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ABSTRACT Sulbactam-durlobactam is a B-lactam-f-lactamase inhibitor combination
designed to treat serious Acinetobacter baumannii-calcoaceticus complex (ABC) infections,
including carbapenem-non-susceptible and multidrug-resistant (MDR) isolates. The current
study characterized the in vitro activity of sulbactam-durlobactam against a collection of
5,032 ABC clinical isolates collected in 33 countries across the Asia/South Pacific region,
Europe, Latin America, the Middle East, and North America from 2016 to 2021. The sulbac-
tam-durlobactam MIC,, and MICy, were 1 and 2 wg/mL, respectively, for all ABC isolates
tested. The addition of durlobactam (at a fixed concentration of 4 ug/mL) to sulbactam
decreased its MIC;, by 8-fold (from 8 to 1 wg/mL) and its MICy, by 32-fold (from 64
to 2 pg/mL) for all ABC isolates. The in vitro activity of sulbactam-durlobactam was main-
tained across individual ABC species, years, global regions of collection, specimen sources,
and resistance phenotypes, including MDR and extensively drug-resistant (XDR) isolates. At
4 pg/mL (preliminary sulbactam-durlobactam susceptible MIC breakpoint), sulbactam-durlo-
bactam inhibited 98.3% of all ABC isolates and >96% of sulbactam-, imipenem-, ciprofloxa-
cin-, amikacin-, and minocycline-non-susceptible isolates; as well as colistin-resistant, MDR,
and XDR isolates. Most imipenem-non-susceptible ABC isolates (96.8%, 2,488/2,570) were
carbapenem-resistant A. baumannii (CRAB); 96.9% (2,410/2,488) of CRAB isolates were sul-
bactam-durlobactam-susceptible. More than 80% of ABC isolates had sulbactam-durlobac-
tam MIC values that were =2 doubling-dilutions (4-fold) lower than sulbactam alone.
Only 1.7% (84/5,032) of ABC isolates from 2016 to 2021 had sulbactam-durlobactam MIC
values of >4 pg/mL. Of the 84 isolates, 94.0% were A. baumannii, 4.8% were A. pittii, and
1.2% were A. nosocomialis. In summary, sulbactam-durlobactam demonstrated potent
antibacterial activity against a 2016 to 2021 collection of geographically diverse clinical
isolates of ABC isolates, including carbapenem-non-susceptible and MDR isolates.
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antimicrobial-resistant ABC infections, for which there is a high unmet medical need, is an
international priority (6).

Sulbactam-durlobactam (formerly sulbactam-ETX2514) is a narrow-spectrum, parenteral
B-lactam-B-lactamase inhibitor combination that recently completed a phase 3 study to
evaluate its safety and efficacy for the treatment of serious infections caused by ABC,
including carbapenem-resistant and MDR isolates (7, 8). Sulbactam-durlobactam has
been designated a Qualified Infectious Disease Product (QIDP) by the United States
Food and Drug Administration and awarded Fast Track status.

Sulbactam, a semi-synthetic penicillanic acid, is a B-lactamase inhibitor of a subset of
Ambler class A enzymes (excluding TEM-1). It was initially partnered with ampicillin in the
1980s and was approved for skin and skin structure, intra-abdominal, bone and joint, and
gynecological infections. Sulbactam also inhibits bacterial cell wall synthesis in ABC by
binding to penicillin-binding protein (PBP) 1a/b and PBP3 (9). Sulbactam is susceptible to
degradation by a variety of acquired or upregulated B-lactamases, including the serine
B-lactamases of class A (TEM-1), class C (ADC-30), and class D (OXA), and class B metallo-
B-lactamases (MBLs) (8). Resistance to sulbactam as well as broad-spectrum cephalosporins
and carbapenems has emerged in ABC and spread widely, mainly due to the acquisition of
OXA B-lactamases (OXA-23, OXA-24/40, OXA-51, OXA-58, OXA-143, OXA-235) (1, 2, 5).

