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Abstract

In this study, we investigate the feasibility of improving the imaging quality for low-dose mul-

tislice helical computed tomography (CT) via iterative reconstruction with tensor framelet

(TF) regularization. TF based algorithm is a high-order generalization of isotropic total varia-

tion regularization. It is implemented on a GPU platform for a fast parallel algorithm of X-ray

forward band backward projections, with the flying focal spot into account. The solution algo-

rithm for image reconstruction is based on the alternating direction method of multipliers or

the so-called split Bregman method. The proposed method is validated using the experi-

mental data from a Siemens SOMATOM Definition 64-slice helical CT scanner, in compari-

son with FDK, the Katsevich and the total variation (TV) algorithm. To test the algorithm

performance with low-dose data, ACR and Rando phantoms were scanned with different

dosages and the data was equally undersampled with various factors. The proposed

method is robust for the low-dose data with 25% undersampling factor. Quantitative metrics

have demonstrated that the proposed algorithm achieves superior results over other exist-

ing methods.

Introduction

X-ray computed tomography (CT) has been one of the most widely used medical imaging

techniques since Hounsfield invented the first commercial medical X-ray machine in 1972 [1].

The Helical CT was first invented by I. Mori [2] in the late 1980s and was developed by W.

Kalender [3] in the 1990s. The number of detector rows has been increased to achieve larger

volume coverage with a reduced scan time and improved z-resolution. The 8-slice CT system

was first introduced in 2000, Siemens SOMATOM Definition scanner has 64-slice rows for up
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to 128-channel data acquisition, and the Toshiba Aquilion ONE ViSION, which has 320-slice

rows for generating 640 slices, was brought out in 2013.

Helical CT reconstruction algorithms can be categorized into two groups: Analytic recon-

struction and iterative algorithm. An analytic reconstruction can be sub-divided into exact

and approximate reconstruction methods. The Feldkamp-Davis-Kress algorithm (FDK) is a

well-known approximate analytic reconstruction algorithm [4] and it can be generalized for

helical scan trajectories [5–7]. However, FDK generates helical artifacts due to data insuffi-

ciency. A conventional filtered backprojection (FBP) algorithm can be implemented with data

interpolation [8] to soften helical artifacts, but this may generate another type of artifact caused

by data approximation. In 2002, Katsevich introduced an exact FBP-type reconstruction algo-

rithm based on the PI-line and Tam-Danielsson window [9–11]. Details for the numerical

implementation of the Katsevich algorithm are given in [12, 13]. An alternative derivation of

the Katsevich algorithm is provided by Chen [14]. Meanwhile, another exact method of back-

projection-filtration (BPF) has been developed by Zou and Pan [15], and these ideas have

inspired several subsequent exact reconstruction methods [16–20].

Katsevich-type algorithms are based on exact analytic theory, and thus it is sensitive to the

noisy projection data. To overcome these noise sensitivity, many researchers have studied iter-

ative reconstruction algorithms [21, 22] by formulating the image reconstruction as an optimi-

zation problem based on versatile CT models. The Algebraic Reconstruction Technique

(ART) [1, 23] and Simultaneous Algebraic Reconstruction Technique (SART) [24] are two of

the most popular methods in the early stage of iterative reconstruction algorithms. Iterative

reconstruction algorithms are based on a mathematical minimization which seeks the best

approximate solution. They have greater flexibility, and thus are robust against noise. A regu-

larization term, such as Tikhonov or total-variation (TV) regularizer, can be added to the cost

function for noise and artifact reduction. Compared with analytic reconstruction algorithms,

iterative reconstruction algorithms work well even with insufficient or low-dose data. However

a significant disadvantage of iterative reconstruction is its high computational cost, particularly

for helical CT scans, which contain a huge amount of data. Thanks to recent advances in com-

puting hardware, iterative reconstruction is emerging for helical CT [21, 22, 25, 26]. Nuyts

et al. [22] investigated the superiority of iterative reconstruction compared to non-iterative

methods for a helical CT system. They concluded that iterative reconstruction improved the

axial resolution. Thibault et al. [21] presented a Bayesian iterative reconstruction algorithm for

multislice helical data, they showed improved high contrast spatial resolution and signal-to-

noise ratio relative to analytic methods. Yu and Zeng [26] developed a TV-based iterative algo-

rithm and applied it to a limited-angle inverse helical CBCT reconstruction for C-arm system.

