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The purpose of this study was to investigate quantitatively by measurement and 
modeling the variations in CT number distributions of mobile targets in cone-beam 
CT (CBCT) imaging. CBCT images were acquired for three targets manufactured 
from homogenous water-equivalent gel that was inserted into a commercial 
mobile thorax phantom. The phantom moved with a controlled cyclic motion in 
one-dimension along the superior–inferior direction to simulate patient respiratory 
motion. Profiles of the CT number distributions of the static and mobile targets 
were obtained using CBCT images. A mathematical model was developed that 
predicted the variations in CT number distributions and their dependence on the 
motion parameters of targets moving in one-dimension using CBCT imaging. 
The measured CT number distributions for the mobile targets varied considerably, 
depending on the motion parameters. The extension of the CT number distribu-
tion increased linearly with motion amplitude where maximum target elongation 
reached twice the motion amplitude. The CT number levels of the mobile targets 
were smeared over a longer distribution; for example, the CT number level for the 
20 mm target dropped by nearly 30% at motion amplitude (A) equal to 20 mm in 
comparison with the CT number distribution of stationary targets. Frequency of 
motion played an important role in spatial and level variations of the CT number 
distributions. For example, the level of the CT number profile for the medium 
target (20 mm) decreased evenly by nearly 50% at A = 20 mm with high motion 
frequencies. Motion phase did not affect the CT number distributions for prolonged 
projection acquisition that included several respiratory cycles. The mathematical 
model of the CT number distributions of mobile targets in CBCT reproduced well 
the measured CT number distributions and predicted their dependence on the target 
size and phantom motion parameters such as speed, amplitude, frequency, and 
phase. The CT number distributions varied considerably with motion in CBCT. A 
motion model of CT number distribution for mobile targets has been developed 
in this work that predicted well the variations in the measured CT number profiles 
and their dependence on motion parameters. The model corrected the CT number 
distribution retrospective to CT image reconstruction where it used a first-order 
linear relationship between the number of projections collected in the imaging 
window of a mobile voxel to obtain the cumulative CT number. This model pro-
vides quantitative characterization of motion artifacts on CT number distributions 
in CBCT that is useful to determine the validity of CT numbers and the accuracy 
of localization and volume measurement of tumors in diagnostic imaging and 
interventional applications, such as radiotherapy. 
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I.	 INTRODUCTION

CT imaging plays an essential role in the diagnosis of various diseases, including cancer, where 
it provides a valuable tool in screening and staging of various cancers.(1-3) In radiotherapy, CT 
imaging has a paramount role where the tumor and critical structures are usually outlined in the 
treatment planning process.(4,5) However, patient motion degrades the quality of CT images.(6-8) 
Different techniques were introduced to handle motion artifacts in CT imaging. These techniques 
include rapid gantry rotations combined with multislice technology to achieve shorter scanning 
with less motion artifacts(9,10) and correction of motion artifacts in the projections(11,12) before 
image reconstruction, where the trajectory of a mobile object is remapped back to the station-
ary positions. 4D CT is used to account for patient motion(13-16) in which the projections are 
sorted into different respiratory motion phases and CT images are reconstructed in each phase 
with reduced motion artifacts. 

Cone-beam computed tomographic imaging (CBCT) provides a robust tool for volumetric 
tomography using high resolution and sensitive flat-panel detectors.(17,18) An X-ray source pro-
vides three-dimensional cone beams that are detected with a large effective imaging area using 
flat-panel detectors(18) or multiple detector arrays.(19,20) In CBCT, the projections are acquired by 
rotating the imaging gantry around the patient to obtain different angular views to reconstruct 
volumetric images of the patient.(21) Over the last decade, interventional applications of CBCT 
have grown, where increasing number of radiation therapy machines are being equipped with kV 
on-board imaging (OBI) systems that can provide planar radiographic imaging, volumetric CT 
imaging, and fluoroscopy.(22) The OBI has become a vital clinical tool to perform image-guided 
radiation therapy (IGRT). However, patient motion degrades image quality and thus limits the 
visibility of tumors and critical structures.(23) In this work, variations in the distributions of 
the CT numbers for well-defined targets induced by motion were assessed quantitatively by 
measurement and modeling. The changes in the extension and level of CT numbers for three 
mobile targets inserted in a thorax phantom were measured quantitatively by CBCT imaging 
using a kV on-board imager. Controlled cyclic motion patterns were induced to simulate image 
artifacts from patient respiratory motion. The measured distributions of the CT numbers of the 
stationary and mobile targets were employed to develop a mathematical model that predicts 
quantitatively the motion effects on the CBCT number distributions. 

