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Abstract: Background: Huntington’s disease is an inherited autosomal dominant trait neuro-degenerative
disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short
arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements,
cognitive and psychiatric disorders. Objective: This review was undertaken to apprehend biological
pathways of Huntington’s disease (HD) pathogenesis and its management by nature-derived prod-
ucts. Natural products can be lucrative for the management of HD as it shows protection against
HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of
the known organic products and their isolated compounds in HD experimental models. Summary:
Degeneration of neurons in Huntington’s disease is distinguished by progressive loss of motor coordi-
nation and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the
htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed
that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction,
neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of
the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have
enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and
neurofunctional regulation.

Keywords: Huntington’s disease (HD); neurodegenerative disorder; pathogenesis; huntingtin (htt);
natural drugs; CAG expansion; natural products

1. Introduction

Huntington’s disease (HD) is an autosomal, escalating, and dominantly-inherited
disease caused due to degeneration of neurons characterized by impairment of choreatic
movements, and behavioral and psychiatric loss, principally in the cerebral cortex and
striatum [1–3]. It claims its name from a physician, George Huntington, who first described
the illness in 1872 [4]. In 1974, the first publication on HD was published [5]. HD is the
earliest genetic condition to be linked to a specific chromosome site, and it has a special
place in medical genetics research [6–9].
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The biological pathways causing the disease are unknown and complicated, even
though HD is distinguished by a well-defined genetic origin. Different mechanisms such as
molecular genetics, leading to oxidative stress, metabolic dysfunction, and mitochondrial
dysfunction, explain the pathological process of HD [10,11]. Thus, early diagnosis of clinical
manifestation along with meticulous management becomes crucial.

HD is a neurological disease that develops slowly and is triggered due to sudden
changes in the HD protein huntingtin (htt) [12,13]. An extension within the CAG repeat tract
causes a mutation in htt, resulting in longer lengths of polyglutamine (polyQ) in the encoded
protein. In unaffected populations, wild-type alleles contain up to 35 CAG repetitions,
whereas 36 or more CAG repetitions specify HD allele [12,14–16]. The total amount of CAG
repeats, as well as the phase of appearance of symptoms, is inversely connected, i.e., larger
CAG repeat extensions are related to an initial phase of onset [17–19]. The protein encoded
by the htt gene is a 348-kDa multidomain protein with a polymorphic glutamine/proline-
rich domain at its amino terminus [20,21]. HD is currently the most extensively reported
hereditary neurodegenerative disease that has diagnostic and prognostic genetic testing,
with the probability of gene-targeted therapy in the nearby future [6]. HD was among
the first diseases to be genetically tested before birth. Certainly, neuroimaging techniques
have provided predictive and diagnostic genetic screening for ailment identification and its
implications on sick persons and families through specialized facilities and genetic testing
procedures [6,22,23].

Specific neurodevelopmental findings in HD include striatal degeneration and neu-
ronal death, notably in the caudate nuclei, which target the cerebral cortex, pallidum,
thalamus, brainstem, and cerebellum [24]. Neuroinflammation and microglial activation
are hallmarks of the preliminary phase of HD [25]. In HD plasma, the levels of IL-6, matrix
metallopeptidase 9, vascular endothelial growth factor (VEGF), and TGF-1 were signifi-
cantly elevated, whilst the levels of IL-18 were markedly decreased. The prevalence of HD
was reversely linked with plasma IL-6 [26]. HD is a severe autosomal-dominant late-onset
neurological disorder that leads to chronic and incurable motor defects, leading to difficul-
ties with coordination and mobility in addition to psychological-behavioral abnormalities.
One of HD’s complications is visual deficit [27].

Patients with HD have been shown to exhibit important visual system impairments,
notably retinal thinning, thinning of the temporal retinal nerve fibre layer, deletion of retinal
ganglion cells, vision impairment elicited possibilities, poor colour vision, and poor motion
perception [28–31]. When the retina of transgenic HD R6/1 mice was examined under an
electron microscope, it was discovered that the diseased retina of HD mice is loaded with
peculiar organelles called myelinosomes. Myelinosomes, which contain mutant mHTT-
exon 1, can be released from glial Müller cells and then integrated into neuronal cells via a
membrane fusion mechanism, aiding in the spread of HD [32].

The CNS has demonstrated the activation of the neurotoxic branch of the Kynurenine
Pathway. The serum of HD patients had lower tryptophan (TRP), greater amounts of
Kynurenine (KYN), and higher KYN/TRP ratios, which suggested stronger Indolamine 2,3-
dioxygenase activity [33,34]. The intensity of symptoms and the quantity of CAG repeats
were inversely connected with the levels of TRP. At the same time, the inflammatory
condition was positively correlated with the levels of Anthranilic acid, which may be a
useful biomarker [35].

The objective of the therapy is to reduce symptoms and improve the standard of
life [36]. For symptomatic care, there are numerous effective choices; however, both drug-
based and non-drug-based therapy is used [37]. Nature, as the best combinatorial chemist
and home to hundreds of plant species, could have a direct medicinal influence on the
body [5,38]. Natural ingredients with antioxidants, anti-inflammation, anti-apoptosis,
calcium antagonization, and neurofunctional regulatory properties have been proven to
cure or treat neurodegenerative diseases [39].

A few of the significant phytochemicals having neuroprotective activity include
flavonoids, celastrol, sesamol, and trehalose [10,40]. Drug-based therapy involves symp-
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tomatic treatment through various therapeutic drugs [41]. HD therapeutic development
and advancement that modulates the mHTT level through genetic transfer is one of the
most important strategies to ameliorate the disease [42].

Here, we review to accentuate the significance of the underlying biological procedure
intricate in the pathological process of HD. Moreover, an effort has been taken to enlighten
different diagnostic techniques and various natural drugs and their phytochemicals with
valuable effects against HD. Valuable insights provided by this review on HD increase
hope for more definitive therapeutic strategies.

2. Methodology

A Medline (PubMed), Cochrane Library, and Embase-based literature survey were per-
formed using keywords of “neurodegenerative diseases, prevention, non-pharmacological
therapies, and neurodegenerative diseases, phytochemicals, Huntington’s till July 2022.