In this article, we propose an iterative reconstruction algorithm to improve multi-slice heli-

cal CT based on tensor framelet (TF) [27, 28] regularization. The method belongs to a spar-

sity-regularized model-based iterative reconstruction, which is inspired by compressive

sensing [29, 30]. To name a few: Sidky et al. develops a TV-based iterative method for sparse-

view and limited-angle reconstruction [31]; Chen et al. proposes the so-called PICCS method

for the dynamic CT problem [32]; Yu and Wang studies the sparsity-regularized method for

interior tomography [33]; Gao et al. proposes a rank-sparsity decomposition method for

dynamic CT [34] and spectral CT [35]; Jia et al. studies tight frame regularization for cone-

beam CT image reconstruction [36]; Xu et al. develops a dictionary learning-based image

reconstruction method for dose reduction [37].

This paper is organized as follows: Section II provides the materials and method details,

including the minimization problem, TF regularization, optimization algorithm for iterative

multislice helical CT image reconstruction, and experimental details. Section III presents the

validation of the proposed method for low-dose multislice helical CT in comparison with

Tensor framelet based iterative image reconstruction algorithm
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FDK, the Katsevich and TF algorithms, with low-dose and sparse-view data. Section IV sum-

marizes this work.

Materials and methods

Minimization problem

The mathematical formulation of an iterative CT reconstruction can be expressed by a least-

square minimization problem as

x ¼ arg min
x

1

2
kAx � yk

2

2
þ lRðxÞ; ð1Þ

where x is the three-dimensional image to be reconstructed with given projection data y and

the projection matrix A. The first term indicates the data fidelity in the L2-norm. The second

term consists of R(x) as a regularization function with regularization parameter λ. For exam-

ple, the TV norm is a popular regularization choice for sparsity-based CT image reconstruc-

tion [31, 32].

In this paper, we solve Eq (1) with the given data y from the multislice helical CT system.

The projection matrix A contains the helical geometry with the flying focal spot [38]. For the

forward projection A and its adjoint AT, parallelized algorithms with an infinitely narrow

beam are used with GPU implementation [39].

Tensor framelet regularization. Consider a 3D image x as a tensor,

x ¼ fxijk; i � Nx; j � Ny; k � Nzg

where xijk is the (i, j, k)-th voxel in three-dimensional image space, Nx, Ny, and Nz are the num-

ber of voxels in the x, y and z–axis respectively. We define xx, xy, and xz as 1D unfolded matri-

ces of x along the x, y, and z–axes, respectively. The TF transform is constructed using the

standard 1D framelet transform [40], e.g., the 1D piecewise linear tight frame with the follow-

ing refinement masks.

o0 ¼
1

4
½1 2 1�; o1 ¼

ffiffiffi
2
p

4
½1 0 � 1�; o2 ¼

1

4
½� 1 2 � 1�:

The operator ω0 is an averaging operator, and the two other operators ω1 and ω2 are the first

and second differential operators, respectively. Note that ω0 smoothes the image, while ω1 and

ω2 enhance the edges. Define

Mjx ¼
1
ffiffiffi
3
p

oj � xx

oj � xy

oj � xz

2

6
6
6
4

3

7
7
7
5
; 8j ¼ 0; 1; 2;

where � denotes the convolution operator. The TF regularization function W and its adjoint

WT are respectively defined as below.

Wx ¼ ½M0x; M1x; M2x�
T
; ð2Þ

and

WTy ¼MT
0
ðM0xÞ þMT

1
ðM1xÞ þMT

2
ðM2xÞ; for y ¼Wx: ð3Þ

The TF norm is defined as λkWxk1 = λ0kM0xk1 + λ1kM1xk1 + λ2kM2xk1, where
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kMjxk1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

joj � xxj
2
þ joj � xyj

2
þ joj � xzj

2
q

, for all j = 0, 1, and 2. TF transform W is left

invertible and WTW = I, by the simple calculation [27]. If λ0 = 0, λ1 6¼ 0, and λ2 = 0, kWxk1

corresponds to the isotropic TV norm of x. In other words, TF regularization is a high-order

generalization of TV.

