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Melanomas prevent endothelial cell death under restrictive culture conditions
by signaling through AKT and p38 MAPK/ ERK-1/2 cascades
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ABSTRACT
Although melanoma progression and staging is clinically well characterized, a large variation is observed in
pathogenesis, progression, and therapeutic responses. Clearly, intrinsic characteristics of melanoma cells
contribute to this variety. An important factor, in both progression of the disease and response to therapy,
is the tumor-associated vasculature. We postulate that melanoma cells communicate with endothelial
cells (ECs) in order to establish a functional and supportive blood supply. We investigated the angiogenic
potential of human melanoma cell lines by monitoring the survival of ECs upon exposure to melanoma
conditioned medium (CM), under restrictive conditions. We observed long-term (up to 72 h) EC survival
under hypoxic conditions upon treatment with all melanoma CMs. No such survival effect was observed
with the CM of melanocytes. The CM of pancreatic and breast tumor cell lines did not show a long-term
survival effect, suggesting that the survival factor is specific to melanoma cells. Furthermore, all size
fractions (up to < 1 kDa) of the melanoma CM induced long-term survival of ECs. The survival effect
observed by the < 1 kDa fraction excludes known pro-angiogenic factors. Heat inactivation and enzymatic
digestion of the CM did not inactivate the survival factor. Global gene expression and pathway analysis
suggest that this effect is mediated in part via the AKT and p38 MAPK/ ERK-1/2 signaling axis. Taken
together, these data indicate the production of (a) survival factor/s (< 1 kDa) by melanoma cell lines,
which enables long-term survival of ECs and promotes melanoma-induced angiogenesis.
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Introduction

Malignant melanoma is a highly metastatic disease, with an
increasing rate of incidence, poor prognosis, and high resis-
tance to therapeutic intervention.1 Although early diagnosis
and surgical resection of the primary lesion could significantly
improve survival, the high propensity of melanomas to dissem-
inate through intradermal, haematogenous, and lymphatic
routes to regional and visceral sites leads to poor prognosis and
high mortality rates.2,3 Metastatic melanoma is by large refrac-
tory to conventional therapies and until recently patients pre-
senting with advanced disease had low life expectancies, with a
median overall survival (OS) of 6 to 9 mo and 5 y survival rates
as low as 5–10%.1,4,5 Promising recent therapeutic advances in
the treatment of malignant melanoma, such as the use of tar-
geted therapies6-8 and immunological approaches,9-12 have
demonstrated substantial clinical benefit and significantly
improved survival in patients with advanced disease. These
results, while encouraging, highlight the necessity to better
characterize disease biology as a considerable fraction of mela-
noma patients still remain, or become, incurable.

Melanomas evolve through distinct sequential neoplastic
transformations and tumor progression is intimately associated

with a high degree of angiogenic activity, facilitated by the
constitutive expression of multiple growth factors.13,14

Angiogenesis is an imperative feature of melanoma develop-
ment as evidenced by the correlation of degree of angiogene-
sis with aggressiveness, risk of recurrence, and clinical
outcome.15 Furthermore, the increased expression of proan-
giogenic ligands and their receptors have been observed in
melanomas compared to benign nevi16-18 and elevated levels
detected in the blood of melanoma patients.19-21 The clinical
relevance and therapeutic potential of targeting angiogenesis
have led to the development of several targeting modalities.
Despite promising preclinical results, clinical trials evaluating
single antiangiogenic agent use as well as combinations with
chemotherapy have thus far shown marginal response rates
(reviewed in refs.22-24). Translating the targeting of this piv-
otal pathophysiological feature of melanomas into a curative
therapeutic modality has remained challenging, warranting a
better insight into the angiogenic cascade of melanomas.

A critical component in eliciting and sustaining the angio-
genic phenotype of tumors is hypoxia.25 Heterogeneity in
oxygenation is a constant feature of the tumor microenviron-
ment as neoplastic vasculature development cannot keep up
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with the metabolic demands of proliferating tumor cells, result-
ing in an architecturally and functionally compromised vascu-
lature. The hypoxic microenvironment of melanomas is
associated with tumor progression and metastatic dissemina-
tion26,27 and serves as a stimulus for the induction of several
pro-angiogenic modulators. Endothelial cells (ECs) are known
to undergo cell death in response to adverse stimuli such as
hypoxia.28 As EC survival is a crucial step in the angiogenic cas-
cade, we sought to evaluate the angiogenic potential of mela-
noma cell lines, differing in their degree of aggressiveness and
clinical staging,29 by investigating their ability to mediate EC
survival under restrictive culture conditions.