Durlobactam is a rationally designed non-B-lactam diazabicyclooctane (DBO) B-lactamase
inhibitor of Ambler class A, C, and D B-lactamases that can protect sulbactam from degrada-
tion by these enzymes, effectively restoring its activity against sulbactam-non-susceptible ABC
isolates expressing these B-lactamases (10-16). Durlobactam does not inhibit MBLs (10).
Durlobactam has a modified DBO scaffold resulting in inhibition of a broad range of class
D B-lactamases, with notably more potent inhibition of class A and C B-lactamases compared
to other DBO inhibitors (e.g., avibactam, relebactam) (10, 11). Ceftazidime-avibactam, imipe-
nem-relebactam, meropenem-vaborbactam, and ceftolozane-tazobactam do not have clini-
cally useful activity against Acinetobacter spp. (17).

The goal of the current study was to characterize the in vitro activity of sulbactam-durlo-
bactam against a recent geographically diverse collection of clinical ABC isolates. Study isolates
were chosen from —70°C frozen stocks maintained by International Health Management
Associates (IHMA; Schaumburg, IL) based on geographic distribution, site of infection, and
year of isolation (and therefore, this was not designed to be a prevalence-based study).

RESULTS

The current study surveyed 5,032 ABC isolates collected by clinical laboratories in 264 med-
ical centers in 33 countries across five global regions (Europe, 42.2% of all isolates tested;
North America [United States], 29.9%; Asia/South Pacific, 13.6%; Latin America, 12.6%; Middle
East [Israel], 1.7%) from 2016 to 2021 and determined their in vitro susceptibility to sulbactam-
durlobactam and nine comparator agents. The percentages of all isolates tested by year were
16.8% from 2016, 16.4% from 2017, 18.4% from 2018, 17.1% from 2019, 15.8% from 2020, and
15.5% from 2021. Isolates tested were limited to one isolate per patient and were primarily
from five common infection sources: lower respiratory (54.3% of all isolates tested), blood-
stream (20.2%), urinary tract (16.5%), skin and soft tissue (4.5%), and intraabdominal (4.3%). To
be consistent with clinical experience, (1-3) 80.2% of the isolates in the survey were A. bau-
mannii, followed by 12.7% A. pittii, 5.9% A. nosocomialis, and 1.1% A. calcoaceticus.

The sulbactam-durlobactam MIC,, and MICy, were 1 and 2 pg/mlL, respectively, for all ABC
isolates tested (Table 1). The addition of durlobactam (at a fixed concentration of 4 pg/mL) to
sulbactam decreased its MIC;, by 8-fold (from 8 to 1 wg/mL) and its MIC,, by 32-fold (from 64
to 2 wg/mL) for all ABC isolates. MICs, and MIC,, values for sulbactam-durlobactam ranged
from 0.5 to 1 ug/mL and from 1 to 2 ug/mL, respectively, for individual ABC species. The
sulbactam-durlobactam MIC range was widest for A. baumannii (<=0.03 to >64 wg/mL),
narrower for A. pittii (=0.03 to 32 ng/mL) and A. nosocomialis (=0.03 to 8 wg/mL), and nar-
rowest for A. calcoaceticus (0.12 to 2 pg/mL), which correlated with the number of isolates
tested for each species.

Sulbactam-durlobactam MIC values were =4 ug/mL (the preliminary susceptible
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TABLE 1 In vitro activities of sulbactam-durlobactam and comparator antimicrobial agents tested against 5,032 clinical isolates of
Acinetobacter baumannii-calcoaceticus complex species collected globally from 2016 to 20214