 
II.	 MATERIALS AND METHODS

A. 	 Phantom setup
A thorax phantom system (Standard Imaging, Inc., Middleton, WI) was assembled with 
homogenous water-equivalent targets that were inserted in the middle of lung tissue- equivalent 
medium. The phantom was then mounted on a sinusoidally moving platform, as shown in Fig. 1. 
The system moved with a cyclic motion in one dimension along the superior–inferior direction 
(y-axis) using various motion amplitudes ranging from 0–20 mm at a frequency of 15 cycles/
min during CT scanning. Three targets, small (3 × 1 × 5 cm3), medium (3 × 2 × 5 cm3), and 
large (3 × 4 × 5 cm3), were fabricated from a gel material and inserted in low-density foam to 
simulate mobile lung tumors. 

The phantom was then imaged using an on-board imager (OBI) with kV CBCT integrated 
with a TrueBeam linear accelerator (Varian Medical Systems, Inc., Palo Alto, CA). The OBI 



362    Ali et al.: Modeling and measurement of CT number distributions 	 362

Journal of Applied Clinical Medical Physics, Vol. 16, No. 1, 2015

consists of a kV X-ray source with a diagnostic image quality and a flat-panel imager (PaxScan 
4030CB; Varian Medical Systems). The imager was operated in 2 × 2 binning mode, where 
the projections were acquired with a 1024 × 768 pixels that covered 40 × 30 cm2 effective area 
with a spatial resolution of nearly 0.39 × 0.39 mm2 at isocenter, which is located at a distance 
of 150 cm from the imaging X-ray source. The OBI was employed to obtain full-fan and half-
fan CBCT of the mobile phantom system. In full-fan scans, a small imaging volume of 25 cm 
diameter and 15 cm thickness are obtained, where projections are acquired over 180° angular 
range. In full-fan scans, the imager position is offset to cover a large imaging volume of 50 cm 
diameter and 17 cm thickness, where projections are acquired over 360° angular range. The 
imaging parameters used were 2 mm slices thickness, 125 kVp, and 264 mAs for half-fan CBCT, 
and 2 mm slice thickness, 100 kVp, and 146 mAs for full-fan CBCT. The phantom was scanned 
while it was static and moving, using the previously mentioned cyclic motion patterns. The CT 
images were subsequently processed with the Eclipse treatment planning system (Varian Medical 
Systems). Coronal image views for all scans with the different motion amplitudes from each of 
the two imaging modes were reconstructed and used to measure the CT number distributions 
and levels. To maintain consistency in the measurement of CBCT number distributions, the 
coronal slice that passed through the centers of all targets was selected, where all targets were 
set at the same level in the anterior–posterior direction, as shown in Fig. 1. 

B. 	 Modeling of target broadening in CBCT
Figure 2 shows a top view in the (X, Y, Z) coordinates with the three targets embedded in a 
phantom moving along the Y direction which was used in the modeling of the CT number 
distributions. To simplify the modeling, a stationary target composed of homogenous water-
equivalent material that sits in the middle of air is considered. If N projections are acquired during 
CBCT scanning of a stationary object, they are used by the CT image reconstruction algorithm 
to calculate CT numbers. In CBCT, a projection measures the attenuation of radiation of an 
object in its path, as shown in Fig. 2, where the intensity (In) measured at pixel n on the imager 
represents the attenuation of all voxels along a ray of radiation from the source, as follows:  

  
		  (1)
	

where Io is the initial intensity produced by the imaging source, μ1 is the linear attenuation 
coefficient of voxel i with thickness ti, and Sn is the number of voxels in the ray track. All 
voxels were assumed to have equal thickness, t, and thus ray, n, passes through a total thick-
ness equal to tSn, as shown in Fig. 2. An image reconstruction algorithm solves numerically 
many equations like Eq. (1) that include all pixels on the two-dimensional images and different 