The TF transform W can be extended to the multilevel by diluting the masks to ol
i such that

ol
0
¼

1

4
½1 0 � � � 0
|fflffl{zfflffl}

2l � 1

2 0 � � � 0
|fflffl{zfflffl}

2l � 1

1�;

ol
1
¼

ffiffiffi
2
p

4
½1 0 � � � 0
|fflffl{zfflffl}

2l � 1

0 0 � � � 0
|fflffl{zfflffl}

2l � 1

� 1�;

ol
2
¼

1

4
½� 1 0 � � � 0

|fflffl{zfflffl}
2l � 1

2 0 � � � 0
|fflffl{zfflffl}

2l � 1

1�:

Similar to the uni-level TF, define xl ¼ ol
0
� xl� 1, x0 = x and

Ml
jx

l ¼
1
ffiffiffi
3
p

ol
j � x

l
x

ol
j � x

l
y

ol
j � x

l
z

2

6
6
6
6
4

3

7
7
7
7
5
; 8j ¼ 0; � � � ; 2; 8l ¼ 1; � � � L:

Then TF transform W with level L is

Wx ¼ M1

1
x1 M1

2
x1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1st level

� � � Ml
1
xl Ml

2
xl

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l� th level

� � � xL ML
1
xL ML

2
xL

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
L� th level

2

6
4

3

7
5; ð4Þ

and its adjoint WT is defined as

WTðyÞ ¼ xL þ
XL

l¼1

X2

j¼1

Ml
jx

l; for y ¼Wx ð5Þ

Similarly, Eqs (4) and (5) are a generalization of TV to multilevel, and it keeps the framelet

features such as WT(Wx) = x. With the TF regularization, Eq (1) becomes

x ¼ arg min
x

1

2
kAx � yk

2

2
þ lkWxk1: ð6Þ

The TF regularization term is defined as the isotropic shrinkage TF norm [27]:

lkWxk
1
¼
XL

l¼1

X2

j¼1

ll;jkM
l
jx

lk
1
þ lL;0kx

Lk
1
: ð7Þ

Optimization algorithm. The TF regularization (7) is the summation of L1-norm. To

solve the non-differentiable L1 minimization problem (6), we choose the alternating direction

method of multipliers (ADMM) [41] or the so-called Split Bregman method [42]. In general it

is difficult to solve the L1-regularized minimization problem because it has non-differentiable

L1 term. The basic idea of ADMM is to split L1 and L2 components by introducing auxiliary

Tensor framelet based iterative image reconstruction algorithm
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variables d, and v. Eq (6) becomes

x ¼ arg min
x; d; v

lkdk1 þ
1

2
kAx � yk

2

2
þ
m

2
kWx � dþ vk

2

2
; ð8Þ

which can be split into three steps:

• Step 1: xnþ1 ¼ arg minx
1

2
kAx � yk2

þ m

2
kWx � dn

þ vnk22

• Step 2: dnþ1
¼ arg mindkdk1

þ m

2
kWxnþ1 � dþ vnk22

• Step 3: vn+1 = vn + Wxn+1 − dn+1

Because of the decoupled form, step 1 is the sum of two differentiable L2-norm terms. Thus,

we can efficiently solve it from its optimal condition by the conjugate gradient method. Note

that TF is more computationally efficient than TV due to WTW = I. Step 2 can be solved effi-

ciently using the TF shrinkage formula [28]. Step 3 is in its explicit form, thus it is easy to

implement.