Two independent authors screened all the titles and abstracts of the retrieved data,
and disagreements were resolved by the consensus of a third author. Duplicated entries,
retracted publications, studies on other diseases or conditions different from NDs or its
subtypes, studies without statistical analysis, non-English written papers, publications that
are not research studies (i.e., commentaries, letters, editorials, reviews, and meta-analysis),
and any other article that did not fit within the scope of this review were excluded. Articles
listed in the references were also reviewed in search of more data.

A total of 550 results were retrieved and screened with the above keywords. Of these,
249 publications were selected and eventually used for qualitative analysis.

3. Epidemiology

Between diverse geographic regions, the universality of HD spreads more than ten
folds [43,44]. HD is a neuropsychiatric disorder with pervasiveness of 5–10 people per one
lakh in the white-skinned European-origin community. In Japan, the incidence is around
one-tenth of the white-skinned of European origin population [45,46]. There is no gender
predominance, and its prevalence is 5–8 per 100,000 individuals worldwide. The highest
frequency of HD is found in European countries. The universality of HD ranges from 4.1 to
8.4 per lakh people estimated in the USA [47]. In India, the universality of HD is greater
and similar to that seen in Western Europe [48].

4. Clinical Assessment

HD is associated with dysfunction in motor, cognitive, and psychiatric functions,
symptoms of which are tabulated in Table 1. People are suffering from HD show spe-
cific and characteristic cognitive difficulties [49]. Traditionally, this cognitive change has
been stated to as dementia. Changes in behavior are a distinctive characteristic of HD,
which is the most stressful facet of the circumstance for families and individuals coping
with it [44,50]. Other less eminent but weakening characteristics of HD comprise unex-
pected weight loss, sleep, circadian rhythm problems, and autonomic nervous system
(ANS) dysfunction. The average life span of the start of the disorder is 30 to 50 years old,
with a range of 2 to 85 years, and the disease lasts 17 to 20 years on average [1,51].



Brain Sci. 2022, 12, 1389 4 of 26

Table 1. Common symptoms of HD.

Common Symptoms of HD References

Motor symptoms

• Cerebellar Ataxia
• Chorea or choreoathetosis
• Rigidity
• Bradykinesia
• Dystonia
• Tremor
• Myoclonus
• Tics
• Gait Impairment and Falls
• Dysarthria
• Dysphagia

[52–56]

Cognitive symptoms

• Deterioration of complex intellectual functions
• Impairment in the perception of time
• Impairment of spatial perception and unawareness
• Perseveration
• Impulsivity

[4,5,57,58]

Psychiatric symptoms

• Depression
• Anxiety
• Irritability
• Agitation
• Clumsiness
• Altered sexuality
• Aggression
• Tendency to suicide
• Mania
• Delusions and Hallucinations
• Obsessions and Compulsions
• Apathy

[4,6,37,59–62]

5. Developmental Stages of HD

HD can be categorized into five stages (Table 2). Individuals with early-stage HD
are functional. They continue to work, manage expenses, drive, and live independently.
Individuals in the middle stage of HD begin to lose their power to work or drive [63]. They
cannot handle their finances or conduct household tasks, but they can eat, dress, and keep
themselves clean with assistance. It becomes difficult to handle patients suffering from HD
as they are unable to sequence, consolidate, or prioritize information. As the stage moves
into the early advanced and advanced stage of HD, individuals need complete assistance
for daily living. Although they are bedridden and non-verbal, still people with HD seem to
recollect some comprehension [64]. The total functional capacity is the most widely used
rating scale based on functional abilities. A rating scale that rates the person’s level of
independence based on occupation, the capability to handle finance, and the capability to
perform household chores [59].
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Table 2. Stages of HD.

Developmental Stages of HD

Characteristics Early Stage
1

Early
Intermediate

Stage
2

Late
Intermediate

Stage
3

Early
Advanced

Stage
4

Advanced
Stage

5
Reference

Duration
Continues from
0 to 8 years of
disease onset.

Continues from
3 to 13 years of
disease onset.

Continues from
5 to 16 years of
disease onset.

Continues from
9 to 21 years of
disease onset.

Continues
between 11 and
26 years from
disease onset.

[1,59,65]

Functions

Work,
drive,

handle money,
and
live

independently.

Functional but
lower work

capacity.

Loss of
workability,

drive, misman-
agement of

finances, and
household

chores except
eat, dress, and

personal
hygiene.

Dependent on
extended care

facility
provided by the

family.

Require
support in all
events of daily

living.

[1,66]

Symptoms

Mild cognitive
symptoms and

psychiatric
changes.

Chorea

Worsen of
cognitive,

psychiatric, and
motor features.

Requires major
assistance with
basic functions

(financial
management,

domestic
responsibilities

and living
activities).

Difficulties with
swallowing,
communica-

tion, and
weight loss.

[54,58,59,67]

6. Huntington’s Pathogenesis: Mechanistic and Genetic Approach

HD is generated by a mutation in the htt gene, which codes for huntingtin, a ubiqui-
tously expressed protein with 36 or more CAG repeats [12,14]. Despite the information that
the genetic origin of HD is well documented, the various molecular modifications inves-
tigated in HD are broad and not utterly understood [12]. The expression of an enlarged
PolyQ contributes to the impairment of wild-type protein [68]. Consequently, wild-type
huntingtin loss or inactivation causes neurodegeneration. Different pathways involved in
HD are illustrated below.

6.1. Transcriptional Dysregulation

One of the major players in the pathogenic process of HD is attributed to transcrip-
tional dysregulation [69]. Mutant htt impairs transcription, according to DNA microarray
studies [70,71]. This mutant htt interferes with transcription regulators such as p53, CREB–
binding protein (CBP), and cAMP response element-binding (CREB) protein, all of which
are significant for cellular functions and survival [72–76]. Dysregulation of CREB and
Neuron restrictive silencer elements (NRSE) mediated transcription in HD and in normal
person are described below.