Antimicrobial Agents and Chemotherapy

MIC (ng/mL) MIC interpretation (%)
Species (no. of isolates) Antimicrobial agent MIC,, MIC,, Range Susceptible Intermediate Resistant
All isolates (5,032)® Sulbactam-durlobactam¢ 1 2 =0.03->64 98.3 NA 1.7
Sulbactam¢ 8 64 0.25->64 46.9 8.0 451
Cefepime 16 >16 =0.12->16 44.6 7.9 474
Imipenem 8 >64 =0.03->64 48.9 0.6 50.5
Meropenem 16 >64 =0.03->64 47.9 11 51.0
Amikacin 4 >64 =0.5->64 58.6 33 38.1
Ciprofloxacin >4 >4 =0.12->4 444 0.7 54.9
Colistin® 0.5 1 =0.25->8 NA 95.9 4.1
Minocycline 0.5 16 =0.12->16 78.3 10.1 11.6
Tigecyclinef 0.5 2 0.03-32 NA NA NA
A. baumannii (4,038) Sulbactam-durlobactam 1 2 =0.03->64 98.0 NA 2.0
Sulbactam 16 64 0.25->64 36.5 8.9 54.6
Cefepime >16 >16 =0.12->16 336 8.8 57.6
Imipenem 32 >64 =0.03->64 37.7 0.6 61.6
Meropenem 64 >64 =0.03->64 36.6 1.2 62.3
Amikacin 32 >64 =0.5->64 49.5 3.8 46.6
Ciprofloxacin >4 >4 =0.12->4 327 0.7 66.6
Colistin 0.5 1 =0.25->8 NA 95.1 4.9
Minocycline 1 16 =0.12->16 733 12.4 14.4
Tigecycline 0.5 2 0.03-32 NA NA NA
A. calcoaceticus (55) Sulbactam-durlobactam 0.5 1 0.12-2 100 NA 0
Sulbactam 2 4 1-8 94.5 55 0
Cefepime 4 8 1->16 90.9 7.3 1.8
Imipenem 0.25 0.25 0.12-1 100 0 0
Meropenem 0.25 1 0.12-4 98.2 1.8 0
Amikacin 1 2 =0.5-16 100 0 0
Ciprofloxacin =0.12 0.25 =0.12-0.5 100 0 0
Colistin 0.5 1 =0.25-2 NA 100 0
Minocycline =0.12 0.25 =0.12-0.25 100 0 0
Tigecycline 0.12 0.25 0.03-1 NA NA NA
A. nosocomialis (296) Sulbactam-durlobactam 0.5 1 =0.03-8 99.7 NA 0.3
Sulbactam 2 16 0.25->64 81.8 8.1 10.1
Cefepime 2 >16 0.5->16 85.1 44 10.5
Imipenem 0.25 0.5 0.06->64 92.2 0 7.8
Meropenem 0.25 1 0.06->64 92.2 0.3 74
Amikacin 2 8 =0.5->64 92.6 2.0 54
Ciprofloxacin 0.25 2 =0.12->4 89.9 1.4 8.8
Colistin 0.5 1 =0.25->8 NA 98.0 20
Minocycline =0.12 0.5 =0.12-16 98.0 1.4 0.7
Tigecycline 0.12 1 0.03-4 NA NA NA
A. pittii (638) Sulbactam-durlobactam 0.5 2 =0.03-32 99.4 NA 0.6
Sulbactam 2 4 0.5->64 929 24 4.7
Cefepime 4 8 =0.12->16 914 42 4.4
Imipenem 0.25 0.5 0.06->64 95.1 0.3 4.5
Meropenem 0.5 1 =0.03->64 95.0 0.8 4.2
Amikacin 1 4 =0.5->64 96.6 1.1 24
Ciprofloxacin =0.12 0.5 =0.12->4 92.8 0.3 6.9
Colistin 0.5 1 =0.25-4 NA 99.8 0.2
Minocycline =0.12 0.25 =0.12-16 98.9 0.6 0.5
Tigecycline 0.12 0.5 0.03-4 NA NA NA

9ABC, Acinetobacter baumannii-calcoaceticus complex; NA, not available.
bThere were four isolates of non-identified Acinetobacter spp. and one isolate of Acinetobacter dijkshoomniae that are included in the total data set but not divided out individually in the table.
Sulbactam-durlobactam MICs were interpreted using the preliminary MIC breakpoints of =4 ug/mL (susceptible) and =8 ug/mL (resistant).
dSulbactam MICs were interpreted using the sulbactam component of CLSI M100 (2021) ampicillin-sulbactam MIC breakpoints (=8/4 [susceptible], 16/8 [intermediate], and

=32/16 [resistant]) given that sulbactam is well established to comprise the active component of the combination for Acinetobacter spp.

€CLSI M100 (2021) lists only intermediate and resistant MIC breakpoints for colistin tested against Acinetobacter spp.
MIC interpretative criteria are not published by CLSI M100 (2021) for tigecycline tested against Acinetobacter spp.
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FIG 1 Sulbactam-durlobactam (black bars) and sulbactam (gray bars) MIC distributions for 5,032 isolates of
Acinetobacter baumannii-calcoaceticus complex (ABC) species collected globally from 2016 to 2021.

