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INTRODUCTION

Eosinophils actively participate in the pathogenesis of allergic 
skin diseases.1,2 Extensive extracellular deposition of eosinophil 
major basic protein has been observed in the lesional skin of 
atopic dermatitis and chronic urticaria.3,4 A correlation has 
been demonstrated between eosinophil numbers, eosinophil 
cationic protein concentrations, or both, and the severity of 
atopic dermatitis.5-7 Eosinophil granule proteins possess cyto-
toxic activities,8 suggesting a potential mode of eosinophil con-
tribution to dermal tissue damage in allergic skin diseases. Nev-
ertheless, mechanisms responsible for the dermal infiltration of 
eosinophils remain unclear.

Immunoglobulin E (IgE) has been the most convincing can-
didate for the induction of eosinophilic skin inflammation be-
cause serum IgE levels are elevated in >80% of atopic dermati-
tis patients. Approximately 85% of patients have positive imme-
diate skin test or radioallergosorbent test (RAST) results for spe-
cific IgE antibodies (Abs) in response to various allergens.9,10 
Mast cells bearing IgE for the relevant antigen release eosino-

phil-activating mediators.11 Involvement of IgE in tissue eosino-
philia was demonstrated using animal models of asthma.12 
Nevertheless, concentrations of IgE are raised in most but not 
all patients with atopic dermatitis and do not necessarily corre-
late with disease severity.13,14 Animal studies demonstrating the 
non-essential role of humoral immunity in the development of 
eosinophilic inflammation also contradict the role of IgE.15-18 
Taken together, the importance of IgE in the pathogenesis of 
eosinophilic inflammation in atopic dermatitis has become 
controversial.

Activated T-helper type (Th) 2 cells and Th2 cytokines are cru-
cial for the infiltration and activation of eosinophils.19,20 The 
number of CD4+ T cells was increased in the skin lesions and 
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peripheral blood of atopic dermatitis patients.21 In atopic der-
matitis, the infiltrating CD4+ T cells appear to have a Th2 phe-
notype.22 A Th2 cytokine, interleukin (IL)-5, drives terminal dif-
ferentiation of committed eosinophil precursors while also pro-
moting eosinophil activation, chemotaxis, and prolonged sur-
vival,23 suggesting that IL-5 plays a central role in the induction 
of eosinophilic inflammation. However, it is not certain wheth-
er Th2 cells have the potential to induce atopic dermatitis-like 
eosinophilic skin inflammation without the assistance of IgE-
mediated immune responses.

This study was performed to delineate the role of Th2 cells in 
the development of allergic eosinophilic inflammation in the 
skin by employing T-cell transfers in mice.

MATERIALS AND METHODS

Animals and in vitro polarization of T cells
Mice expressing DO11.10 TCRαβ, which recognizes residues 

323-339 of ovalbumin (OVA), are described elsewhere.24 Male 
BALB/c mice at 6 to 8 weeks of age were obtained from Japan 
SLC, Inc. (Hamamatsu, Japan). OVA-specific Th1 and Th2 cells 
were generated from DO11.10 mice, using methods described 
previously.25,26 Successful differentiation of polarized cells was 
achieved using enzyme-linked immunosorbent assay (ELISA) 
and the intracellular staining of produced cytokines.25,26 Experi-
mental procedures used in this study were approved by the An-
imal Use and Care Committee of Tokyo Metropolitan Institute 
of Medical Science.

Cell transfer and challenge procedures
The dorsal skin of BALB/c recipients was shaved with electric 

clippers and then depilatory cream was applied (Kanebo, To-
kyo, Japan). Twenty-four hours later, the mice were anesthe-
tized with inhaled halothane (1% v/v), and a dorsal shaved skin 
area 6 mm in diameter was irradiated (900 µW/cm2 at 254 nm) 
with an ultraviolet lamp (TK-151; Unicom, Chiba, Japan) for 1 
minute. OVA-specific Th1, Th2, or naive DO11.10 T cells were 
stained with the fluorescein-based dye 5 (and 6)-carboxyfluo-
rescein diacetate succinimidyl ester (CFSE; Molecular Probes, 
Eugene, OR, USA) by methods described previously.26,27 Then, 
3×107 cells were injected into the tail vein of wildtype BALB/c 
mice. Twenty-four hours after the transfer, an aluminum rivet 9 
mm in diameter was bonded to the shaved/irradiated area with 
cyanoacrylate adhesive (Toa Gousei, Tokyo, Japan) before be-
ing gently peeled off 10 minutes later. Then, a polypropylene 
cup-skin chamber 9 mm in diameter containing a sterile cotton 
pellet (30 mg) with 0.3 mL OVA solution (300 µg/mL in hepa-
rinized saline, 10 U/mL) was bonded to the area. Control mice 
were challenged with bovine serum albumin (BSA). For inhibi-
tion studies, dexamethasone (Dex) and FK506 (FK) were sus-
pended in saline containing 0.5% Tween-80 (Tokyo Kasei, To-
kyo, Japan) and administered subcutaneously 30 minutes be-

fore OVA challenge.