6.1.1. cAMP Response Element-Binding (CREB) Protein Pathway

Normal Individual

In normal individuals (Figure 1A), the stimulation of certain transcription factors, such
as CREB, which binds to DNA regions containing CRE in cellular promoters, is significant
for neuronal survival [77]. Transcriptional activation due to CREB phosphorylation allows
the recruitment of CBP [78]. CBP remodels chromatin further, allowing CREB to engage the
TAFII130 component of TFIID [79]. Thus, the overall transcriptional machinery, including
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transcriptional factors TFIIA, B, D, E, F, and H, and TATA-binding protein (TBP), are
activated. TFIIH phosphorylates RNA polymerase II (Pol II) in its carboxy-terminal domain
(CTD) to commence transcription once it is suitable [12,80,81].
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Figure 1. CREB protein pathway in Normal individual and HD diseased patient. In normal in-
dividuals, CREB binding with CRE enables normal neuronal responses by activating a cascade of
transcriptional factors (A) while in Huntington’s disease patients, due to mutant htt gene, CRE
transcriptional cascade breaks, and there is no attachment of CBP and TAFII 130 with CRE. Pol II
dispositioned (B).

HD Diseased Patient

Mutant htt interrupts CRE-mediated transcription in HD patients (Figure 1B) with
direct interaction or sequestration of CBP and TAFII130 in the nucleus. CBP and TAFII
130 eventually lose their capability to attach to CRE sites in cellular promoters. Because
the general transcription machinery, as well as Pol II, is not adequately positioned to the
promoter, transcriptional activation is hampered [12,82,83].

6.1.2. NRSE Mediated Pathway

Normal Individual

In a normal individual (Figure 2A), the wild type htt regulates the action of the genes
that contain (NRSE) by modifying cytoplasmic hiring to the nucleus of NRSE binding
transcription factors, which are critical survival factors for striatal neurons [84]. The
transcription factor REST-NRSF (repressor-element-1 transcription factor-neuron restrictive
silencer factor) attaches to NRSEs in neuronal gene promoters such as the BDNF gene [85].
Wild type htt survives BDNF synthesis by networking with REST-NRSF in the cytoplasm,
alleviating its capacity to attach to NRSE sites in the nucleus. Activators that attach to the
BDNF promoter regions and afterward engage the transcription process and pol II boost
BDNF transcription in these settings [12,86,87].



Brain Sci. 2022, 12, 1389 7 of 26

Brain Sci. 2022, 12, x FOR PEER REVIEW 7 of 27 
 

6.1.2. NRSE Mediated Pathway 

Normal Individual 
In a normal individual (Figure 2A), the wild type htt regulates the action of the genes 

that contain (NRSE) by modifying cytoplasmic hiring to the nucleus of NRSE binding 
transcription factors, which are critical survival factors for striatal neurons [84]. The 
transcription factor REST-NRSF (repressor-element-1 transcription factor-neuron 
restrictive silencer factor) attaches to NRSEs in neuronal gene promoters such as the 
BDNF gene [85]. Wild type htt survives BDNF synthesis by networking with REST-NRSF 
in the cytoplasm, alleviating its capacity to attach to NRSE sites in the nucleus. Activators 
that attach to the BDNF promoter regions and afterward engage the transcription process 
and pol II boost BDNF transcription in these settings [12,86,87]. 

 
Figure 2. NRSE mediated pathway in a normal individual and diseased patient. In normal 
individuals, transcription factor REST–NRSF binds to NRSEs in neuronal gene promoters such as 
in the brain-derived neurotrophic factor (BDNF) gene. By interacting with REST-NRSF in the 
cytoplasm and lowering its availability in the nucleus to bind to NRSE sites, wild-type htt maintains 
BDNF synthesis, which is a crucial survival factor for the striatal neurons that die in HD. In these 
circumstances, activators can bind to the BDNF promoter regions and then recruit the general 
transcriptional machinery and Pol II, promoting the transcription of BDNF. While in HD, REST-
NRSF levels in the nucleus rise as a result of mutant htt’s failure to connect with REST-NRSF in the 
cytoplasm. In these circumstances, REST-NRSF binds to the NRSE with vigor and stimulates the 
recruitment of Sin3A-histone-deacetylase complexes (HDACs), which contain histone deacetylase 
activity for remodeling chromatin into a closed architecture and squelching BDNF transcription. 
REST stands for repressor-element-1 transcription factor. NRSE stands for neuron-restrictive 
silencer element. 

Diseased HD Patient 
In HD individuals, mutant htt decline to interlink with REST–NRSF, resulting in 

elevated REST–NRSF levels in the nucleus (Figure 2B). REST–NRSF attaches to the NRSE 
with vigor in these conditions, promoting the incorporation of Sin3A–histone deacetylase 
complexes (HDACs) with histone deacetylase activity for chromatin remodeling 

A B

Figure 2. NRSE mediated pathway in a normal individual and diseased patient. In normal individ-
uals, transcription factor REST–NRSF binds to NRSEs in neuronal gene promoters such as in the
brain-derived neurotrophic factor (BDNF) gene. By interacting with REST-NRSF in the cytoplasm
and lowering its availability in the nucleus to bind to NRSE sites, wild-type htt maintains BDNF
synthesis, which is a crucial survival factor for the striatal neurons that die in HD. In these circum-
stances, activators can bind to the BDNF promoter regions and then recruit the general transcriptional
machinery and Pol II, promoting the transcription of BDNF. While in HD, REST-NRSF levels in
the nucleus rise as a result of mutant htt’s failure to connect with REST-NRSF in the cytoplasm.
In these circumstances, REST-NRSF binds to the NRSE with vigor and stimulates the recruitment
of Sin3A-histone-deacetylase complexes (HDACs), which contain histone deacetylase activity for
remodeling chromatin into a closed architecture and squelching BDNF transcription. REST stands for
repressor-element-1 transcription factor. NRSE stands for neuron-restrictive silencer element.

Diseased HD Patient

In HD individuals, mutant htt decline to interlink with REST–NRSF, resulting in elevated
REST–NRSF levels in the nucleus (Figure 2B). REST–NRSF attaches to the NRSE with vigor
in these conditions, promoting the incorporation of Sin3A–histone deacetylase complexes
(HDACs) with histone deacetylase activity for chromatin remodeling framework [88–90].
Consequently, the expression of NRSE, NRSF, BDNF, and REST are suppressed [12].