Experiments

Data acquisition. The multislice helical CT reconstruction quality was evaluated using

the American College of Radiology (ACR) CT accreditation phantom (Data Spectrum Corpo-

ration. Model: ECT/DLX/P) and the Rando phantom. Siemens SOMATOM Definition

64-slice helical CT scanner was used to generate the helical CT projection data. Details of the

scan parameters for ACR phantom were as follows: Various voltage parameters with effective

mAs, CTDIvol, and DLP are described in Table 1. For every voltage level, there was a 3.05 s
scan time, 0.5 s gantry rotation time, and 64 � 0.6 mm collimation with z-flying focal spot. The

helical pitch is set to be p = 1, with 2304 projections per rotation. Image volume resolution is: 2

mm slice thickness and 0.9766 × 0.9766 mm2 axial resolution. The whole image volume has

512 × 512 × 88 voxels. A 21.6 cm inside diameter cylindrical ACR phantom is used. Parameter

details for the Rando phantom scan were as follows: 120kV with 350 effective mAs are used.

There was a 17 s scan time and 20 � 0.6 mm collimation with z-flying focal spot. The helical

pitch is set to be p = 1, with 4608 projections per rotation. Image volume resolution is: 4 mm
slice thickness and 0.9766 × 0.9766 mm2 axial resolution. The whole image volume has

512 × 512 × 53 voxels.

Quantitative metrics. To evaluate the performance of the proposed algorithm quantita-

tively in comparison to FDK and the Katsevich algorithm, four different quantitative metrics

are selected. The Universal Quality Index (QUI) measures the intensity similarity between

the reconstructed and true images. Image noise is measured by Signal-to-Noise Ratio (SNR)

and Contrast-to-Noise Ratio (CNR). These two metrics quantify the noise level of the recon-

structed images. The Modulation Transfer Function (MTF) is used to evaluate the resolution

of the reconstructed images.

Image similarity—Universal Quality Index (UQI). The Universal Quality Index (UQI)

[43] was measured to evaluate the similarity between the reconstructed and true images. We

considered the image from the scanner to be the true image. Given the ROI within the recon-

structed and true images, the associative mean of the image μ, the variance and covariance of μ
with the true image μtrue over the ROI are denoted as �m, σ2, and Cov(μ, μtrue), respectively.

The definition of UQI is given as

UQI ¼
4 Covðm; m

true
Þ

s2 þ s2
true

�m � �m
true

�m2 þ �m2
true

:
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The UQI measures the intensity similarity between two images, and its value ranges [0, 1]. A

UQI value close to 1 indicates a better level of similarity between the reconstructed and true

images. We chose two ROIs: The whole ACR phantom body on slices 10 and 50. We calculated

the UQI scores for all three methods under comparison.

Image noise—SNR and CNR. To evaluate the quantitative noise level of the reconstructed

images, we chose two different metrics, SNR and CNR. The definitions are as follows.

SNR ¼
�m
ROI

s
ROI

CNR ¼
j�m

ROI
� �m

ROIair
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ROI
þ s2

ROIair

q

where σROI and s
ROIair

refer to the standard deviations and �m
ROI

and �m
ROIair

refer to the

mean pixel value in a ROI inside and the background of the phantom, respectively. We chose

four Regions Of Interest (ROI) to compare the reconstructed images from all three methods

with that from the scanner. For convenience, the CT numbers are normalized with 1 as the

maximum.

Image resolution—MTF. The Modulation Transfer Function (MTF) [43, 44] is calculated

to measure resolution of the reconstructed images. An Edge Spread Function (ESF) was

obtained along the profile of the red line on Fig 1. The Line Spread Function (LSF) was

achieved by differentiating the ESF. The MTF was obtained from the Fourier transformation

of the LSF. Normalization was performed as MTF(0) = 1.