Skin-chamber fluid (SCF)
Twenty-four hours after antigen challenge, mice were killed 

by overdose with ether anesthesia before the skin chamber was 
removed from the skin. The cotton pellet was disentangled us-
ing 2 mL of Hank’s balanced salt solution (HBSS) containing 
0.1% BSA for 1 hour at room temperature. The SCF was then 
transferred to a test tube and centrifuged (250×g) for 5 minutes 
at 4°C.

Cytokines in the resulting supernatant were determined by 
ELISA, employing rat anti-mouse IL-5 monoclonal Ab (mAb) 
(BD Biosciences, Franklin Lakes, NJ, USA) and anti-mouse 
MCP-3 Ab (R&D systems, Minneapolis, MN, USA) as the cap-
ture Abs and biotinylated rat anti-mouse IL-5 mAb and goat 
anti-mouse MCP-3 Ab (R&D systems) as the detecting Abs. IL-4 
and interferon (IFN)-γ were assayed by Duo Set ELISA Devel-
opment Systems (R&D systems), MCP-1 by OptEIA mouse 
MCP-1 ELISA set (BD Biosciences), eotaxin by Quantikine 
mouse Eotaxin ELISA kit (R&D systems), and regulated on acti-
vation, normal T cell expressed and secreted (RANTES) by 
AN’ALYZA mouse RANTES immunoassay kit (R&D systems), 
each according to the manufacturer’s instructions. The mini-
mum detectable concentrations were 5, 5, 20, 5, 2, 5, and 50 pg/
mL for IL-4, IL-5, IFN-γ, eotaxin, RANTES, MCP-1, and MCP-3, 
respectively.

The remaining cell pellet was immediately suspended in 250 
µL of HBSS and the total cell number in the SCF was counted 
using an automatic cell counter (pocH-100iV; Sysmex, Hyogo, 
Japan). The number of CFSE-positive cells was counted using a 
FACSCantoII flow cytometer (BD Bioscience). Additional dif-
ferential cell counting was performed by using microscopy on 
centrifuged preparations stained with May-Giemsa, counting 
200 cells per animal.

Tissue eosinophil peroxidase (EPO) activity and histology
EPO activity in the skin was measured as previously de-

scribed28 but with slight modifications. Briefly, after removing 
the skin chamber, the underlying skin was isolated by punch bi-
opsy (10 mm diameter), and cut into fragments with a scalpel. 
Tissue fragments were suspended in 2 mL of 0.05 M Tris buffer 
(pH 8.0) containing 0.5% hexadecyltrimethylammonium bro-
mide (Tris-HTAB) and homogenized using a Polytron homog-
enizer (Kinematica, Luzern, Switzerland) for 30 seconds. Ho-
mogenates were centrifuged (2,000×g) for 20 minutes at 20°C 
then the supernatants were passed through a 0.45-µm filter. 
One volume of substrate solution (0.04% H2O2, 1.2 mg/mL o-
phenylenediamine dihydrochloride in Tris-HTAB) was added 
to the filtered homogenate and mixed for 5 minutes at 20°C. 
The reaction was terminated by adding the same volume of 4 
M H2SO4 and the absorbance at 492 nm was measured. Tissue 
EPO activity was expressed in units using standard horseradish 
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peroxidase, whose specific activity was known.
The skin tissue was fixed in 10% neutral buffered formalin and 

paraffin-embedded. Sections (4 µm) were stained with hema-
toxylin and eosin for histologic analysis.

Statistical analysis
Data are presented as mean±standard error. Statistical analy-

sis was performed by using Student’s t test and one-way analy-
sis of variance with Bonferroni’s method. A P value of <0.05 
was considered to indicate statistical significance.