Results

Melanoma conditioned medium (CM) prevents endothelial
cell (EC) death under restrictive culture conditions

Conditioned medium (CM) derived from six melanoma cell
lines, differing in angiogenic profiles,29,30 were tested for their
ability to promote EC survival under normoxic and hypoxic con-
ditions. All melanoma CMs were capable of promoting long-
term (up to 72 h) human umbilical vein endothelial cell
(HUVEC) survival under hypoxia. Basal medium treatment did
not prevent cell death as no viable population was observed at 48
and 72 h (Fig. 1a). All melanoma CMs and basal medium were
capable of promoting HUVEC survival under normoxic condi-
tions (Fig. S1a). To determine if the observed survival effect was
restricted to an EC subtype, we tested the ability of melanoma
CMs to promote human dermal microvascular endothelial cell
(HMVEC) survival under hypoxia. As with HUVECs, all mela-
noma CMs were capable of mediating HMVEC survival under
normoxic and hypoxic conditions, whereas basal medium only
mediated survival under normoxic conditions (Fig. 1b and
Fig. S1b). These data suggest that the pro-survival effect induced
by melanoma CMs is not restricted to a specific EC subtype.
Next, we sought to determine if CM generated from melanoma
cells cultured under hypoxic conditions were capable of inducing
a similar pro-survival effect in ECs. Conditioned media derived
from all melanoma cell lines under hypoxic conditions were
capable of sustaining HUVEC (Fig. 1c) and HMVEC (Fig. 1d)
survival under hypoxia. Survival of ECs under normoxic condi-
tions are shown in Fig. S1c and d.

Although the tested melanoma cell lines have been docu-
mented to vary in the expression of angiogenic factors and
tumor vascular density in corresponding xenografts,29,31 we did
not observe a clear correlation with the extent to which the
melanoma CMs promoted EC survival under hypoxia. Near
confluent cultures of ECs treated with undiluted melanoma
CMs showed the classic cobblestone morphology under restric-
tive culture conditions (Fig. 1e).

We used the sulphorhodamine B (SRB) assay to measure EC
survival in our experiments. As this assay measures cell density
based on cellular protein content, we also performed the colori-
metric XTT assay that measures metabolically active cells,
under the same experimental conditions (Fig. S2). Both SRB
and XTT assays yielded similar results and indicated that CM
from melanoma cells protects ECs from cell death under
hypoxia.

Melanoma conditioned medium (CM) prevents hypoxia
induced apoptotic cell death

As non-physiological variances such as hypoxia are known to
provoke cell death,28,32 we sought to determine if the observed
survival effect was a result of inhibition of apoptotic or necrotic
cell death. ECs treated with undiluted and diluted melanoma
CMs for 48 h under hypoxia were subjected to a bivariate FACS
analysis using FITC-Annexin V and PI. This aided in the dis-
crimination of viable cells (FITC¡PI¡), early apoptotic
(FITCCPI¡), and late apoptotic or necrotic cells (FITCCPIC).
Representative dot-plots are shown in Fig. 2a. Percentages of
apoptotic and necrotic populations at 48 h hypoxia under vari-
ous treatments are depicted in Fig. 2b. Although over 95% of
the cells underwent apoptosis or became necrotic when cultured
in basal medium under hypoxia, treatment with melanoma
CMs rendered the majority of the cells viable (85% for BLM
CM and 83% for 1F6 CM) (Fig. 2a and b). A shift toward apo-
ptosis and necrosis was observed upon 2-fold and 5-fold dilu-
tions of the melanoma CMs. Furthermore, the presence of
apoptotic nuclei in treated ECs was visualized by staining with
the nuclear dye, YOPRO-1 at 48 h of hypoxia treatment. Mela-
noma CM-treated ECs under hypoxia did not show the pres-
ence of apoptotic nuclei, indicating viable ECs, whereas
treatment with the cytotoxic agent Etoposide showed a marked
increase in the presence of apoptotic nuclei. Basal medium
treated ECs were not viable and showed fewer apoptotic nuclei
indicating that cell detachment preceded cell death (Fig. 2c).

Melanoma conditioned medium prevents endothelial cell
death independent of the VEGF signaling pathway

The role of vascular endothelial growth factor (VEGF) and
basic fibroblast growth factor (bFGF) as potent regulators of
angiogenesis has been sturdily established in melanomas and
other human tumors.33-35 We therefore evaluated the ability of
VEGF and bFGF in sustaining survival of ECs under restrictive
culture conditions. Although both mitogens were capable of
promoting EC growth under normoxia (Fig. 3a), these factors
were unable to rescue ECs from cell death when cultured under
hypoxia (Fig. 3b). Next, we evaluated the VEGF profile of mela-
noma cells by measuring the levels of VEGF in serum-free mel-
anoma conditioned medium (SF-CM). BLM produced the
highest levels of VEGF (3.6 ng/106 cells), whereas Mel57 and
1F6 hardly produced any VEGF (Fig. 3c). Additionally, we
blocked VEGF signaling by the addition of either VEGF-neu-
tralizing antibody (Fig. 3d) or VEGFR kinase inhibitor (Fig. 3e)
to undiluted and 2-fold diluted melanoma CM. Although EC
proliferation was reduced upon VEGFR inhibition (Fig. 3e), the
ability of melanoma CMs to promote EC survival under hyp-
oxia was not hindered by blocking members of the VEGF sig-
naling pathway, suggesting the involvement of alternate
signaling pathways in mediating the observed survival effect.