breakpoint) (18, 19) for 98.3% of all ABC isolates: 100% of A. calcoaceticus, 99.7% of A. nosoco-
mialis, 99.4% of A. pittii, and 98.0% of A. baumannii isolates. Sulbactam-durlobactam demon-
strated a unimodal MIC distribution, with most MICs (97.9%; 4,924/5,032) measuring from
0.12 to 4 ng/mL and with modal MICs of 0.5 and 1 wg/mL (Fig. 1). In contrast to sulbactam-
durlobactam, sulbactam alone showed a bimodal MIC distribution; one population with a
mode of 2 ug/mL and a range of 0.5 to 4 ng/mL and a second population with a mode
of 16 to 32 ug/mL and a range of 8 to >64 ug/mL (Fig. 1). Of the 2,670 isolates with sul-
bactam MIC values of 8 to >64 ug/mL, 96.9% (2,587) were restored to sulbactam MIC
values of =4 ug/mL in the presence of durlobactam, suggesting that these isolates carry
B-lactamases (Table 2).

Susceptibility to comparator agents varied by ABC species (Table 1). Less than 50% of
A. baumannii isolates were susceptible to sulbactam, cefepime, imipenem, meropenem,
amikacin, and colistin; 73.3% of isolates were minocycline-susceptible. Percentages of sus-
ceptible values were >90% for all agents tested against A. calcoaceticus and A. pittii, and for
all agents except sulbactam, cefepime, and ciprofloxacin against A. nosocomialis. Colistin
(MICqo, T g/mL) and tigecycline (MICy, 2 ng/mL) were the only two comparator agents
tested which demonstrated in vitro potency equivalent to sulbactam-durlobactam against
all ABC isolates tested; however, these in vitro potencies often do not translate into efficacy
due to toxicities and suboptimal pharmacokinetics (20).

MICs, and MIC,, values for sulbactam-durlobactam did not show appreciable differences
when ABC isolates were analyzed by global region (MIC,, range, 1 ng/mL; MIC,, range, 2 to
4 png/mlL) (Table S1 in Supplemental File 1) and specimen source (MICs, range, 1 ng/mL;
MICy, range, 2 pg/mL) (Table S2). From 2016 to 2021, MIC,, values for sulbactam-durlobactam
for all ABC isolates fluctuated by one doubling-dilution (between 2 and 4 ng/mL) without any
discernible trend (Table S3). The percentages of isolates with sulbactam-durlobactam MICs
=4 pg/mL did not differ significantly (by <3%; P = 0.572) across the 6 years and ranged from
a low of 97.0% in 2017 to a high of 99.3% in 2018. Individual ABC species also showed random
fluctuations in MICs, and MIC,, values across years without identifiable trends.

A total of 84 ABC isolates from 2016 to 2021 had sulbactam-durlobactam MICs of
>4 pg/mL (Table 2). Of these 84 isolates, 79 (94.0%) were A. baumannii, 4 (4.8%) were
A. pittii, and 1 (1.2%) was A. nosocomialis. By year, the percentages of isolates with sulbactam-
durlobactam MICs of >4 ug/mL were: 1.2% (10/843) in 2016, 3.0% (25/826) in 2017, 0.8%
(7/928) in 2018, 2.2% (19/860) in 2019, 1.8% (14/795) in 2020, and 1.2% (9/780) in 2021.
The specimen sources associated with the 84 isolates were 1.6% (16/1,015) bloodstream,
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2.3% (5/217) intraabdominal, 1.9% (52/2,731) lower respiratory, 0.9% (2/227) skin and soft
tissue, and 1.1% (9/832) urinary tract. The 84 isolates were spread across the five regions:
4.7% (30/632) Latin America, 2.3% (2/88) Middle East (Israel), 1.6% (11/685) Asia/South
Pacific, 1.4% (29/2,121) Europe, and 0.8% (12/1,506) North America (United States).

The MIC,, for sulbactam-durlobactam was 4 wg/mL for all antimicrobial-non-susceptible
phenotypes of ABC studied, including sulbactam-non-susceptible (defined as MIC = 8 wg/ml),
carbapenem-non-susceptible, colistin-resistant, MDR, and XDR isolates (Table 2). At 4 wg/mL
(the preliminary susceptibility breakpoint), sulbactam-durlobactam inhibited >96% of sulbac-
tam-, imipenem-, ciprofloxacin-, amikacin-, and minocycline-non-susceptible, and colistin-resist-
ant, MDR, and XDR isolates. Most imipenem-non-susceptible ABC isolates (96.8%, 2,488/2,570)
were carbapenem-resistant A. baumannii (CRAB); 96.9% (2,410/2,488) of CRAB isolates were sul-
bactam-durlobactam-susceptible. At a concentration of =4 ug/mL, sulbactam alone inhibited
<10% of isolates in all antimicrobial-non-susceptible phenotype subsets. The MIC,, value for
sulbactam alone was 64 pg/mL for all ABC isolates tested and for all antimicrobial-non-suscepti-
ble phenotypes studied. Taken together, these results suggest there is little to no pre-existing
cross-resistance between sulbactam-durlobactam and other classes of antimicrobial agents.