6.2. Ubiquitin-Protease System
6.2.1. Chaperones and the Proteasome Dysfunction

Through numerous sequential actions, molecular chaperones are used in the precise
folding of newly produced proteins into correct conformation, and this procedure can
be fruitless [91]. Heat shock proteins play an important role in protein folding and qual-
ity control. In the context of polyglutamine diseases, such as HD, heat shock protein 70
(Hsp70; Hspa1a/b), Hsp40 (Dnajb1), and Hsp90 (Hsp90aa1 and Hsp90ab1) have been
the subject of several studies. Elevation of Hsp70 levels has been found to be neuropro-
tective in several animal models [92]. For instance, Hsp70 overexpression suppressed
neuropathology and improved motor function in a spinocerebellar ataxia mouse model.
Pharmacological and genetic Hsp90 inhibition induces mHtt degradation. Furthermore,



Brain Sci. 2022, 12, 1389 8 of 26

Hsp70 and Hsp40 attenuated the assembly of polyglutamine proteins into amyloid-like
fibrils [93]. As a result, proteins must either be refolded into their proper configuration, or
the ubiquitin-proteasome system (UPS) degrades them [94]. Hsp70 (Heat-shock protein 70)
and Hsp40 (Heat-shock protein 40) are two prominent types of molecular chaperones that
help in the folding of polypeptides and hence prevent misfolded proteins development.
Furthermore, in other polyQ proteins, the mutant htt has been shown to be linked with the
Hsp70 and Hsp40 chaperone families and also colocalize with aggregates [95]. Chaperone
sequestration into aggregates reduces the quantity of soluble chaperones in the cell, which
helps to alleviate aberrant protein folding [96].

6.2.2. Ubiquitin-Proteasome System Impairment

The stages involved in the UPS system failing and causing cellular pathogenesis in
HD (Figure 3) are listed below [12].
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Figure 3. Schematic of diverging pathways leading to the pathogenesis of HD. Here is the mechanism
of pathogenesis, paying particular attention to those that are related to promising therapeutic targets.
BDNF, Brain-derived neurotrophic factor; ROS, reactive oxygen species; NMDAR, N-methyl-D-
aspartate receptor; UPS, Ubiquitin-protease System; NRSE, Neuron restrictive silencer elements; CRE,
cAMP response element.

(1) Hsp70 and Hsp40, two molecular chaperones, cause newly produced htt to pleat into a
native structure [97]. The cytoplasmic functions of wild-type htt include vesicle trans-
port, clathrin-mediated endocytosis, cytoskeletal anchoring, postsynaptic signaling,
and neuronal transport. On the other hand, this htt might be carried into the nucleus
and aid in transcriptional control.

(2) Chaperones aid in the identification of aberrant proteins, promoting refolding or
Ub (ubiquitination) and obliteration by the 26S proteasome [98]. Mutations produce
conformational anomalies and improper folding of htt in HD patients, resulting in a
buildup of misfolded htt in the cytoplasm if chaperones are not precise.
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(3) However, mutant htt is cleaved by proteases, resulting in the formation of amino-
terminal components that form β-sheet structures [99].

(4) As a result, cleaved N-terminal fragments or mutant full-length htt cause toxicity,
forming soluble monomers, oligomers, or massive insoluble aggregates. Mutant forms
of htt in cytoplasm disrupt the UPS, allowing misfolded proteins to accumulate [100].

(5) Vesicle transport and clathrin-mediated endocytosis are disrupted by these noxious
proteins. Furthermore, mutant htt promotes pro-apoptotic proteins through mitochon-
drial malfunction, causing cellular noxiousness and other negative implications [101].

(6) For defence, the cell gathers hazardous pieces into ubiquitinated cytoplasmic perinu-
clear aggregates [102].

(7) Mutant htt are translocated into the nucleus, resulting in nuclear inclusions that can
interrupt transcription and the UPS (Figure 4) [103].
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Figure 4. Ubiquitin-proteasome impairment in HD. In Normal individuals, Hsp70 and Hsp40 aid in
transcriptional functions resulting in protein formation and aggregation and smooth functioning of
mitochondria. However, in HD diseased patient mutant mhtt causes misfolding of protein aggregates
and disrupts clearance pathways leading to mitochondrial dysfunction.

6.2.3. Altered Synaptic Plasticity

Early pathogenic processes in HD include synaptic and neuronal anomalies [104].
Reduced transcription of significant genes in signaling and neurotransmission disrupts
neuronal homeostasis [105]. This causes imperfection accompanied by their axons in the
transmission of organelles and proteins. Pathogenic htt also prevents organelle transporta-
tion across the axon [106,107]. Htt accelerates vesicle trafficking by acting as a scaffold con-
necting microtubules, cargoes, and motor proteins including dyneins and kinesins [108,109].
Huntingtin-associated protein1 (HAP1) mediates this interface, which tends to be impaired
in HD disease [110].

6.2.4. Mitochondrial Dysfunction

Mitochondria serve as locations for oxidative phosphorylation and cellular respiration,
both of which result in the production of ATP. They are also important for keeping the
cytosol’s calcium concentration low. A mitochondrial defect has been discovered in HD
patients, which results in lower mitochondrial oxygen consumption, glucose metabolism,
and cAMP levels in the cerebrospinal fluid [111–113]. Oxidative stress is also respon-
sible for the neurodegenerative procedure of HD. Since mitochondria are the primary
communicator of ROS (reactive oxygen species) in neurons, oxidative stress is related to
mitochondrial dysfunction in HD. With an enhancement in ROS or RNS (reactive nitrogen
species) production, susceptible neurons in the patient’s brain suffering from HD may
be unable to handle it well. Increase in levels of ROS or RNS in membranes may boost
an intracellular cascade of oxidative stress by triggering lipid peroxidation and oxidizing
DNA and proteins [114,115]. A substantial rise of 8-hydroxydeoxyguanosine, an oxidized
DNA marker, and a higher surge of malondialdehyde (MDA), lipid peroxidation marker
is perceived in the brain of HD. Oxidative stress also promotes mutant htt-dependent cell
death by mimicking proteasomal malfunction and htt aggregation. Elevation of free radical
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outcomes in the impairment of mitochondrial function, metabolic dysfunction, impairment
of energy production, and excitotoxicity [116–121].

