further optimization to become a new lead com-
pound, providing a rich and diverse material basis for the development of innovative
antileukemia drugs.
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