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Early indicators of microbial 
strain dysbiosis in the human 
gastrointestinal microbial 
community of certain healthy 
humans and hospitalized COVID‑19 
patients
Hyunmin Koo  1* & Casey D. Morrow2*

Dysbiosis in the human gastrointestinal microbial community could functionally impact microbial 
metabolism and colonization resistance to pathogens. To further elucidate the indicators of microbial 
strain dysbiosis, we have developed an analytic method that detects patterns of presence/absence 
of selected KEGG metabolic pathways for a selected strain (PKS). Using a metagenomic data set 
consisting of multiple high-density fecal samples from six normal individuals, we found three had 
unique PKS for important gut commensal microbes, Bacteroides vulgatus and Bacteroides uniformis, 
at all sample times examined. Two individuals had multiple shared PKS clusters of B. vulgatus or 
B. uniformis over time. Analysis of a data set of high-density fecal samples from eight COVID-19 
hospitalized patients taken over a short period revealed that two patients had shared PKS clusters for 
B. vulgatus and one shared cluster for B. uniformis. Our analysis demonstrates that while the majority 
of normal individuals with no B. vulgatus or B. uniformis strain change over time have unique PKS, 
in some healthy humans and patients hospitalized with COVID-19, we detected shared PKS clusters 
at the different times suggesting a slowing down of the intrinsic rates of strain variation that could 
eventually lead to a dysbiosis in the microbial strain community.

Investigating the stability of the gut microbial community is important due to the growing realization of the role 
of these communities in human health1,2. Previous studies have shown that the taxonomic composition that the 
human gut microbial community is relatively stable over time3,4. More recent studies have used a more in-depth 
analysis consisting of metagenomic DNA sequencing of microbial communities in conjunction with new infor-
matics to establish the gut microbial community consists of a consortium of microbial strains5–7. In a previous 
study, we used metagenomic DNA sequencing analysis with a Window-based Single Nucleotide Variant (SNV) 
Similarity (WSS) program to assess the strain relatedness of the microbes in two separate samples from the same 
individual5. Using paired samples from the data set from the Human Microbiome Project (HMP)8, we established 
cut-off values for the WSS scores that can discern between related and unrelated samples to demonstrate that 
microbial strains are unique to the individual5,9,10. In general, the dominant fecal microbial strain communities 
are stable over time although the extent of temporal relatedness of microbial strains is individual specific11.

In follow-up studies using the WSS, we have shown that the gut microbial strain community can be influenced 
by overt changes in the gut environment11,12. For example, we have seen that a drastic change in the environment 
that occurs as a result of antibiotics, oral drugs, or physical disruption of the gastrointestinal tract can result 
in the appearance of new gut microbial strains in certain individuals12–15. However, we have not seen instances 
of the change of the dominant strain in normal individuals over time without defined disruptions. A reason 
for this could be due to the resiliency of the gut microbial strain community that corrects for the short-term 
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changes. Although we have not identified instances where strain change occurred without disruption of the gut 
environment, we know that this occurs from previous studies on the gut microbe strain stability from sets of 
twins11. In this study, we found strain sharing was dependent on the time of cohabitation. The strain differences 
from twins that had been separated for longer times were attributed to environmental differences. A limitation 
of these studies though was the time in between sampling that would have missed any subtle changes in the gut 
microbial community that would have signaled a forthcoming strain change.

In the current study, we have sought to further define the dynamics of gut microbial strain variation. We have 
used several public data sets from a high density of longitudinal collection of fecal samples16,17. Our study com-
bines strain tracking and a new method to analyze microbial strain variation based on comparing the patterns of 
presence/absence of selected KEGG metabolic pathways for a selected strain (herein PKS). We demonstrate that 
most healthy individuals from the HMP data set and a second high-density data set with shorter time intervals 
have individuals with shared and unique PKS overtime for important gut commensal microbes, Bacteroides 
vulgatus and Bacteroides uniformis. Furthermore, analysis of a recently described data set of longitudinal fecal 
samples from hospitalized patients with COVID-19 revealed two of eight patients had clusters of shared PKS 
that did not disappear over time17. The PKS clusters in some individuals suggest a dysbiosis in which a slowing 
down of the intrinsic rates of change occurs in the microbial community that could be an early warning signal 
for strain replacements leading to functional alterations of metabolism and colonization resistance18–20.