Fig. 1.  Thorax mobile phantom with water-equivalent targets — small (3x1x5 cm3), medium (3x2x5 cm3) and large  
(3x4x5 cm3) — fabricated from a gel material and inserted in low-density foam. 
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angular views in order to obtain the linear attenuation coefficient μ1 at voxel i. For example, in 
the filtered back-projection image reconstruction,(21) a large number of projections are back-
projected on the image matrix to build up the CT number value. Each projection contributes 
incrementally  to the cumulative CT number value of voxel i considering that the linear 
attenuation factor of this voxel is the same in all projections. This is an acceptable approxi-
mation considering negligible variations in the value of the linear attenuation coefficient for 
voxel i due to variations in the imaging beam energy. N is the number of projections that are 
acquired within an imaging window (w) for the stationary phantom; w is defined here as the 
spatial interval where the projections of voxel i are acquired which is assumed to be equal for 
all voxels. Thus, in a stationary voxel, the CT number of the stationary voxel, , is linearly 
proportional to the number of projections:

	 	 (2) 

If the previous target is now moving, then the number of projections (M) acquired within 
the imaging window (w) for voxel i that will be used by the image reconstruction algorithm 
is different from the stationary target because the mobile target is moving in or out of w. The 
CT number ( ) of voxel i in the mobile target is again linearly proportional to the number 
of projections (M) that are acquired: 

	 	 (3) 

From the previous equations, the relationship between the CT number levels of voxel i for 
the mobile and stationary targets is given by: 

		  (4)
	  

Figure 3 represents a simulation of the variations in the CT number distributions for sta-
tionary and mobile targets using CBCT imaging. The CT numbers of voxel i = 1 as a func-
tion of position for a stationary and mobile targets is represented in Figs. 3(a) and (b). In the 
case of stationary target, for example, all projections (N = 10) are acquired by the gantry as it 

Fig. 2.  Reference coordinate system with a ray (In) that passes through voxel i in a mobile target.  
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rotates around the target during scanning within an imaging window (w) of voxel i, as shown 
in Fig. 3(a), where w represents the width of one slice thickness in the CBCT images. For the 
mobile target, smaller number of projections (M = 2) are acquired in each window and the CT 
number level is obtained from increments of  that broaden over a range of distance (5w) 
which depends on the speed of the mobile target, as shown in Fig. 3(b). In Fig. 3(c), the pro-
jections (N = 10) of a target with ten slices (10w) is acquired for the stationary target. As the 
target moves, the CT numbers broaden over a longer range of slices (19w). The CT numbers 
of the different slices vary where the number of projections and the corresponding CT number 
level, as represented by the dashed curve increases, until it reaches a maximum at the tenth 
slice (N = 10). Afterwards, it decreases, reaching zero at 20th slice.      

Notice that the cumulative value of all the projections and the corresponding CT numbers 
from all imaging windows for one voxel (Fig. 3(a)) or for a whole target with many voxels 
(Fig. 3(c)) is the same for a target when it is either stationary or mobile (Fig. 3(b) and 3(d)). 
The areas under the stationary or mobile CT number profiles for each target are equal:
 
	 	 (5)  

Fig. 3.  Simulation of the CT number distributions with acquisition and sorting of the projections (N = 10) for one voxel 
target when it is stationary (a) and moving (b) with a constant speed ( ). Simulation of the CT number distributions with 
acquisition of the projections (N = 10) for a target made from ten voxels when it is stationary (c) and moving (d) with a 
constant positive speed ( ) in the superior–inferior direction. The cumulative CT number profiles are represented by the 
dashed curves.  
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where  is the extension of CT number in the mobile target. The CT number of voxel i for the 
mobile target is then given by the following: 

		  (6)
	

where  is the speed of the mobile target and  is the time needed to acquire all cone-beam 
projections over a distance  that the target will move to during imaging. 

In the case of a stationary target, the CT number of voxel i is calculated from N projections 
acquired in w located at  along the superior–inferior direction during scanning. However, 
for a mobile target, the CT number at  is obtained from the contributions of the projections 
of several voxels that are acquired in w as they pass during CBCT imaging. Equation (6) can 
be generalized to obtain the CT number of voxel i at a specific position  during imaging from 
the contributions of different voxels of the mobile target, as given by the following:  

 
		  (7)
	

 

where V is the number of voxels that belong to the target, N is the number of projections 
acquired in CBCT scanning,  is the position of voxel i in stationary phantom,  is 
the position of voxel i at time t which changes, depending on the speed of the mobile target  
(  during imaging). In Eq. (7), all the voxels in the mobile target were assumed to move with 
a constant speed ( ). 