RESULTS AND DISCUSSION

Whether Th2 cells are capable of recruiting eosinophils into 

the skin without the assistance of antigen-specific IgE was first 
investigated. CFSE-labeled Th1/Th2-differentiated or naive 
DO11.10 T cells were infused into unprimed mice, followed by 
OVA challenge. Twenty-four hours later, the number of CFSE+ 
cells (antigen-specific T cells) and eosinophils in the SCF as 
well as EPO activity in the skin were measured. In Th2 cell-
transferred mice, the number of both eosinophils and antigen-
specific T cells in the SCF was increased upon challenge with 
OVA, in comparison with that in BSA (Fig. 1A). In Th1 cell-
transferred mice, antigen-specific T cells migrated into the SCF 
to an extent similar to that in Th2 cell-transferred mice, while 
antigen-induced eosinophil accumulation was much weaker. 
Infiltration of neither T cells nor eosinophils occurred in the 
mice transferred with naive T cells. In parallel with eosinophil 
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Fig. 1. Antigen-induced migration of T cells and eosinophils in the skin tissues of OVA-reactive T cell-transferred mice. Naive or Th1/Th2-differentiated DO11.10 T 
cells (3×107) were stained with CFSE and transferred to wildtype mice by intravenous injection. After 24 hours, these mice were challenged with 300 µg/mL OVA or 
BSA. Twenty-four hours after challenge, the CFSE-positive, antigen-specific T cells and eosinophils in SCF and EPO activity in the skin tissues were measured (A). 
Data are expressed as the mean±SEM (n=5-6). Four days after challenge, a skin specimen was taken, stained with hematoxylin-eosin, and observed under optical 
microscopy (B). The low and high magnification images shown in the upper and lower panels, respectively, are representative of three-four animals. Representative 
eosinophils are indicated by arrow heads. Bar=50 µm. OVA, ovalbumin; Th, T-helper type; CFSE, 5 (and 6)-carboxyfluorescein diacetate succinimidyl ester; BSA, bo-
vine serum albumin; SCF, skin-chamber fluid; EPO, eosinophil peroxidase; SEM, standard error of mean. *P<0.05; †P<0.01 (Student’s t test).
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accumulation, EPO activity in the skin was specifically induced 
in Th2 cell-transferred and OVA-challenged mice, suggesting 
that EPO activity is a reliable indicator of eosinophil recruit-
ment into the tissues (Fig. 1A).

Antigen-induced skin inflammation was evaluated in histo-
logical sections. In naive T cell-transferred mice, inflammatory 
cells were detectable only in small numbers even upon chal-
lenge with OVA (Fig. 1B). Consistent with the results of cell infil-
tration and tissue EPO activity, various inflammatory cells, in-
cluding lymphocytes and neutrophils, but not eosinophils, mi-
grated into the skin of Th1 cell-transferred mice (Fig. 1B). Obvi-
ous inflammatory features similar to the symptoms of atopic 
dermatitis patients, including massive accumulation of eosino-
phils, were seen in the skin of Th2 cell-transferred mice upon 
OVA challenge.

In these short-term experimental conditions, OVA-specific IgE 

was not detected in the skin or sera (data not shown), suggest-
ing that eosinophilic skin inflammation could be induced by 
Th2 cells without assistance of IgE. Although hyper-IgE is a 
common feature of patients with atopic dermatitis,9,10 a dis-
pensable role of IgE in the development of allergic inflamma-
tion was also confirmed in other target tissues, such as lungs, 
nasal mucosa, and intestine, in which massive eosinophil accu-
mulation was seen in Th2 cell-transferred mice.25,29,30 Although 
obvious eosinophilic accumulation was not observed in OVA-
specific IgE-transgenic mice even upon repeated antigen chal-
lenge,30 we have shown that the IgE/mast cell-dependent path-
way plays a supplemental role in eosinophilic inflammation, by 
employing an antigen-immunized mouse model.17 The coop-
eration of Th2 cells and IgE in the pathology of atopic dermati-
tis deserves further investigation.

To elucidate mechanisms by which eosinophils and T cells 

Table. Antigen-induced cytokine and chemokine production in the SCF of DO11.10 T cell-transferred mice

Cytokine and chemokine production (pg/mL)

Transfer Challenge IL-4 IL-5 IFN-γ Eotaxin RANTES MCP-1 MCP-3

Naive BSA 22.8±1.8 34.3±6.3 34±2 17.0±3.2 4.8±0.3 19.3±12.2 3,800±620
OVA 22.0±0.7 26.8±7.6 35±2 9.8±1.8 3.8±0.3 17.0±13.1 4,470±420

Th1 BSA 21.5±0.3 29.3±11.3 37±4 15.8±3.7 4.5±0.9 16.8±9.2 3,260±370
OVA 30.8±5.9 24.0±9.7 213±76* 15.8±2.6 52.3±5.2† 60.3±13.2† 5,560±430*

Th2 BSA 23.3±2.3 32.0±11.2 37±5 22.0±2.6 4.0±0.7 16.3±8.2 3,460±610
OVA 82.5±16.7* 82.3±27.1* 38±3 52.4±6.9† 5.3±0.5 45.8±13.1* 5,200±90*