Results
Processes of PKS analysis.  In this study, we developed the PKS analysis to further our investigation 
into the dynamics of strain variation in the human gut microbial community. To do this, we used the original 
sequence reads from the HMP data set8 in which we used the WSS analysis to show related microbial strains in 
samples taken at two different times5. Using sample pairs from 41 different individuals, we determined the PKS 
for B. vulgatus and B. uniformis strains in each sample pair. We have focused our analysis on B. vulgatus and 
B. uniformis since these commensal microbes are present in high relative abundance in the human microbial 
community and possibly represent a keystone species9,21–23. From the 39 pairs of 41 that had related B. vulgatus 
strain in the HMP, a total of 25 KEGG pathways showed that 18 related pairs (46.1%) had no differences in PKS 
(Supplementary Fig. 1 and Supplementary Table 1). For B. uniformis, 35 pairs of 41 that had related B. uniformis 
strain in the HMP, a total of 40 KEGG pathways showed that 13 related pairs (37.1%) had no differences in PKS.

One of the features of the PKS analysis was to determine the presence/absence of selected KEGG metabolic 
pathways between the related dominant microbial strains from paired samples. To further employ the PKS 
analysis then, we determined if the numbers of pairs with differences in the PKS would change by reducing the 
number of sequences read that were analyzed. To do this, we rarefied our analysis by randomly subsampling 
each sample from the HMP data set at 2.5, 5, and 10 million sequence reads and then conducting a WSS analysis 
followed by a PKS analysis. For the 2.5 and 5 million reads, we repeated the random subsampling process two 
more times to detect any variations in the WSS score or PKS (Supplementary Fig. 1 and Supplementary Table 1). 
From this analysis, we found a leveling off of the zero pathway difference percentage between 2.5 and 10 million 
reads, suggesting the analysis of the related B. vulgatus strains was reached at this read number. Based on this 
analysis, we selected 5 million reads for the subsampling process to establish a list of KEGG pathways (including 
23 pathways) for B. vulgatus and to apply for the same reads number when other data set are used for the PKS 
analysis. Similar to B. vulgatus strain, we have selected 5 million reads for B. uniformis strain to run the PKS 
analysis (Supplementary Figs. 1 and 3).

From the 5 million sequences subsampled from the HMP data set, using the WSS analysis we found that an 
average value of 34 individual pairs had related B. vulgatus strains (Supplementary Fig. 1 and Supplementary 
Table 1). We next examined related pairs for differences in PKS from a total of 23 KEGG pathways that are specific 
for B. vulgatus. From one of the repeat sets, we found that 6 of the 33 sample pairs (18.1%) had 0 changes in the 
compared KEGG pathways for B. vulgatus (Fig. 1A). The remaining 27 individual pairs (81.8%) showed a range 
from 1 to 13 changes in the compared KEGG pathways with no shared patterns (Fig. 1A). Overall, an average 
value of 6 of the 34 sample pairs (17.6%) had 0 changes in the compared KEGG pathways and the remaining 
28 pairs (82.4%) had no shared patterns for B. vulgatus (Supplementary Fig. 1 and Supplementary Table 1). For 
B. uniformis, we found that an average value of 3 of the 24 sample pairs (12.6%) had 0 changes in the compared 
KEGG pathways and the remaining 21 pairs (87.4%) had no shared patterns for B. uniformis.