C. 	 CBCT number distribution simulation
The modeling of CT number distributions was tested using programming with MATLAB 
(MathWorks, Inc., Natick, MA). The composition of the three targets was considered to be 
water-equivalent tissues and the CT number level was setup to be equal to the CT number level 
of each stationary target. The surrounding medium was considered lung tissue-equivalent. The 
measured CT numbers for the same target varied by ± 20 HU between half-fan and full-fan 
CBCT. The position and length of each target and motion parameters, such as motion amplitude, 
frequency, and phase, were input in the simulation to calculate the CT number distributions. 
Furthermore, imaging parameters such as slice thickness, gantry speed, imaging view, and detec-
tor resolution were input in the MATLAB program to simulate CT numbers. The calculated CT 
number profiles of the stationary and mobile targets with various motion patterns from simula-
tion were compared with the measured profiles of CT numbers obtained from CBCT imaging. 

 
III.	 RESULTS 

Figure 4 shows coronal views obtained from half-fan CBCT images of the three targets, small, 
medium, and large, inserted in the phantom with different cyclic motion amplitudes ranging 
from 0–20 mm. The CT number distributions extended over large distances that increased lin-
early with the motion amplitude (A). The distributions were flat for the stationary targets made 
from homogenous material in this experiment. However, as the A increased, the CT number 
levels became less flat with maximum moving from the center to the edges of the distributions. 
Figure 5 shows the profiles of the CT numbers along the direction of motion (y-axis) for the 
small (10 mm) and medium (20 mm) targets with different motion amplitudes, as indicated. 
The solid and dashed curves represent the measured CT number obtained from CBCT images 
and calculated profiles using Eq. (7), respectively. In the CT number distribution for the small 
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target, the maximum of the CT number level shifted from the center of the target to the edges 
as the range of motion (ROM), which is twice the motion amplitude, increased from 0–40 mm. 
When the ROM became larger than the actual length of the small target (> 10 mm), the CT 
number distributions split in the middle where the CT number maxima were located close to 
the periphery of the distributions. The maximum of the CT numbers was located centrally for 
the medium target with ROM < 20 mm. When the ROM was larger than the length of the target 
(20 mm), then the CT number distribution split, with the maximum shifted towards the edges 
of the broadened target. Similar behavior was seen with the large target (40 mm), as shown in 
Fig. 6, where the maximum level of the CT numbers decreased as the distribution broadened 
over a larger spatial extension. Figures 5 and 6 show the variations of the CT number profiles 
along the direction of motion with different ROMs for the three targets. For example, the CT 
number level for the 20 mm target dropped by nearly 30% at ROM = 40 mm, in comparison 
with the CT number distribution of stationary targets. Although the CT numbers broadened 
over larger volume and the CT number level decreased with the increase in the extension of 
the CT number distributions, the total cumulative CT number over the broadening range was 
preserved, as predicted by Eq. (5) as long as the target is in the imaging view during CBCT 
scanning. In Fig. 5 there were few spikes, which might be induced by streaking artifacts form 
dense objects or metal components in the treatment couch or phantom setup. The treatment 
couch is composed from a dense carbon-fiber frame and some metal component to support 
patients. The thorax phantom has a metal arm and motor components that drive the mobile 
platform, which might produce the streaking artifacts in CBCT images as it extends in the 
imaging view during phantom motion.  

Fig. 4.  Coronal views of the CT number distributions for the three targets (small, medium, and large) with different motion 
amplitudes using half-fan CBCT images. X- and y-axis are represented in pixels. The targets moved cyclically in the 
superior–inferior direction (y-axis) with nine different motion amplitudes: 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, and 20 mm 
with a frequency of 15 cycles per min. 
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Fig. 5.  CT number profiles of the small and medium targets using half-fan CBCT imaging with different motion amplitudes, 
as indicated. The solid and dashed curves represent the measured and model CT number levels, respectively.  

Fig. 6.  CT number profiles for the large target from half-fan CBCT imaging with different motion amplitudes, as indicated. 
The solid and dashed curves represent the measured and model CT number levels, respectively. 
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Table 1 shows the percentage normalized root mean square (PRMS) for the difference of 
the calculated and measured CT number profiles for the small and medium targets presented 
in Fig. 5 and large target in Fig. 6. The right column represented the motion amplitude (A) of 
the mobile targets. The highest PRMS was 6.2% for the small target at A = 12.5 mm, which 
is larger than the actual length of the target (10.0 mm) and which resulted from high gradi-
ent in the CT number profiles that were generated by splitting the CT number profile due to 
spread-out by motion. PRMS for the small target was generally larger than the medium and 
large targets because of the high gradient in the CT number profiles for the small target. For 
the medium target, PRMS decreased as A increased until it reached intermediate values before 
CT number profiles split and produced high-gradient CT number profiles when the range of 
motion (2A) became larger than the actual length of the medium target. As A increased, the 
CT number profiles for the large target became flatter without splitting the CT number profiles 
and, thus, PRMS decreased.        