6.3. Neuroglia Dysfunction
6.3.1. Astrocytes and Microglial Dysfunction

Htt is known to be much more abundant in neurons as compared to non-neuronal glial
cells. Glial cells are majorly responsible for HD progression and pathogenesis [122,123].
Astrocytes, a kind of glia, protect neurons from excitotoxicity by providing support and
allowing extracellular glutamate absorption. In the occurrence of HD disease, however, an
N-terminal htt with 160Q is expressed exclusively in astrocytes [124]. Consequently, HD
astrocytes contribute to neurological symptoms as well as other problems, such as reduced
chemokine CCL5 or BDNF discharge [125].

Microglial and astrocytic contributes to neuronal death in HD. Surveilling microglia
are activated by stimulating molecules through NF-κB signaling, upregulation of PU1, and
CCAT binding. Activated microglia and reactive astrocytes produce ROS and neurotoxic
molecules (such as quinolinic acid), which can induce molecular processes leading to
neuronal death. Stimulatory molecules also induce reactive astrogliosis that leads to
the upregulation of pro-inflammatory cytokine production, glutamate excitotoxicity, and
hyperexcitability of neurons. Activated microglia can adopt different states, commonly, this
polarization has been categorized as M1 and M2 states, and microglial cells can alternate
between the two states. M1 microglia role in the inflammatory response and are thought
to be the major initiators of both innate and adaptive immunity in the brain [126]. These
cells have a phagocytic function and will release cytotoxic factors such as nitric oxide (NO),
ROS, and quinolinic acid to confer toxicity to invading pathogens [126,127]. M2 microglia
also carry out phagocytosis but contrary to the role of M1 microglia, M2 microglia exhibit
an anti-inflammatory role [126]. This is through the release of anti-inflammatory mediators
such as interleukin 4 (IL-4), interleukin 13 (IL-13), IL-10, and transforming growth factor
beta (TGF-β) to suppress inflammatory responses [128].

6.3.2. Release of Pro-Inflammatory Cytokines and Chemokines

The secretion of pro-inflammatory cytokines by astrocytes is associated with neuroin-
flammation and neurodegeneration in HD [41]. Microglial generation of pro-inflammatory
cytokines is induced by htt expression in immune cells [129]. Mutant htt affects inflamma-
tory responses in the peripheral immune system by inhibiting NF-κB signalling, implying
that neuro-inflammation is both a reactive and proactive mechanism in disease develop-
ment [130]. IL-6 is upregulated in the plasma of HD patients [131]. IL-6 stimulates the
expression of another acute phase protein: -macroglobulin (M). M is upregulated in plasma
of HD patients, mainly in reactive astrocytes, and therefore influences immune proteins
and cytokines. Moreover, several mouse models of HD display significantly higher levels
of IL-1β. IL-1β itself is able to directly induce neurotoxicity via activation of tyrosine
kinases and phosphorylation of NMDA receptors involving the NF-kappa(κ) B pathway.
Inflammatory responses are initiated by different receptors, among others, including the
Toll-like receptors (TLRs). TLR activation evokes NF-κB activation resulting in increased
transcription of proinflammatory cytokines [132].

6.4. Axonal Transport Defect
6.4.1. Defective Synaptic Transmission

Axonal transport is necessary for appropriate transfer to neuronal membranes in
order to facilitate synaptic communication. Synaptic excitability in HD is inhibited by
a failure of receptor delivery, either GABAA (γ-aminobutyric acid type A) or AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors [41]. HAP1 connects these
receptors to the kinesin motor factor KIF5, and mutant htt disrupts this interface [133,134].
Mutant htt also prevents the release of BDNF and cortical transport and the regressive
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transport of its receptor TrkB in the striatum, which is essential to trigger survival signals
in the cell body [86,135].

6.4.2. Excitotoxicity and Medium Spiny Neurons (MSNs) Degeneration

In HD, MSNs in the striatum show the most noticeable deterioration [136]. MSNs were
also found to be selectively influenced by glutamatergic signals, which facilitate abnormal
firing and neurotransmission, NMDA receptor-mediated glutamate activation, and can
cause striatal neuronal death via a process known as excitotoxicity [135,137]. Moreover,
mutations in HD modify not only NMDAR trafficking in striatal neurons but also the balance
of synaptic (pro-survival) and extrasynaptic (detrimental) NMDAR activity [138–141].

Consequently, several cellular pathways are involved in the evolution of HD (Figure 5).
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Figure 5. Steps in cellular pathogenesis of HD. (1). Huntingtin (htt), a freshly generated protein, is
encouraged to fold into a native shape by the molecular chaperones Hsp70 and Hsp40. Wild-type
htt is primarily cytoplasmic and likely participates in postsynaptic signaling, clathrin-mediated
endocytosis, vesicle transport, cytoskeletal anchoring, or neuronal transport. HTT might enter the
nucleus and influence the control of transcription; (2). In order to promote either their refolding
or their ubiquitination (Ub) and subsequent demise by the 26S proteasome, chaperones can help
recognize aberrant proteins. If chaperones are not present to rectify the incorrect folding of htt
caused by the HD mutation, misfolded htt will accumulate in the cytoplasm. The HD mutation causes
conformational alterations; (3). Alternately, mutant htt may also be cleaved by proteolysis, resulting in
amino-terminal fragments that produce β-sheet structures; (4). Finally, cleaved N-terminal fragments,
which may form soluble monomers, oligomers, or huge insoluble aggregates, or full-length mutant
htt may cause toxicity. Mutant versions of htt may damage the ubiquitin-proteasome system (UPS) in
the cytoplasm, causing a buildup of more improperly folded proteins; (5). These harmful proteins
may also interfere with clathrin-mediated endocytosis and regular vesicle transport. Additionally,
the presence of mutant htt may cause mitochondrial damage, which would directly or indirectly
activate pro-apoptotic proteins and increase cellular toxicity as well as other negative effects; (6).
The cell gathers harmful pieces into ubiquitinated cytoplasmic perinuclear aggregates as a form of
self-defense; (7). Furthermore, mutant htt can go into the nucleus and create nuclear inclusions, which
can interfere with transcription and the UPS.
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7. Diagnosis