Our analysis of the HMP data set has shown differences in PKS between related individual pairs for a shared 
strain. However, the HMP data set consisted mostly of pairs with time frames within 1 year (with some even 
longer)8. To better characterize the PKS analysis, we used a second data set consisting of healthy individual pairs 
that had been sampled at day 0 and day 9024. We have previously confirmed that individual pairs had a WSS 
score above the cut-off value indicating that the pairs were related14. Using sequences randomly subsampled to 5 
million reads, we found that 11 pairs had related B. vulgatus strain. A PKS analysis of each pair found that none 
of the 11 pairs had shared PKS patterns (Fig. 1B).

PKS analysis of high‑density longitudinal samples from healthy individuals.  To more fully 
investigate the dynamics of the changes in the PKS from shared B. vulgatus and B. uniformis strains, it would 
be necessary to analyze longitudinal samples from healthy individuals taken at much shorter time periods. A 
previous study reported on the sampling of the fecal samples taken from healthy individuals at high-density 
(some are daily collected samples) followed by metagenomic sequencing for each individual16. Consistent with 
our previous analysis on the HMP data set, we found a shared B. vulgatus and B. uniformis strains as determined 
from a WSS analysis for each pair from 6 individuals over the times examined. We next conducted the PKS 
analysis on the 6 individuals to investigate differences in the shared B. vulgatus and B. uniformis strains (Figs. 2 
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and 3). For B. vulgatus, there were no shared PKS patterns observed from three individuals (AAD, AAN, and 
AAG) between the times that were examined, (i.e. AAD: 0 differences between 6 total pairs; AAN: 0 differences 
between 9 total pairs; AAG: 0 differences between 12 total pairs) (Fig. 2A–C). These results are consistent with 
the HMP and Raymond et  al. data sets. In contrast, the remaining three individuals (AAP, AAI, and AAB) 
showed a clustering pattern with shared PKS at certain times (Fig. 3A–C). For example, AAP showed clusters of 
shared sample patterns between days 1 and 3 and between days 21 and 62 (4 of 12 pairs) (Fig. 3A). Individual 
AAI displayed a complex pattern in which a sample at day 2 became extinct from days 5–7 but reappeared on 
days 14, 21, and 28 before becoming extinct at later time points (4 of 15 pairs) (Fig. 3B). Analysis of individual 
AAB showed the most complex cluster patterns. For AAB, we found one pattern (the day 0 time point), with 
multiple times of extinction and reappearance (4 separate times) of different clusters (Fig. 3C). We also found 
two additional shared time points between days 8 and 33 and between days 31 and 32 (Fig. 3C). In total, we 
found 15 of 22 pairs were shared or repeated in this individual. Finally, we found that for all three individuals 
(AAP, AAI, and AAB) that the clusters of shared PKS patterns resolved to a unique pattern after time, indicating 
temporal cycling between the unique and cluster patterns in these individuals. A similar pattern was observed 
for B. uniformis showing that there were no shared PKS patterns observed from three individuals (AAG, AAI, 
and AAN), however the remaining two individuals (AAB and AAD) showed a clustering pattern with shared 
PKS at certain times (Supplementary Figs. 4 and 5).

PKS analysis of patients hospitalized with COVID‑19.  A recent paper used high-density fecal 
sampling and metagenomic sequencing to characterize the microbial community of hospitalized COVID-19 
patients17. Using a data set of 8 patients with COVID-19 that had sufficient sequencing read depth we used the 
WSS analysis to determine no strain change occurred for the B. vulgatus during the stay in the hospital. For these 
same individuals, we then used the PKS analysis and found unique PKS patterns in 6 of the 8 patients (Fig. 4 and 
Supplementary Fig. 1). However, two individuals (C10 and C8) showed shared PKS clusters during the examined 
time points (Fig. 4). Individual C10 showed a pattern that was shown at a day 0 that was continued up to day 
5 (Fig. 4). In contrast, in the C8, we found one pattern (the day 0 time point) that became extinct from day 3 