Results

Evaluations with low-dose data

Four evaluations metrics were compared on the different dosage levels of 80, 100, 120, and 140

kVs. A different x-ray source has a different effective dosage (see Table 1). We chose two slices

for the evaluation process, slices 10 and 50. Figs 1 and 2 show the results for slices 10 and 50,

respectively. For both figures, from left to right, each column shows the reconstructed images

from the scanner, by FDK, Katsevich, TV, and TF algorithms. Each row consists of recon-

structed images from different kVs: (aj)’s are from 80kV, (bj)’s are from 100 kV, (cj)’s are from

120 kV, and (dj)’s are from 140 kV, for all j = 0, � � �, 4. The red circles on Fig 1 indicate specific

ROIs; ROI1, ROI2, ROI3, and ROIAIR for the computation of SNR and CNR. ROI 1, ROI2,

and ROI3 are the interior of the small circles inside the ACR phantom. The red line in (a0) is

the ROI for the edge spread function, used for calculating MTF. The set of interiors of the

small red circles on the 50-th slice, the (a0) of Fig 2, is set as a ROI4 and the rest of the area

except ROI4 inside of the phantom is set to the ROIAIR for the computation of the SNR and

Table 1. Scan parameters with different voltages.

voltage

(kV)

Effective

mAs

CTDIvol(32cm)

(mGy)

DLP

(mGy-cm)

80 178 3.30 66.3

100 165 6.51 130.8

120 161 10.84 217.7

140 153 15.78 316.8

https://doi.org/10.1371/journal.pone.0210410.t001
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CNR of ROI4. As illustrated in the Figs 1 and 2, the images from TV and TF reconstruction

algorithms give clear images compared to FDK and Katsevich results.

Quantitative evaluation results are shown in Figs 3–5. For computing the UQI, images

from the scanner were treated as true. Two ROIs for the UQI are set as the whole ACR phan-

tom on the slices 10 and 50. The left bar plot of Fig 3 shows the result of the UQI in three dif-

ferent algorithms of the ROI on th 10th slice. The right plot shows the UQI result of slice 50.

For both plots, the TF reconstruction method achieved the closest value to 1, which means the

TF reconstructed image was the most similar to the scanner results. To evaluate the noise level

of the reconstructed images, Fig 4 shows the SNR and CNR results at the various dosage levels.

The plots on the top row((a)-(d)) are the results of SNR over the ROI1, ROI2, ROI3, and

ROI4. Note that each ROI has different y-range, since different ROI has different noise level.

ROIs are defined in Figs 1 and 2. CNRs on the ROI1-ROI4 are illustrated in Fig 4(e)–4(h). TF

and TV algorithms achieved the high CNR and SNR on the four ROIs at all dosage levels,

Fig 1. Illustrated reconstructed images with varying kVs on the slice number 10. (a0): Image from the scanner. Red circles indicate ROI’s: ROI1,

ROI2, ROI3 and ROIAIR. The red line is used to compute the LSF and MTF. Each row has reconstructed images at different kVs, (aj): 80kV, (bj): 100kV,

(cj): 120kV, and (dj): 140 kV, for all j = 0 � � � 4. Each column has reconstructed images from different reconstruction algorithms: (X0): scanner, (X1):

FDK, (X2): Katsevich, (X3): TV, and (X4): TF for all letters X = a, b, c or d.

https://doi.org/10.1371/journal.pone.0210410.g001
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except in one case: The SNR on ROI3 at 120 kV. TF and TV algorithms are comparable. TF

achieved the highest value on ROI3, but TV did on ROI4.

Fig 5 shows the MTF curves of the results reconstructed by FDK, Katsevich, TV and the TF

algorithm. Over all voltage levels, TF algorithms got the best resolutions than the other algo-

rithms. But the MTF curve gives no big difference in various voltage levels.

Overall, quantitative evaluation results with various dosage show results of TF and TV are

competitive.

Evaluations with sparse-view data

To evaluate with sparse-view performance, we fixed the dose level at 100kV. Images were

reconstructed at four different sampling steps, 1, 4, 8, and 16. The full view data has 2304 views

per 360˚. Sampling step 4 was achieved by taking 576 data uniformly per 360˚. Similarly, sam-

pling steps 8 and 16 were achieved with 288 and 144 views per 360˚, respectively. For sampling

Fig 2. Comparison of the reconstruction algorithms with varying kVs on the 50-th slice. ROI4 is the set of the interiors of the small red circles.