The clinical manifestation of a person with proven HD is utilized to make a diagnosis.
To begin, it is essential to obtain an absolute history of the person, which takes precedence
over full family history. With or without cognitive or psychiatric changes, motor alterations
remain the key clinical criteria [142]. The three main indications, also family history, are
required for diagnosis. For all diagnostic tests, the patient must give informed consent [1]
(Figure 6). In a patient with chorea, a diagnosis of HD is strongly suspected. The following
is an alternative way of diagnosing HD:

(1) Neuroimaging can assist confirm a diagnosis while ruling out other possibilities. A
CT scan or an MRI can reveal cerebral atrophy or atrophy of the caudate nucleus.
PET (Positron emission tomography) can also show diminution in striatal metabolic
rate [143,144].

(2) Genetic testing is a reliable technique to verify a suspected clinical diagnosis [145,146].
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Figure 6. Diagnosis of HD. The initial clinical manifestation of HD is similar to the neurological
diseases. Neurological test, definitive genetic examination along with foremost family history is
recommended for the diagnosis of HD.

8. Herbal Management of HD

There have been numerous reports of herbal plants used for the management of HD.
Natural constituents derived from herbal plants that have antioxidant, anti-inflammation,
anti-apoptosis, immune-stimulatory, calcium antagonization, and neuroprotective proper-
ties have been shown to cure or treat HD [39,146–148]. Several plants and phytochemicals
that have been shown to have anti-HD properties are briefly described.

8.1. Panax Ginseng

Ginseng is the dried root of the plant genus Panax [149]. Panax ginseng is derived
from the Greek words “pan” meaning all and “axos” meaning cure [150]. It is native to
Korea and China but is now globally popular and cultivated in countries such as Japan, US,
Russia, Canada, Vietnam, Nepal, and Eastern Himalayas [151,152].

Ginseng extract improves neurological and psychological symptoms along with cogni-
tive functions in healthy [153–155]. Ginseng has a beneficial effect on psychological feature
performance owing to its action on the hippocampal brain [156]. Inhibition of Ca2+ entry
through glutamate receptors, ginsenosides Rb1 and Rg3, safeguard cortical neurons from
glutamate-induced cell damage [157,158]. The inhibition of both NMDA and glutamate-
induced by saponins from ginseng increases Ca2+ entry through glutamate receptors [159].
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An in vitro HD assay with MSN cultures for the investigation of the neuroprotective po-
tential of compounds of ginseng total saponins exhibits neuroprotection by Rb1, Rg5, and
Rc are interlinked with the capacity to prevent glutamate induced Ca2+ responses. These
results can be credited to the active therapeutic choice to treat HD [160]. Ginsenosides
Rd, Rb1, and Rb3 have also been shown to protect striatal neuronal damage caused by
3-NP [161]. Active components of ginseng demonstrate to possess beneficial potential such
as antioxidant [160], anti-apoptotic [160], anti-inflammatory [161], and immune-stimulatory
activities [162]. Moreover, it decreases lipid peroxidation and Ca2+ influx and suppresses
neuronal excitotoxicity, stabilizes ATP levels in cells, protects neuronal structural integrity,
and improves cognitive function [163,164].

8.2. Bacopa monnieri

It is a perennial, creeping herb of the family Scrophulariaceae [163,165]. It is also
known as Brahmi and is found in warm wetlands [165]. They are indigenous to India and
Australia [166]. It is also grown in Sri Lanka, Nepal, China, Vietnam, and Taiwan, Florida,
and other southern states of the USA [167].

B. monnieri contains dammarane-type triterpenoid saponins, Bacosides A and Baco-
sides B, which are biomarkers for this species [165,167–169]. It also contains different kinds
of saponin, including A–G [170–172] together with pseudojujubogenin or jujubogenin
moieties as aglycones [173], Bacopaside I–V, X, and N1 and N2 [174–176]. The existence of
several active constituents such as saponin, alkaloids, sterols, and flavonoids, are attributed
to the pharmacological effects of B. monnieri [165,177,178]. This plant has potential activ-
ity as a memory booster, anti-inflammatory, analgesic, hepatoprotective, and antipyretic,
free radical scavenging neuropharmacological disorders such as insomnia and antidepres-
sant agent [179,180]. Bacoside A is the chief constituent for improving memory [181,182].
Due to mechanisms including metal ions complex chelation and enhanced antioxidant
defense enzymes enhance the neuroprotective and memory-boosting effects of B. monneiri
extracts [179,183,184]. An ethanolic extract of B. monneiri inactivates 3-nitropropionic acid
(NP)-induces dysfunction of mitochondria by altering antioxidant mechanism [185]. 3-NP
inactivates the succinate dehydrogenase cell enzyme (SDH) and the electron transport
chain complex II–III [186]. It also reduces ROS, malondialdehyde (MDA), and free fatty
acid levels [187]. The oral intake of BM’s leaf powder is reported to reduce basal concen-
trations of several oxidative markers and improve thiol-related antioxidant molecules,
and antioxidant enzyme activity [188]. The dietary B. monneiri supplements lead to conse-
quential defense against oxidative impairment in the brain along with a defensive effect
against neuronal dysfunction due to stress. Thus, B. monneiri can be very beneficial in HD
treatment [189].

8.3. Curcuma longa

Curcuma longa is generically called turmeric, a perennial plant [190] with yellow
flower [191] dried rhizome of C. longa Linn (Curcuma domestica Valeton) [150] belonging to
Zingiberaceae [190]. It is also cultivated expansively in Malaysia, Bangladesh, Cambodia,
China, Indonesia, Thailand, and the Philippines [192,193].

Curcumin, obtained from the rhizome of C. longa Linn [194], is a natural agent with
several functions and is pharmacologically safe [195]. Curcumin is a phytochemical and
a crucial bioactive ingredient that is stated to possess antioxidant, antiangiogenic, anti-
inflammatory, antimutagenic, antibacterial, and antiplatelet aggregation potential due to
its chemical structure [196].