Figure 1.   PKS results for healthy individuals. A total of 23 KEGG pathways were used to investigate a pattern of 
presence/absence of metabolic pathways for B. vulgatus. The summarized PKS result of the 23 KEGG pathways 
per individual related pair from (A) HMP8, and (B) Raymond et al.24 data sets were grouped into different color 
boxes (colors scheme presented in the figure). Each column in the table indicates an individual’s paired samples 
and matches the number shown in Supplementary Table 2.
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but reappeared on day 4. In this individual, we also found another cluster on days 3 and 6 (Fig. 4). However, for 
these two patients, we did not see a resolution of the PKS clusters to a unique pattern in the times examined. For 
B. uniformis, one individual (C11) showed shared PKS clusters during the examined time points, however the 
remaining five individuals showed a unique pattern in the times examined (Supplementary Fig. 1).

Discussion
In this study, we have utilized several previously published datasets to develop a new method that detects changes 
in the pattern of selected KEGG metabolic pathways for a selected strain. Our analysis provides new insights into 
the dynamics of microbial strain variation in healthy individuals and suggests that gut microbial communities 
under stress, such as those found in COVID-19 hospitalized patients, might be in a state of dysbiosis indicating 
the potential for the dominant strain to be outcompeted by a minor strain.

Disruptions of the gut microbial community could result in a dysbiosis leading to a strain variation that 
would, in turn, alter the community structure and impact the functions in metabolism and colonization 
resistance15,18–20,25–27. To detect microbial strain variation, our approach has been to use metagenomic DNA 
sequencing analysis coupled with informatics that can resolve the microbial community at a strain level5,11. This 
analysis works well with paired samples to investigate the question of whether strains are shared in an individual 
over time. However, we wanted to extend this analysis to look in greater detail at the shared strains to determine 
if we could delineate the dynamics of strain variation to identify indicators of an impending strain variation. To 
do this, in the current study, we have further characterized shared strain pairs by combining them with a new 
method to determine the pattern of presence/absence of KEGG metabolic pathways for shared strain (i.e. above 
the WSS cut-off value) between two paired samples. We focused on B. vulgatus and B. uniformis strains since they 

Figure 2.   PKS analysis from high density sampling of healthy individuals. A total of 23 KEGG pathways 
were used to examine the presence/absence of KEGG metabolic pathways for B. vulgatus by comparing each 
individual’s last day sample to every possible pair of the same individual’s samples. The WSS scores and cut-off 
value for B. vulgatus are noted. All samples from the three individuals, including (A) AAD, (B) AAN, and (C) 
AAG were previously collected by Fukuyama et al.16. The summarized PKS result per individual was grouped 
into different color boxes (The color scheme for presence and absence are the same as in Fig. 1). Each column 
in the table represents individual ID, a sample used for each pairwise comparison, and days (Detailed sample 
information shown in Supplementary Table 2).
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are predominant commensal in humans, possibly serving as a keystone species whose metabolic functions are 
important for the host9,21–23. We first developed this analysis by using an established data set that contained paired 
samples from a healthy individual. The HMP data set in which pairs from individuals taken at the time within 
1 year that our previous WSS analysis had shown contained shared strains5. For this study, we first conducted 
the PKS analysis on the original sequence reads. To determine if we were analyzing the dominant B. vulgatus 
and B. uniformis strains in the community, we also performed subsampling on total sequence reads at various 
numbers. We then selected an optimized read number where the WSS analysis still detected related samples 
and the PKS gave a similar percentage of pairs with zero change compared with the original reads (Supplemen-
tary Fig. 1 and Supplementary Table 1). Thus, at this sequence read number (5 million) we were analyzing the 
dominant B. vulgatus and B. uniformis strains in the microbial community. We next applied our PKS analysis 
to examine a sample set from individuals where samples were collected at 0 and 90 days, with a dose of a single 
antibiotic in between those days that in some individuals resulted in transient strain change. We determined 
that 11 sample pairs still shared B. vulgatus strain from WSS analysis, however the PKS analysis showed that 
there were no KEGG pathways patterns shared between the sample pairs. It is important to note that for the 
PKS, we do not determine the use of the pathway function by the microbes. Essentially, these differences were 
distinguished between related strains as determined from the WSS analysis. Thus, the results of our studies that 
combine the WSS strain tracking with PKS provide new insights into the heterogeneity of human the individual 
specific microbe strain variants present within the human gut microbial strain community.