DISCUSSION

The treatment of ABC infections is clinically challenging. Current first-line therapies
include ampicillin-sulbactam, carbapenems (imipenem, meropenem), and broad-spectrum
cephalosporins (ceftazidime, cefepime) when isolates demonstrate in vitro susceptibility (3, 21).
In the collection of 5,032 ABC surveillance isolates tested in the current study, <50% were
susceptible to sulbactam, cefepime, imipenem, meropenem, ciprofloxacin, and colistin (Table 1).
Additionally, 53.3% (2,680/5,032) and 42.1% (2,116/5,032) of isolates, respectively, demonstrated
MDR or XDR phenotypes (Table 2). Our results showing high rates of in vitro resistance to first-
line therapies confirm those reported in earlier studies (4, 22) and reinforce the importance of
identifying new therapies to treat ABC infections. Sulbactam-durlobactam has the potential to
significantly lower the high incidence of difficult-to-treat resistance identified in ABC isolates
(DTR; defined as intermediate/resistant in vitro to all B-lactam categories, including carbape-
nems, and fluoroquinolones) (23) by providing an active B-lactam-based therapy that would
reduce reliance on less effective and more toxic reserve agents (aminoglycosides, colistin,
tigecycline).

The current study reports in vitro susceptibility testing results for sulbactam-durlobactam
against >5,000 clinical isolates of ABC collected in five global regions. Previously published
reports have described the in vitro activity of sulbactam-durlobactam against far smaller, of-
ten regional isolate collections (<100 to 1,722 isolates) (11-16). The current study deter-
mined that a sulbactam-durlobactam concentration of 2 wg/mL (MICy,) inhibited 91.9% of
5,032 ABC isolates and that 98.3% of isolates tested with a sulbactam-durlobactam MIC
value of =4 ug/mL, the preliminary susceptible MIC breakpoint for sulbactam-durlobactam
(18, 19). The in vitro activity of sulbactam-durlobactam was shown to be consistent for A.
baumannii and three additional ABC species, as well as for isolates across five geographical
regions, isolates from five common infection sources, and isolates with multiple clinically rel-
evant resistance phenotypes. Five of the six previously published studies also reported a sul-
bactam-durlobactam MIC,, of 1 to 2 ug/mlL, irrespective of international clonal lineage, and
the presence of various OXA-type B-lactamases in isolates, each study showing an MIC distri-
bution similar to that shown in Fig. 1; a single study from Greece describing 190 carbapenem-
resistant A. baumannii isolates reported an MIC,, of 8 wg/mL for sulbactam-durlobactam
(15). The observation that durlobactam lowered the MIC of sulbactam for almost all
(96.9%, 2,587/2,670) ABC isolates with sulbactam MICs of >4 ug/mL (sulbactam-non-sus-
ceptible) suggests that durlobactam inhibited class A, C, and D (OXA) B-lactamases in
those isolates that would have otherwise hydrolyzed sulbactam (as well as imipenem,
meropenem, and cefepime). In addition, these results collectively indicate that PBP mutations
or MBLs in global isolates of ABC that can confer sulbactam-durlobactam resistance are cur-
rently rare, as discussed below.

In the current study, a small percentage (1.7%, 84/5,032) of isolates had sulbactam-
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durlobactam MIC values above the preliminary susceptible MIC breakpoint of 4 wg/mL (18,
19), an observation also reported in most earlier publications (11-14, 16). Clinical isolates with
sulbactam-durlobactam MICs of >4 pg/mL have been shown to be comprised of two main
types, and some may be clonal (12). The first group are isolates with mutations in PBP3 near
its active site serine (S336) (24), the sulbactam-binding site. Common PBP3 mutations include
A515V and T526S and confer sulbactam-durlobactam MICs of 8 to 32 wg/mL (12, 15). The sec-
ond group are isolates that carry an MBL (NDM) and test with higher sulbactam-durlobactam
MICs (32 to >64 ng/mL) (12). Currently, the prevalence of MBLs in ABC isolates is very low in
most regions of the world (12, 25, 26).