Naive or Th1/Th2-differentiated DO11.10 T cells (3×107) were transferred to wildtype mice by intravenous injection. After 24 hours, these mice were challenged 
with 300 µg/mL OVA or BSA using a skin chamber. Twenty-four hours after challenge, the concentrations of cytokines and chemokines in the SCF were measured. 
Data are expressed as the mean±SEM (n=5-6). 
SCF, skin-chamber fluid; IL, interleukin; IFN, interferon; RANTES, regulated on activation, normal T cell expressed and secreted; MCP, monocyte chemoattractant pro-
tein; BSA, bovine serum albumin; OVA, ovalbumin; Th, T-helper type; SEM, standard error of mean.
*P<0.05; †P<0.01, compared with BSA-challenged control (Student's t test).
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Fig. 2. Effects of Dex and FK on antigen-induced Th2 cell migration and upregulation of EPO activity in the skin. Th2 cells (3×107) were transferred to wildtype mice 
by intravenous injection. After 24 hours, these mice were challenged with 300 µg/mL OVA or BSA. Indicated doses of Dex and FK were administered subcutaneous-
ly 30 minutes before challenge. Twenty-four hours after challenge, the number of CFSE-positive cells in the SCF and EPO activity in the skin tissues were measured. 
Data are expressed as the mean±SEM (n=5-6). Dex, dexamethasone; FK, FK506; Th, T-helper type; EPO, eosinophil peroxidase; OVA, ovalbumin; BSA, bovine se-
rum albumin; CFSE, carboxyfluorescein diacetate succinimidyl ester; SCF, skin-chamber fluid; SEM, standard error of mean. *P<0.05 (Bonferroni’s method).
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migrate into the skin, cytokine concentrations in the SCF of T 
cell-transferred mice were next examined (Table). In accor-
dance with the in vitro profiles of transferred T cells,25,26 IL-4, 
and IL-5 were specifically produced upon antigen challenge in 
the mice transferred with Th2 cells, whereas IFN-γ was prefer-
entially produced in Th1 cell-transferred mice. Eotaxin concen-
tration in the SCF production was increased only in Th2-trans-
ferred mice upon antigen challenge, whereas RANTES was pro-
duced only in Th1-transferred mice. MCP-1 and MCP-3 levels 
were increased by antigen challenge in both Th1 and Th2 cell-
transferred mice.

Eosinophils express high levels of CC chemokine receptor 
(CCR) 3,31,32 which binds several chemokines, including eotax-
in, RANTES, and MCP-3. These chemokines are released from 
various tissues and cells in response to cytokine stimulation.33 It 
is intriguing that a significant recruitment of eosinophils was 
not seen in the skin of Th1 cell-transferred mice, in which sub-
stantial production of RANTES and MCP-3, as well as migration 
of Th1 cells themselves, were observed. A Th2-specific cyto-
kine, IL-5, promotes eosinophil chemotactic activity.34,35 The 
cooperation of IL-5 and eotaxin in the accumulation of eosino-
phils has been demonstrated in vivo.36 Therefore, IL-5 activity 
might be important for the eosinophilic skin inflammation se-
lectively induced by Th2 cells. Further studies are needed to 
elucidate the mechanisms and meaning of our new finding that 
eosinophil-active RANTES and MCP-3 are produced in Th1-
mediated pathology without recruiting eosinophils.

To gain an insight into the relationship between the antigen-
induced infiltration of eosinophils and T cells that occurred in 
Th2 cell-transferred mice, the effects of the immunosuppres-
sants Dex and FK were next examined. As shown in Fig. 2, both 
agents similarly and dose-dependently suppressed antigen-in-
duced infiltration of antigen-specific T cells and elevation of 
skin EPO activity in Th2 cell-transferred mice. These results 
support the clinical efficiency of Dex and FK for atopic dermati-
tis patients. Since these reagents strongly suppress activation of 
T cells but not eosinophils,37-39 it is suggested that skin-infiltrat-
ing, antigen-specific Th2 cells participate in the accompanying 
eosinophil migration.

In conclusion, Th2 cells have the potential to develop eosino-
philic skin inflammation, a representative pathological feature 
of atopic dermatitis, independent of an IgE-dependent pathway. 
Our new model of skin infiltration of antigen-specific Th2 cells 
and eosinophils in Th2 cell-transferred mice responds to Dex 
and FK and is expected to be useful for the generation of novel 
therapeutic treatments for atopic dermatitis, especially targeting 
Th2 cell-mediated and eosinophil-related pathogenesis.
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