An explanation for the different (unique) PKS between paired samples observed at longer time points (i.e. 
within 1 year) might be in the resiliency of the healthy human microbial strain community to recover from 
disruptions27. To determine if strain variations in healthy individuals occurred, we selected a data set from six 
healthy individuals that had been sampled multiple times over a shorter time period16. While we did not find 
evidence for strain change using the WSS analysis during the time examined, we did find differences in the pres-
ence of unique and shared PKS between B. vulgatus and B. uniformis. We note that only one of these individuals, 

Figure 3.   Shared PKS results from high density sampling of three healthy individuals. A total of 23 KEGG 
pathways were used to observe a pattern of presence/absence of KEGG metabolic pathways for B. vulgatus and 
the presence or absence of each KEGG pathway was examined by comparing each individual’s last day sample to 
every possible pair of the same individual’s samples. All samples from the three individuals, including (A) AAP, 
(B) AAI, and (C) AAB were previously collected by Fukuyama et al.16. The shared PKS result per individual was 
depicted by different colored boxes. Each column in the table represents individual ID, a sample used for each 
pairwise comparison, and days (Detailed sample information shown in Supplementary Table 2).
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AAB, had shared PKS for both B. vulgatus and B. uniformis, indicating the possibility of a generalized dysbiosis 
in the microbial gut community environment. Given the greater numbers of the shared PKS, it is possible that 
B. vulgatus might be a more sensitive indicator of gut dysbiosis.

To extend these results, we next characterized a recent data set from COVID-19 hospitalized patients with 
mild to severe disease that had high-density fecal sampling over a short time period17. In these patients, four of 
the eight totals had received no antibiotics, with the remaining four given antibiotics during the hospital stay. 
Analysis of eight patients with the WSS analysis revealed that none of the patients had strain change in B. vulgatus 
over the time frame examined. For six patients, we only found unique PKS, although for five of the sample sets 
we were only able to analyze paired sample sets due to sequencing limitations. However, for two of the eight, we 
found clusters of shared PKS that during the time examined, did not transition to unique PKS as we found with 
the healthy individuals, although we recognize this could be due to limited sampling. Similarly, for B. uniformis, 
three individuals had unique patterns of PKS while two had clusters of PKS in the longitudinal data set; one of 
the eight patients had clusters of PKS. Collectively, these results highlight the benefit of high-density longitudinal 
sampling for the detailed analysis of the dynamics of shared gut microbial community strains. In some individu-
als, we found the oscillating between clustering of PKS and unique PKS giving new insights into the dynamics 
of temporal change within the normal microbial strain community4.

What might be the significance then of our identification of shared clusters of PKS over these short times 
in certain individuals with respect to actual strain change? One of the features of a complex biological system 
is that as it approaches a critical transition there is a slowing down of the intrinsic rates of change28–32. The 
system enters a condition that is related to autocorrelation (or serial correlation) where the patterns would be 
repeated between time points. It is possible that the shared PKS clusters represent a state of autocorrelation in 
the gut microbial strain community. These clusters could represent an early warning signal for a dysbiosis in 
which the dominant strain is replaced by a minor strain. The fluctuation between unique and shared clusters 
could be the result of environmental changes in the gastrointestinal tract environment and/or diet. Indeed, we 