Delineation and specificity of the melanoma induced
survival effect

As the melanoma CM has the presence of serum, we queried the
contribution of serum to the observed survival effect. Additionally,
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as the growth rates of the tested melanoma cell lines used to gen-
erate the CM varied, and therefore the consumption of serum
components, we reasoned that the final concentration of serum
might differ among the melanoma CMs. Therefore, we prepared

serum-free melanoma conditioned medium (SF-CM) and moni-
tored long-term survival of ECs under hypoxic conditions. SF-
CMs were capable of inducing a similar survival response in ECs
as the CMs, and likewise, this effect was lost upon dilution of the

Figure 1. Melanoma-conditioned medium (CM) prevents endothelial cell (EC) death under severe hypoxia. (a) HUVEC and (b) HMVEC survival under hypoxia upon treat-
ment with melanoma CMs collected under normoxic conditions. (c) HUVEC and (d) HMVEC survival under hypoxia upon treatment with melanoma CMs collected under
hypoxic conditions. Subconfluent ECs were treated with various melanoma CMs (BLM: ; M14: ; Mel57: ; 530: ; 1F6: ; Mel57-VEGF165: )
and basal medium ( ). Cells were fixed at 24, 48, and 72 h and the percentage of total surviving cells was determined. Normalized cell viability (%) data in (a–d) are
expressed relative to treatment with basal medium (DMEM C 10% FBS) at 24 h normoxia and represent mean § SEM of three independent experiments, conducted in
triplicate. �p< 0.05. (e) Morphology of ECs under various treatments at 48 h hypoxia. Image in the dotted black box shows EC morphology with EC culture medium under
normoxic conditions. Scale bar, 100 mm.
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SF-CM (Fig. 4a). In order to further characterize the melanoma-
induced survival effect, we size fractionated the SF-CMs with sev-
eral molecular weight cutoffs. Interestingly, no long-term survival
effect was induced by the > 50 kDa fraction, whereas all small

molecule fractions tested (< 50 kDa, < 5 kDa, < 3 kDa, <
1 kDa) resulted in a survival effect comparable to that of the
unfractionated SF-CM (Fig. 4b). In order to determine if the
observed pro-survival effect is an acquired trait during melanoma

Figure 2. Melanoma conditioned medium (CM) prevents hypoxia induced apoptosis of endothelial cells (EC). (a,b) Bivariate FACS analysis of melanoma CM treated ECs (a)
Representative dot plots of ECs treated with undiluted, twice diluted (2�dil) and five times diluted (5�dil) melanoma CMs, and basal medium (DMEM C 10% FBS) at 48 h
of hypoxia. Treated cells were stained with Annexin V (X-axis) and Propidium Iodide (PI, Y-axis) and subjected to flow cytometry analysis to determine percentages of apo-
ptotic, necrotic and viable cells. (b) Relative percentages of apoptotic and necrotic ECs with different treatments at 48 h hypoxia. Treatment with diluted melanoma CMs
showed a gradual shift toward apoptotic cells. Data are derived from three independent experiments. �p < 0.05. (c) Visualization of apoptotic nuclei in ECs subjected to
melanoma CM or basal medium (DMEMC10% FBS) treatments at 48 h of hypoxia. As controls, ECs were treated with EC culture medium with or without 25 mg/mL Etopo-
side (positive and negative control for apoptosis, respectively) under normoxic conditions. Scale bar, 100 mm.
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development, we assayed for the ability of primary and immortal-
ized human melanocytes to promote EC survival under normoxic
and hypoxic conditions. Both unfractionated and fractionated
serum-free melanocyte conditioned media were not able to induce
EC survival under hypoxia (Fig. 4c). Under normoxic conditions,

EC survival was observed upon treatment with melanocyte CM
(Fig. S3a).