Figure 7 shows simulation of the variations of the CT number profiles with different fre-
quencies (0.1–0.4 Hz) and ROMs (10–40 mm) for the three targets: small (10 mm), medium 
(20 mm), and large (40 mm). The centers of the three targets were assumed to be at 50 mm in 
their stationary position, and then they were allowed to move with cyclic motion in the supe-
rior–inferior direction. At small ROMs of the mobile targets, the maximal CT number level 
in the profiles remained nearly the same with small variations due to changes in the motion 
frequency. However, at large ROM (40 mm), the profiles changed significantly, where the CT 
numbers were then distributed evenly over the extended ROM. For example, the level of the 

Table 1.  Percentage normalized root mean square for the difference of the measured and calculated CT number profiles 
(small, medium, and large targets) for the motion amplitudes in the first column. 

	A (mm)	 Small Target	 Medium Target	 Large Target

	 0.0	 5.4	 4.2	 3.0
	 2.5	 3.2	 2.7	 2.4
	 5	 3.6	 2.6	 1.7
	 7.5	 2.8	 2.5	 1.6
	 10	 4.7	 2.6	 1.7
	 12.5	 6.2	 2.8	 1.7
	 15	 5.1	 2.5	 1.8
	 17.5	 5.4	 2.8	 1.9
	 20	 5.3	 3.7	 2.2

Fig. 7.  Simulation of the CT numbers profiles dependence on motion frequency for the three targets — small (10 mm) 
in the first column, medium (20 mm) in the second column, and large (40 mm) in the third column — moving with the 
indicated ranges of motion (ROM = 2A). 
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CT number profile for the medium target (20 mm) dropped evenly by nearly 50% at a ROM = 
40 mm. This is because the mobile targets were present more often in the middle of the distri-
bution for high frequencies in comparison with that at the periphery for low frequencies where 
they stayed longer times turning around with low speeds. The phase of motion did not affect 
the CT number distributions when the projections were acquired over several motion cycles.   

Figure 8 demonstrates the dependence of the CT number distributions of the three targets 
on speed where unidirectional constant speeds along the y-axis (superior–inferior) were used. 
As the speed of a mobile target (VP) increased, the CT number distribution broadened forward 
along the direction of motion. The elongation of the CT number distributions increased linearly 
with the speed of the mobile targets, as shown in Fig. 9(a). Furthermore, the CT number levels 
at the edge of the distributions decreased linearly with the speed of the mobile targets along the 
Y direction (Fig. 9b)). The CT number levels for each target decreased as the speed increased, 
as predicted by Eq. (5) and shown in Fig. 9(c).   

 

Fig. 8.  Simulation of the CT numbers distributions with unidirectional constant speeds along the superior–inferior direc-
tions: 0.25, 0.5, and 1.0 mm/sec for the three targets — small (10 mm) in the first column, medium (20 mm) in the second 
column, and large (40 mm) in the third column. 



370    Ali et al.: Modeling and measurement of CT number distributions 	 370

Journal of Applied Clinical Medical Physics, Vol. 16, No. 1, 2015

IV.	 DISCUSSION

In this study, a mathematical model was introduced to predict the CT number distributions 
of mobile targets in CBCT imaging. This model is based on considering a first-order linear 
relationship between the number of projections captured in the imaging widow of a mobile 
voxel and the cumulative CT number obtained from image reconstruction algorithm. It was 
used to predict the variations of CT number distributions induced by controlled motion pat-
terns retrospective to the image reconstruction process. The model was verified by measure-
ment of the variations in CT number distributions of mobile targets with different controlled 
motion patterns and imaged using half-fan and full-fan CBCT imaging. The variations in the 
broadening and level of CT number distributions and their dependence on motion parameters 
were reproduced by the mathematical modeling. One limitation of this model is that the mobile 
targets have to stay in the cone-beam imaging view when using the half- and full-fan imaging 
modes. If a target moves out of the imaging view in certain projections, then the CT number 
level obtained from CBCT reconstruction is different. Thus the preservation of cumulative CT 
numbers represented in Eq. (5) is not valid. In half-fan scanning mode, one side of the phantom 
is imaged and the shadow of a mobile target has to be acquired in the projections needed to 
reconstruct CBCT images for that specific side. For the same motion patterns, the CT number 
distributions in full-fan CBCT are similar to those seen in half-fan CBCT as long as the mobile 
target does not shift out of the half-fan beam imaging view. Furthermore, the measured CT 
number distributions were limited by detectors size, electronic noise, volume averaging, and 
approximations used in the CBCT image reconstructions;(21) however, this motion model did 
not consider these effects. Although, the modeling in this study is limited to one-dimensional 