Curcumin may be effective in the treatment of some ailments characterized by the
accumulation of fibrillar protein deposits [197]. Especially under a neurodegenerative
condition such as HD, the accumulation of abnormal forms of particular proteins, such
as htt, may have a role in disease development [198]. A study showed improvement
in HD-like neurodegeneration when treated with solid lipid nanoparticles of curcumin
(C-SLNs) [199]. There is also a considerable increase in mitochondrial complex activity
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and cytochrome levels. C-SLNs significantly reduced protein carbonyl production, lipid
peroxidation, ROS levels, and mitochondrial swelling by restoring levels of glutathione
and superoxide dismutase (SOD) activity [200]. Moreover, treatment with curcumin is
reported to enhance cognitive and motor performances, restore succinate dehydrogenase
action, and reduce oxidative stress, which inhibits the 3-NP in HD [201]. Curcumin also
rescues down-regulated molecular chaperones in HD, including Hsp40 and Hsp70 [202].
Curcumin therapy also restored down-regulated BDNF in HD patients [203,204].

8.4. Ginkgo biloba

Ginkgo biloba, also called ginkgo, is the deciduous gymnosperm tree in the division
Ginkgophyta which belongs to the Ginkgoaceae family [38,205]. Ginkgo is indigenous to
Japan, China, Korea, North America, and Europe [150]. G. biloba, alike most plant medicines,
contain many bioactive constituents viz. flavanol, diterpene lactones, sesquiterpenes,
ginkgolides, ascorbic acid, catechin, iron-based SOD, and p-hydroxybenzoic acid, are
expected to have synergistic effects [205,206].

As inflammation and free radicals are suspected to possess a part in HD development,
G. biloba is reported to possess antioxidant and anti-inflammatory characteristics [207–209].
Mahdy and colleagues found that Ginkgo biloba might repair some of the neurological
problems caused by a toxin, 3-Nitropropionic acid (3-NP) [208]. When injected into the
brains of mice, 3-NP mimics the effects of HD: it causes many of the biological and be-
havioral changes that are seen in people with HD. However, mice that were treated with
both 3-NP and ginkgo biloba showed milder neurodegenerative problems than those
treated with 3-NP alone. Several biochemical changes that occur upon exposure to 3-NP
were mitigated in animals that were treated with Ginkgo biloba. Authors suggest that
Ginkgo biloba’s antioxidant properties, antiapoptotic effects, and improvement of energy
metabolism were responsible for the neuroprotective effects. The G. biloba extract improves
the 3-NP induced neurobehavioral impairments [210] while also lowering striatal MDA
levels. Glyceraldehyde-3-phosphate dehydrogenase and Bcl xl expression levels in the
striatum are also down-regulated and up-regulated by standardized G. biloba extract (EGb
761). These biochemical findings, together with histological findings, suggested that EGb
761 can be utilized in HD [211].

8.5. Centella asiatica

It is popularly called Indian Pennywort, Gotu kola, and Jal Brahmi, and is a small,
herbaceous, frost-tender perennial plant from the family Umbelliferae [212]. It is classified
as a Rasayana in Ayurveda because of its quality to heal memory and age-related brain
problems [213,214]. It is a controlling brain tonic that has long been utilized in Ayurvedic
medicine to revitalize the body, boost intelligence, and treat cognitive problems such as
Alzheimer’s disease [215,216].

Triterpenoid saponins, such as madecassoside, madecassic acid, asiaticoside, and
asiatic acid (AA), are the key components of C. asiatica [217,218]. Research revealed the
activity of AA on the neurodegenerative potential of C. asiatica in CNS directing on brain
cells enhances the elongation of neuritis in an in vitro experimental model [219,220]. An
in vivo study on C. asiatica leaf extract also demonstrated healing in the dendritic arboriza-
tion of hippocampal CA3 neurons [221,222]. The mechanisms playing a putative role are
MEK/ERK and PI3/Atk signalling pathways [223,224]. Moreover, the neurodegenerative
effect of C. asiatica takes place via the MAP kinase pathway [219,223]. The most significant
use of C. asiatica is regarded as a brain tonic to enhance memory function [225]. The ability
to preserve mental function is attributed to its antioxidant characteristics. Various ROS
scavenging experiments in vitro and in vivo have been established to discover this effect.
C. asiatica improves faster functional recovery and enhanced axonal regeneration, according
to a study [226]. An alternative study found a considerable elevation in dendritic length
and branching sites in amygdaloid and hippocampal CA3 neurons [227]. As a result, the
study’s findings suggest that C. asiatica has a possible protective action against any assault
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(caused by oxidative stress and mitochondrial damage), and memory-enhancing properties
can help control HD and its consequences.

8.6. Xylaria Species

Xyloketal B is an extract obtained from marine mangrove fungus of Xylaria species.
In the early phases of HD, the damage to brain cell connection arises in the areas that
allow movement called the basal ganglia and the cortex [228]. Thus, figuring out how to
prevent neuron mortality and increase the excitability of specific nerve cell connections
could lead to new treatments. The identification of many unique, natural, and active
chemicals often takes place in the marine environment [229]. Xyloketal B has established
robust neuroprotection in contrasting models related to neuronal impairments [230,231]. Six
xyloketal B derivatives were evaluated in a Caenorhabditis elegans HD model to find potent
neuroprotective for HD; all six compounds demonstrated a preventive role [232]. The
aromatic core structure of Xyloketal B features unique bicyclic acetal moieties that can be
easily changed to ameliorate and broaden its activity [233,234]. Moreover, some xyloketal
derivatives can form a hydrogen bond. Xyloketal adheres to mutant htt proteins and
inhibits the htt aggregation process, hence slowing the progression of HD [235]. Molecular
docking experiments demonstrate that it can bind to the mutant htt protein’s GLN369 and
GLN393 residues, generating a stable trimeric complex that prevents mutant htt aggregation
formation. Thus, xyloketal derivatives serve as novel drug candidates for treating HD [232].