Figure 4.   PKS results from hospitalized individuals with COVID-19. A total of 23 KEGG pathways were used 
to examine a pattern of presence/absence of KEGG metabolic pathways for B. vulgatus and the presence or 
absence of each KEGG pathway was observed by comparing each patient’s last day sample to every possible 
pair of the same patient’s samples. All patient samples were previously collected by Zuo et al. 17. The shared 
PKS result per patient was grouped into different color boxes. Each column in the table indicates individual 
ID, a sample used for each pairwise comparison, and days. (Detailed information provided in Supplementary 
Table 2). 5 additional patients’ PKS results are shown in Supplementary Fig. 2.
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note that the sample from the six healthy individuals who had the most observed autocorrelation with repeated 
PKS was from the oldest individual (AAB; 56 years old). The aging microbiome in combination with changes 
in environment or diet has been reported to be more susceptible to breakdowns in colonization resistance as 
reflected from colonization with pathogens33. Similarly, for two of the eight hospitalized COVID-19 patients, we 
found clusters of shared PKS suggesting these individuals’ microbial communities were under stress that could 
impact the normal functions in metabolism and, more importantly, colonization resistance that could be of great 
concern in a hospital environment25,26. We recognize though a limitation of our study is that, at this time, we 
cannot determine whether the dysbiosis microbial communities of the hospitalized COVID patients would have 
the resiliency to return to a normal pattern of unique PKS after time. Based on this concern though, we suggest 
that individualized monitoring of the gut microbial community in COVID-19 patients with multiple short term 
high-density sampling and analysis is appropriate to provide a personalized profile needed for evaluation and 
use of therapeutic interventions to maintain a healthy gut microbial community34.

Materials and methods
Publicly available data sets used in this study.  In this study, we used 3 publicly available data sets for 
healthy individuals 1) pre-treated with iso-osmotic bowel wash16; 2) pre and post treated with a single antibiotic 
(cefprozil)24; and 3) from the NIH Human Microbiome Project (HMP)8. For Fukuyama et al., fecal samples from 
6 individuals were collected pre and post mechanical bowel wash, and we selected only pre bowel wash samples 
for individuals. For the Raymond et al., fecal samples were collected from 18 individuals at three different time 
points: pre-treatment (Day 0), end of antibiotic treatment (Day 7), and 3 months post-treatment (Day 90), and 
we selected only Day 0 and Day 90 samples from 11 individuals for the analysis. For the HMP data set, 41 indi-
viduals which were previously used to establish our WSS analysis were selected for the analysis5. In addition, we 
used 1 publicly available data set from patients with COVID-1917. For Zuo et al., fecal samples from 15 patients 
with COVID-19 were collected during the time of hospitalization and we selected 8 patients’ samples to run the 
analysis. All data sets used in this study were summarized in Supplementary Table 2.

A total of 6,390,986,972 metagenomic sequencing reads were downloaded from the four public data sets; 
359,276,476 reads from the Fukuyama et al., 1,500,234,831 from the Raymond et al., 4,124,040,250 from the HMP 
data set, and 407,435,415 from the Zuo et al. (Supplementary Table 2). Quality control steps include removing 
any human reference genome (hg19) using bowtie2 (version 2.3.4.3) with default parameters35, and filtering short 
sequences (sequence length < 50 bases) and low quality reads (sliding window of 50 bases having a QScore < 20) 
using Trimmomatic (version 0.36)36.

Strain‑tracking analysis using WSS.  For the HMP data set, we have previously applied our WSS analysis 
to investigate the strain relatedness for each individual between longitudinal fecal samples and establish each 
species’ WSS cut-off value for relatedness5. In this study, we used 1) randomly subsampled the HMP data set 
at various reads (2.5, 5, and 10 million reads); and 2) the original sequence reads (average value of ~ 50 million 
reads) to run the WSS analysis for strain relatedness as well as to validate our PKS method. All of the individual 
samples from the remaining data sets (Fukuyama et al., Raymond et al., and Zuo et al., data sets) were randomly 
subsampled (seed = 1000) to 5 million reads with seqtk (version 1.3) (https://​github.​com/​lh3/​seqtk). The quality 
control steps were then applied to the subsampled sequence reads. For Fukuyama et al. data set16, we have inves-
tigated strain relatedness for each individual by comparing all available longitudinal samples to the last available 
sample, those were collected before the bowel wash procedure was performed. The strain-tracking analysis was 
also applied for the Raymond et al. data set24 to examine strain relatedness for each individual between pre (Day 
0) and post antibiotic treatment (Day 90). From the Zuo et al. data set17, the strain-tracking analysis was per-
formed for each COVID-19 patient by comparing all available longitudinal samples to the last available sample.