ROIAIR is defined as the air part inside the phantom on slice 50-th. Each row has reconstructed images at different kVs, (aj): 80kV, (bj): 100kV, (cj):

120kV, and (dj): 140 kV, for all j = 0 � � � 4. Each column has reconstructed images from different reconstruction algorithms: (X0): scanner, (X1): FDK,

(X2): Katsevich, (X3): TV, and (X4): TF for all letters X = a, b, c or d.

https://doi.org/10.1371/journal.pone.0210410.g002
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step 4, it is equivalent that both the rotation speed and the table movement are four times faster

than those of sampling step 1. The results of the reconstruction images with different view-

angles are shown in Figs 6 and 7. The images (a0) and (b0) are from the scanner on both fig-

ures. From the top to the bottom rows, images are reconstructed CT images by sampling steps

1, 4, 8, and 16. Each column shows images from a different reconstruction algorithm. From

left to right, each column consists of images by scanner, FDK, Katsevich, TV and the TF

Fig 3. Image similarity measure: Bar plot of the UQIs of the different reconstruction algorithms over various dosage levels. (a): UQI on

the 10-th slice, (b): UQI on the 50-th slice.

https://doi.org/10.1371/journal.pone.0210410.g003

Fig 4. Image noise measures: Plots of SNRs(top row) and CNRs(bottom row) with the different reconstruction algorithms over various

voltage levels. The x-axis is the dosage level in kV.

https://doi.org/10.1371/journal.pone.0210410.g004
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algorithm. As shown in the first row, reconstruction images at sampling step 1 are streak-free

for all reconstruction algorithms. However, streaks appeared on the images with FDK and Kat-

sevich for sparse-view data. The last column of the Figs 6 and 7 showed that visually TV and

TF reconstruction outperformed other two reconstruction methods. On Figs 6(a0) and 7(a0),

Fig 5. Image resolution measure: Results of MTF curves with the different reconstruction algorithms over various voltage levels. The

red line on the Fig 1(a0) is used to compute LSF and MTF.

https://doi.org/10.1371/journal.pone.0210410.g005

Fig 6. Reconstucted images with various sampling step sizes. From top to bottom, the sampling step size is set to 1, 4, 8, and 16. Each column

consists of a different reconstruction algorithm, from left to right, scanner: FDK, Katsevich, TV and the TF algorithm. The image on (a0) shows

the three ROIs, and the red line is set for the computation of LSF for MTF. ROIAIR, ROI of air, is defined to compute the CNR for ROI1-ROI3.

https://doi.org/10.1371/journal.pone.0210410.g006
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ROI’s are defined as in the previous section. Visual comparison between TV and TF is given in

the next subsection.

For the quantitative evaluation of similarity between the reconstructed image and the scan-

ner image, we computed the UQI for each slices 10 and 50. The ROI for the UQI is set as the

whole phantom area on a given slice. Fig 8 shows the result of UQI with various sampling step

sizes. Both plots (a) and (b) show that the TF algorithm achieved the highest value except one

case, which means that the image reconstructed using the TF algorithm was the most similar

to the scanner image.

For the quantitative evaluation of the noise level of the reconstructed images, we computed

the SNR and CNR on ROIs 1–4. Fig 9 shows the SNR and CNR results. Similar to Fig 4, each

column in Fig 9 has different y-range. The first row consists of the SNR results for ROI1-ROI4.

The second row is the result of the CNR of ROI1-ROI4. Both SNR and CNR indices have a

similar pattern. The TF algorithm achieved the highest SNR and CNR except for a few points

in ROI2 and ROI4. For the quantitative evaluation of the image resolution, Fig 10 shows MTF

curves as described in the previous subsection. The LSF is computed with the ROI indicated

in Fig 6(a0). TV and TF results achieve high resolution than other two algorithms. The TF

Fig 7. Reconstucted images with various sampling step sizes. From top to bottom, the sampling step size is set to be 1, 4, 8, and 16. Each

column consists of a different reconstruction algorithm, from left to right: scanner, FDK, Katsevich, TV and the TF algorithm. The image

on (a0) shows ROI4 and ROIAIR.

https://doi.org/10.1371/journal.pone.0210410.g007
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algorithm achieved the highest MTF, especially when the fewest sample generated the highest

MTF difference among other reconstructed methods.