9. Pain and HD

The increased CAG repeat in HD gene carriers leads to a gradual long polyglutamine
repeat, which results in neuronal loss in the brain, most significant in the basal ganglia. The
integration of motor, emotional, autonomic, and cognitive responses to pain are one of the
fundamental functions of the basal ganglia in the processing and analgesia of pain. [236,237].
Compared to other patients’ symptoms, the pain might not seem like a major issue. Even
still, it is misunderstood and poorly understood in HD, despite the fact that it might
significantly improve the quality of life for those who are impacted. Numerous research has
examined the root causes of chronic pain in HD patients. Muscle and endocrine dysfunction,
which are putative sources of nociceptive and neuropathic pain in HD, may be exacerbated
by mutant Huntingtin [238], perhaps through inflammatory and immune mechanisms [239].
A meta-analysis indicated that while the pain burden in HD was lower than that of the
general population, the total mean prevalence of pain in HD was around 41% [240]. A
cross-sectional analysis of the Enroll-HD study in carriers of the pre-manifest and manifest
HD gene mutations and in carriers of the non-HD gene mutation was performed, which
verified that the prevalence of pain interference was considerably higher in the middle
stage of HD compared to not HD gene carriers and that the late and middle stages of HD
had lower prevalence’s of painful situations [241]. According to reports, persistent pain
is less common in HD patients who are evident, and it tends to get less common as the
disease progresses. Patients with HD also experienced less severe pain and associated
dysfunction. Additionally, with the complete phenotypical presentation of the disease in
the middle and late stages, this characteristic, which was lacking in the pre-manifest phase,
became relevant. Patients with more CAG expansion and decreased functional capacity
appeared to have diminished pain perception [242].

10. Discussion

Huntington’s disease (HD) is a rare, neurodegenerative disorder characterized by
chorea, behavioral manifestations, and dementia [243]. Although HD is rare, it does receive
a great deal of research attention. One reason is that HD has some features that make
it more likely to be a tractable problem than other neurodegenerative conditions. First,
the autosomal dominant nature of the condition means that the diagnosis is it is possible
to accurately model and study the disease in vitro and in vivo. It is estimated that the
mean HD prevalence is 5 in 100,000 people. Moreover, in another study, it is estimated
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that one in every 10,000 persons-nearly, 30,000 in the United States, have Huntington’s
disease. Juvenile Huntington’s occurs in approximately 16% of all cases [244,245]. Somatic
instability of the CAG repeat occurs in the tissues that are most vulnerable to HD pathology,
particularly the striatum, and the degree of instability negatively correlates with age at
disease onset. Genetic association studies have shown that DNA repair components,
particularly those involved in mismatch repair, modify somatic instability and disease
course [117]. Mutation of Htt characterized with repeat expansion of CAG trinucleotides
is the key factor in HD. Abnormal aggregation of mutant Htt protein may cause toxic
effects in neurons, leading to a series of pathogenic mechanisms associated the alteration
in proteostasis and protein degradation following mitochondrial dysfunction, oxidative
stress, transcription and synaptic dysfunction, axonal transport impairment, and a series
of metabolic impairments subsequent to neurodegeneration. Despite the fact that the
pathogenesis of HD has still not been resolved and a cure is not available, many therapeutic
options are available for treating symptoms and signs with a view to improving quality
of life. Although many signs and symptoms can be treated, it is not always necessary to
do so. To date, there are no promising treatments for the long-term unwanted effects of
HD, which are being combated by symptomatic prevention and treatments for mitigating
the psychiatric, cognitive, and motor deformities of HD. The patient’s limitations in daily
life determine whether or not drugs are required. Very little evidence is available about
the drug or the dosage to prescribe for any signs and symptoms. To overcome the above-
mentioned concerns, investigation has been devoted to the isolation of novel compounds
from a variety of natural products in modulating relevant neuro-degenerative disorders.
Up until then, a plethora of traditional treatments based on natural products have been
shown to possess a wide range of therapeutic benefits for HD under in vitro and in vivo
models [246,247]. The neuroprotective effect of natural products in HD experimental
models has been extensively studied. Indeed, based on relevant studies, natural products
offer neuroprotection in experimental models predominantly through the antioxidant
defense system, scavenging free radicals, neutralization of reactive oxygen species (ROS),
reduction of oxidative stress, preservation of mitochondrial function, anti-inflammatory
protection, inhibition of apoptosis, and induction of autophagy.

In future studies, it will be important to determine more precisely which components
of the altered circuit contribute to deficits in learning, memory, and mood in the early stages
because the development of more specific therapies for these symptoms would significantly
improve the quality of life in affected individuals. Moreover, it will be critical to identify
the earliest molecular mechanisms that lead to neuronal dysfunction and death in order to
develop therapies that can delay the onset of overt HD.

11. Conclusions

HD is an inherited neurological illness in which htt is a protein that regulates transcrip-
tion, transports intracellularly, and participates in the endosome-lysosome pathway. When
this htt undergoes mutation, it causes several cellular complications viz., transcriptional
dysregulation, protein aggregation and altered UPS, neuroglia dysfunction, mitochondrial
dysfunction, altered synaptic plasticity, and axonal transport defect. This fatal disease is
characterized by abnormal involuntary movements, impaired voluntary movements, and
cognitive and psychiatric disturbances associated with neuronal death. Alternative and
complementary therapies based on scientifically validated herbal ingredients may be an
effective supplement to conventional medicine, which has potential drawbacks include the
development of drug resistance and unpleasant side effects.

Naturally derived products having entrenched cell reinforcement and neuron safe-
guarding potential have indicated useful impacts against the manifestations of HD in both
in vivo and in vitro studies. In this review, the roles of a number of plants are investigated
in various neurotoxic animal models and transgenics are discussed, highlighting their
ability to influence signalling pathways, leading to neuromodulation and probable neu-
roprotection. Moreover, the brief knowledge that the review provides on the pathologic
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mechanisms involved in HD are crucial points to consider while investigating therapeutic
solutions and target specific relief. However, more investigation is needed to abundantly
understand the potential therapeutic activity of phytochemicals in the prevention of HD.
Hence, clinical outcomes of various studies are also needed to be evaluated in order to
accept the efficacy of herbal medication in mainstream medicine.
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