Our WSS strain-tracking analysis was then conducted on these data sets and the full details of the analysis 
procedure can be found in our previously published papers5,11,13,14,37,38. All codes implemented in the WSS were 
deposited and are available at https://​github.​com/​hkoo87/​mgSNP_2.

Description of the methodology used for PKS analysis.  In this study, as an example, we have 
selected B. vulgatus and B. uniformis to investigate patterns of presence/absence of selected KEGG metabolic 
pathways (PKS). To do this, we first included the selected species alignments from each sample’s ‘realigned.
bam’ file, which is one of the output files generated from the WSS analysis including each sample SNVs for each 
given reference sequence using samtools view -b option39,40. The filtered alignments were then sorted, indexed 
using samtools sort and index function, respectively with default parameter39,40 and the resultant bam file was 
converted to FASTQ format using BEDTools with bamtofastq function with default parameter41. All these steps 
can be done using the ‘PKS_bamtofastq.sh’ script included in the PKS method. Second, the converted FASTQ 
file was assembled using MEGAHIT with default parameter (version 1.1.3) and the resultant ‘final.contigs.fa’ file 
for each sample was selected for annotation42. This step can be accessed using the ‘PKS_megahit_run.sh’ script 
included in the PKS method. Lastly, each sample’s ‘final.contigs.fa’ was annotated using Prokka (version 1.14.0) 
with –cpus 0 –addgenes –metagenome –mincontiglen 1 parameters43. Then, ‘eC_number’ was grepped from one 
of Prokka’s output files, ‘.gff ’, using grep function. Each ‘eC_number’ was then annotated against KEGG database 
using MinPath (version 1.4) and the resultant ‘map ID’ was selected based on the ‘minpath’ value of 144. All 
annotation steps can be done using the ‘PKS_Prokka_Minpath.sh’ script included in the PKS method. All codes 
used for the PKS analysis were deposited and are available at https://​github.​com/​hkoo87/​PKS.

Validation of the methodology for PKS analysis.  In this study, we have used the HMP data set to 
validate our PKS method and establish a list of KEGG pathways, specifically for B. vulgatus and B. uniformis 

https://github.com/lh3/seqtk
https://github.com/hkoo87/mgSNP_2
https://github.com/hkoo87/PKS
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by random subsampling of sequence reads at 2.5, 5, and 10 million. All subsampling step was conducted using 
seqtk (version 1.3) (https://​github.​com/​lh3/​seqtk). For each subsampling step, WSS analysis along with the PKS 
method was conducted for each pairwise comparison to monitor changes in the WSS score as well as PKS 
result. Both WSS and PKS method was first used for each pairwise comparison using the original number of 
sequences reads. To establish a list of KEGG pathways, all pathways observed from the PKS analysis of the 
original sequence reads were combined; pairs that showed an unrelated WSS score were excluded. All observed 
KEGG pathways were also combined from the PKS analysis of each subsampled sequence reads also excluding 
pairs that had unrelated WSS scores. For B. vulgatus, a KEGG list including a total of 23 pathways was established 
from the 5 million subsampled sequence reads and used as a standard list to compare PKS analysis results when 
other data sets analyzed with PKS due to those were subsampled to 5 million reads in this study. For B. uniformis, 
a total of 40 pathways were included in the KEGG list.

Data availability
The original sequencing data sets used in this study were downloaded from the NCBI under accession numbers, 
PRJNA388263 for Fukuyama et al., and PRJNA624223 for Zuo et al.; from the European Nucleotide Archive 
under accession number, PRJEB8094 for Raymond et al.; from https://​portal.​hmpda​cc.​org/ for the HMP data set.
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