Fig. 9.  Length of the CT numbers distribution (a) for the three targets as a function of the speed of the mobile targets in 
CBCT imaging; decrease of the CT number level (b) at the edges as a function of the speed of the mobile target; the integral 
of CT numbers level (c) over the broadening distance of the mobile targets as a function of speed. 
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motion along the superior–inferior directions and stationary imaging couch, it can be general-
ized to other realistic complicated motion patterns that may be the subject of a future study.     

CBCT is routinely used as interventional tool in IGRT;(22) however, elongation of a tumor 
by patient motion affects the localization accuracy and patient setup. In this study, controlled 
cyclic motion was employed with known motion amplitude and frequency. In a real patient, 
these motion parameters are unknown. The modeling developed here has potential clinical 
application in IGRT where it provides a method to extract unknown motion parameters from 
the measured CT number distributions and levels. For example, if a patient has an implanted 
marker or another anatomical surrogate with known initial length and composition, then the 
broadening or elongation of the nearby tumor can be determined, assuming that the tumor 
broaden in the same way as the marker. According to Eq. (5), the elongation of the tumor can 
be used to determine motion amplitude. Motion frequency may be extracted from the CBCT 
number distributions; however, this needs further investigation. 

The use of CBCT images is limited by image artifacts induced by scatter radiation,(24) 
approximations of image reconstruction algorithm,(21) and patient motion.(23,25-26,8) Thus, 
CBCT is not used currently as standard in contouring and dose calculation in treatment plan-
ning systems.(27) Of particular interest is scattered radiation, which is a random process that 
enhances the noise and lower contrast in CBCT imaging without producing patterns of image 
artifacts. Thus, scattering artifacts might be distinguished from the ones associated with motion 
that produce certain patterns such as spreading out the CT number distribution, blurring at 
the edges of a sharp object, and a dropping in the CT number level. The uncertainty in CBCT 
number could be as large as ± 40 HU, based on the extreme vendor acceptance criteria; how-
ever, in our CBCT imaging system, uncertainly is often within ± 20 HU. New CT scanners 
use multiple array detectors to image large portions of the patient that combine CBCT and 
helical or axial CT techniques. In these diagnostic CBCT imaging systems, the variations in 
the CT number distribution and tumor density due to patient motion influence the accuracy of 
disease diagnosis. The employment of CBCT in radiotherapy will affect the accuracy of the 
treatment planning, dose calculation and patient setup. The variations in CBCT number distri-
bution and level by patient motion may cause wrong portrayal of tumor volume. The increase 
in the extension of the CBCT number distributions of the tumor volume will cause outlining 
of less tumor or inclusion of normal tissue on the CT images used by the treatment planning  
system.(4,5,28) Furthermore, variations in the CT number density cause changes in the electron 
density used to correct heterogeneity by the dose calculation algorithm.(29,30) 

 
V.	 CONCLUSIONS

A mathematical model has been developed in this study that predicted the CT number distribu-
tions of mobile targets in CBCT imaging. The model considered first-order linear relationship 
between the number of projections collected in the imaging widow of a mobile voxel and the 
cumulative CT number obtained from image reconstruction algorithm. The model predicted 
well the variations of CT number distributions induced by controlled motion patterns retrospec-
tive to the image reconstruction process. The variations in CT number distribution need to be 
considered in diagnostic CT imaging in order to achieve accurate tumor localization and volume 
measurement. The motion-induced artifacts in the CT number distributions have to be accounted 
for in radiation therapy in order to outline the actual tumor volumes, use accurate CT numbers 
in treatment planning, and set up patients and localize tumors using IGRT based on CBCT.
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