In summary, the current study demonstrated the consistent and potent in vitro activity of
sulbactam-durlobactam against recent, global clinical isolates of ABC. There are currently no reli-
ably effective antimicrobial agents for the treatment of carbapenem-resistant A. baumannii
infections. Our results suggest that sulbactam-durlobactam, if approved, may be useful for the
treatment of infections caused by ABC, for which there is currently a high unmet medical need.

MATERIALS AND METHODS

Bacterial isolates. From 2016 to 2021, 5,032 ABC isolates were collected by clinical laboratories in
264 medical centers in 33 countries (Table S4) and shipped to IHMA; 4,038 were A. baumannii, 638 were A. pittii,
296 were A. nosocomialis, and 55 were A. calcoaceticus. Four isolates of non-identified Acinetobacter species and
one isolate of A. djjkshoorniae were also included in the collection. Al isolates were cultured from patients receiving
care in hospital and were limited to one isolate per infected patient. The identities of all isolates were confirmed
by IHMA using matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics,
Billerica, MA). Isolate collection employed annual, specimen source (bloodstream, intra-abdominal, lower respira-
tory, skin and soft tissue, and urinary tract), and geographic (country or region) quotas. Therefore, this study was
not designed to evaluate the prevalence of individual species of Acinetobacter (or to estimate antimicrobial resist-
ance) in the countries or regions from which participating laboratories supplied isolates to the study.

Antimicrobial susceptibility testing. The CLSI standard broth microdilution antimicrobial suscepti-
bility testing method was used to determine MICs for sulbactam-durlobactam and nine comparator agents
(27, 28). All testing was performed using cation-adjusted Mueller-Hinton broth in IHMA in-house-prepared
custom broth microdilution panels (27, 28). Sulbactam-durlobactam was tested using 2-fold dilutions of sul-
bactam in combination with a fixed concentration of 4 ug/mL of durlobactam (27). MIC values for each
agent were read and interpreted using CLSI standardized methods (27, 28). MIC breakpoint criteria are not
currently published by CLSI for sulbactam-durlobactam, sulbactam alone, or tigecycline (27). Sulbactam-dur-
lobactam MICs were interpreted using a preliminary susceptible MIC breakpoint of =4 ug/mL and a resistant
MIC breakpoint of =8 ug/mL (18, 19). For comparative purposes, susceptible (=4 ug/mL), intermediate
(8 wg/mL), and resistant (=16 ug/mL) MIC breakpoints were used for sulbactam (alone), based on the ampi-
cillin-sulbactam (in vitro testing ratio 2:1)-susceptible, —intermediate, and -resistant breakpoints of 8/4, 16/8,
and 32/16 ug/mL, respectively, where sulbactam is well established to comprise the active component of
the combination against Acinetobacter spp. (27).

MDR isolates were defined as those not susceptible to agents from =3 different antimicrobial classes
from the following list: cefepime (extended-spectrum cephalosporins), imipenem (carbapenems), amika-
cin (aminoglycosides), ciprofloxacin (fluoroquinolones), minocycline (tetracycline), sulbactam (penicillin
plus B-lactamase inhibitor [sulbactam was used in lieu of ampicillin-sulbactam because it is the active
component of the combination against Acinetobacter spp.]), and colistin (polymyxins) (29). XDR isolates
were defined as those not susceptible to at least 5 of the 7 agents or agent classes listed above for MDR
determination (i.e., isolates that were non-susceptible to =1 agent in all but =2 categories) (29). For coli-
stin, only colistin-resistant isolates were used in MDR and XDR determinations because all isolates of
Acinetobacter spp. are now classified as colistin-non-susceptible by CLSI (27).

Statistical analysis. The Cochran-Armitage test was used to assess linear trends in annual propor-
tions of isolates with sulbactam-durlobactam MICs of =4 ug/mL from 2016 to 2021 (XLSTAT version
2020.2.1). A P value of <0.05 was considered statistically significant.

SUPPLEMENTAL MATERIAL
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