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ABSTRACT Pandoraviruses are giant viruses of amoebas with a wide range of ge-
nome sizes (1.5 to 2.5 Mbp) and 1-um ovoid viral particles. Here, we report the isola-
tion, genome sequencing, and annotation of two new strains from the proposed family
Pandoraviridae: Pandoravirus belohorizontensis and Pandoravirus aubagnensis.

andoraviruses are giant viruses as large as bacteria and have more complex genomes

than some eukaryotic organisms (1). Several pandoraviruses have been described using
coculture on Acanthamoeba castellanii (2-7). Here, we report the complete genome sequences
of two novel strains: Pandoravirus belohorizontensis, isolated from soil samples collected from
the city of Belo Horizonte (-19.923249777699425, —43.93308441843789), and Pandoravirus
aubagnensis, from water collected in the south of France (Mounoi Cavern, also called “Manon
des Sources”; 43.274642, 5.777029). The two viruses were isolated following a procedure previ-
ously described by Khalil et al. (8). Briefly, samples were cocultured on Acanthamoeba castellanii.
They were characterized using flow cytometry and electron microscopy and then were
produced and purified for genome sequencing. Viral DNA was extracted using an EZ1
Advanced XL automated system (Qiagen, France). DNA paired-end libraries (2 x 250-bp)
were constructed with 1 ng of each genome as input using the Nextera XT DNA kit (llumina,
Inc,, San Diego, USA) and sequenced on the lllumina MiSeq instrument. The reads were then
trimmed and filtered using Trimmomatic (9). The P. belohorizontensis genome was assembled
using CLC Genomics Workbench v7.52. The genome was finished using MUMmer v3.0 with
default parameters (10), followed by a genome scaffolder using a graph-based approach (11).
The genome of P. aubagnensis was assembled using SPAdes (12) and joined into a single
scaffold using scaffold_builder (13). The genome termini were verified using Mauve software
(14) and by a BLASTn search of both genomes against the nonredundant nucleotide (nr/nt)
database (15). The analysis of both genomes followed the same procedure with default
parameters. tRNAs were predicted using tRNAscan-SE (16) and ARAGORN (17) software.
Gene predictions were performed using GeneMarkS (18). Predicted proteins over 99 amino
acids long were considered for further analysis. The predicted proteins were investigated for
putative functions and domains using BLASTp searches (E values, <1E-03) against the non-
redundant protein database and the Pfam protein families database (19) and using Delta-
BLAST (20). Phylogenetic analysis was based on the DNA polymerase subunit B gene. Amino
acid sequences were aligned using Muscle (21). The maximum likelihood method was used
for tree construction on MEGA7 (22) with the Jones-Taylor-Thornton model for amino
acid substitution. The collection and analysis of genetic data were partially or fully regis-
tered under SisGen permit number AC31840 and SISBIO license numbers 33326, 34293, and
80252 (Brazil).

The P. belohorizontensis genome was assembled into a single scaffold of 1,701,725 bp
(average coverage, 223x) with 19 gaps of unknown length and a G+C content of 63.67%.
The P. belohorizontensis genome was predicted to encode 1,059 proteins (mean size = SD,
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FIG 1 Phylogenetic reconstruction based on amino acid sequences of the DNA polymerase B subunit of Pandoravirus.
The phylogenetic tree was built using the maximum likelihood model with 1,000 bootstrap replicates. The Pandoravirus
kadiweu, P. tropicalis, P. pampulha, P. hades, and P. persephone sequences are partial predicted proteins (scale bar

indicates 0.05 substitutions/site).

363 * 248 amino acids). Of these, 883 (83.4%) have a homolog in the nr/nt database, and
176 (16.6%) are ORFans (open reading frames [ORFs] with no significant homolog in the nr/nt
database).

The assembly of the P. aubagnensis genome provided a single scaffold of 1,816,783 bp
(average coverage, 198 x) with 6 gaps of estimated length and a G+C content of 58.02%. A
total of 1,217 proteins were predicted (mean size = SD, 345 *+ 244 amino acids). Of these,
907 (74.6%) have a homolog in the nr/nt database, and 309 (25.4%) are ORFans. tRNA prediction
showed that both genomes encode a single proline tRNA.

Phylogenetic analysis revealed that the two isolates were different from each other
and clustered with previously described Pandoravirus lineages (Fig. 1).

Data availability. The genome sequences of Pandoravirus belohorizontensis and
Pandoravirus aubagnensis have been deposited at NCBI GenBank under the accession
numbers MZ420562 and MZ420563 and the annotation and SRA data under the SRA
accession numbers SRR17644538 and SRR17635305, respectively.
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