Comparison with TV

As shown in Figs 1 ~ 7, image qualities of TF and TV are hard to compare. Each quantitative

metric shows a slight superiority of TF. To show some good points of the proposed algorithm,

we have tested Rando phantom data, which has more realistic and complicated structure

than ACR phantom. Rando phantom is scanned and reconstructed with sparse-view as done

in the previous subsection. Fig 11 shows the results by TV(top rows) and TF(bottom rows)

Fig 8. Image similarity measure: UQI results for various sampling step size. x- axis is the sampling step size, 1, 4, 8, and 16. y- axis is set as the UQI

index. (a): UQI bar plot for the 10-th slice. (b): UQI bar plot for the 50th slice.

https://doi.org/10.1371/journal.pone.0210410.g008

Fig 9. Image noise measures: SNR and CNR results for the various sampling step sizes. First row: SNR result, second row: CNR results.

https://doi.org/10.1371/journal.pone.0210410.g009

Tensor framelet based iterative image reconstruction algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0210410 January 11, 2019 12 / 17

https://doi.org/10.1371/journal.pone.0210410.g008
https://doi.org/10.1371/journal.pone.0210410.g009
https://doi.org/10.1371/journal.pone.0210410


algorithms. The sampling size 1 (which is the right column) results shows similar to each

other. But as the step size increases, the TV results are more blurry but clean, while that of TF

maintains sharpen edges even with a large step size. Same results can be shown in Fig 6. Fig 12

are same images from Fig 6, TV and TF reconstruction with step 16. Streaking artifacts due to

partial projection data are shown less in the TF results. As indicated in red box, TF image has

more sharpen edges than that of TV. Overall, we can conclude that TV and TF image qualities

are similarly good, but TF has more sharpened edge and less artifacts.

One of the key factor to evaluate iterative algorithms is the reconstruction time. TV and TF

elapsed times are summarized in Table 2. TF algorithm requires about 25% less time than TV

algorithm.

Discussion and conclusion

To summarize, we have successfully developed a GPU-based TF iterative image reconstruction

algorithm for low-dose multislice helical CT, and have shown that the TF method provided

Fig 10. Image resolution measure: Results of MTF curves with different reconstruction algorithms over various sampling levels. The red line on

the Fig 6(a0) is used to compute the LSF and MTF.

https://doi.org/10.1371/journal.pone.0210410.g010

Fig 11. Visual quality comparison: TV(top row) and TF(bottom row). From left to right, reconstruction results by the sampling

step size is set to 1, 4, 8, and 16. TV results shows more blurry effect compared to TF results.

https://doi.org/10.1371/journal.pone.0210410.g011
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improved image quality over the FDK, the Katsevich and TF algorithms when dealing with

low-dose and sparse-view data, using UQI, SNR, CNR, and MTF measurements as evaluation

metrics. High quality images are reconstructed by the proposed algorithm even with partial

view data. TF algorithm is more computationally efficient than that of TV, because of the left-

invertibility of the TF transform property [27]. Moreover, TV reconstructed images show

more blurry and flattened than TF. The computational complexity of the TF algorithm is O(1),

which is the cost of the x-ray transform and its adjoint per parallel thread [27].

Supporting information

S1 Fig. Data related to Fig 1.

(MAT)

S2 Fig. Data related to Fig 2.

(MAT)

S3 Fig. Data related to Fig 6.

(MAT)

S4 Fig. Data related to Fig 7.

(MAT)

S5 Fig. Data related to Fig 11.

(MAT)

Table 2. TF and TV elapsed time in seconds.

sampling step size 1 4 8 16

TF 18199 4485 1708 718

TV 23303 5674 2692 1429

https://doi.org/10.1371/journal.pone.0210410.t002

Fig 12. Visual quality comparison: TV(left) and TF(right). TF image has less streaking artifact. As shown in the red box, TF

maintain sharpen edge.

https://doi.org/10.1371/journal.pone.0210410.g012
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