Furthermore, we proceeded to determine if the survival
effect mediated by the < 1 kDa fraction was specific to mel-
anomas or a common feature among other tumor types. To

Figure 3. Melanomas mediate endothelial cell (EC) survival under hypoxia, independent of the VEGF signaling pathway. (a,b) ECs were treated with 10 ng/mL VEGF
( ) or 200 ng/mL bFGF ( ) alone, or in combination ( ). Cell survival was monitored under normoxia (a) and hypoxia (b) for up to 72 h. (c) Levels of VEGF
(pg/ 1 £ 106 cells) in serum-free melanoma conditioned medium (SF-CM) as detected by ELISA. Data were normalized to the number of cells used to generate the SF-CM
and are expressed as mean § SD of quadruplicate samples. (d, e) Effect of VEGF pathway inhibition on EC survival under hypoxia. ECs were treated with undiluted and
twice diluted melanoma conditioned medium in the presence of (d) VEGF neutralizing antibody (0.3 mg/mL) or (e) VEGFR kinase inhibitor (0.3 mg/mL) (undiluted mela-
noma CM: ; undiluted melanoma CM with neutralizing antibody/inhibitor: ; twice diluted melanoma CM: ; twice diluted melanoma CM with neutraliz-
ing antibody/inhibitor: ; and basal medium: ). Normalized cell viability (%) data in (a, b, d, and e) is expressed relative to treatment with basal medium
(DMEM C 10% FBS) at 24 h normoxia and represent mean § SEM of three independent experiments, conducted in triplicate. �p < 0.05.
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this end, we prepared serum-free conditioned medium from
breast and pancreatic tumor-cell lines, varying in their
growth profiles and genomic abnormalities.36,37 Unfractio-
nated (data not shown) and fractionated (< 1 kDa) tumor
conditioned media were tested for their ability to promote
EC survival under hypoxia. Interestingly, although some cell
lines were capable of inducing a short-term survival
response in ECs under hypoxia, no long-term survival was
seen (Fig. 4d). Thus, the survival effect mediated by the <

1 kDa fraction seems to be specific for melanoma cells.
Under normoxic conditions, EC survival was observed with
all breast and pancreatic tumor CM tested (Fig. S3b).

Characterization of the melanoma specific survival effect

In order to further characterize the melanoma-specific induc-
tion of survival responses in ECs under hypoxia, we subjected
the SF-CM < 1 kDa fraction to heat inactivation (Fig. 5a), tryp-
sin (Fig. 5b), and chymotrypsin digestion (data not shown). No
difference was observed between pro-survival responses gener-
ated by treated and untreated < 1 kDa SF-CM fractions. Addi-
tionally, the protein and non-protein fractions of the < 1 kDa
SF-CM were separated using acetone precipitation. We
observed that although the reconstituted protein pellet was not
able to mediate EC survival, the non-protein fraction sustained

Figure 4. Delineation of melanoma-induced survival effect. (a) Effect of serum on endothelial cell (EC) survival. ECs were grown to near confluence and treated with undi-
luted ( ), twice diluted ( ), and five times diluted ( ) serum-free melanoma-conditioned medium (SF-CM) and basal medium ( ) under hypoxia for up

to 72 h. (b) Effect of melanoma SF-CM size fractionation on EC survival. SF-CMs were size fractionated and the various fractions (> 50 kDa: ;< 50 kDa: ; <
5 kDa: ; < 3 kDa: ; < 1 kDa: ; and basal medium: ) were added to near confluent EC cultures. (c) Effect of melanocyte conditioned medium on EC
survival. Unfractionated and fractionated serum-free melanocyte conditioned medium was added to near confluent EC cultures. Melanocyte conditioned medium was
not capable of promoting EC survival under hypoxic conditions (unfractionated hMEL SF-CM: ; < 1 kDa hMEL SF-CM: ; unfractionated NHEM SF-CM: ; <
1 kDa NHEM SF-CM: ; and basal medium: ). (d) Effect of breast and pancreatic cell conditioned medium on EC survival. Size fractionated < 1 kDa fractions of

serum-free conditioned medium derived from breast cancer cell lines (MCF-7: , SKBR3: ), pancreatic cancer cell lines (BxPc-3: , Panc-1: , MiaPaCa:
) and basal medium ( ) were added to near confluent EC cultures. Breast and pancreatic SF-CM were not capable of inducing long-term EC survival under hyp-

oxia. Normalized cell viability (%) in (a–d) is expressed relative to treatment with basal medium (serum-free DMEM) at 24 h normoxia. Data represent mean§ SEM of four
independent experiments, conducted in triplicate. �p < 0.05.
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Figure 5. Characterization of the melanoma-specific survival effect. (a) Effect of heat treatment on endothelial cell (EC) survival. Size fractionated< 1 kDa fraction of
serum-free melanoma conditioned medium (SF-CM) was heat inactivated at 56�C, 80�C and 100�C, respectively, for 30 min. Untreated ( ), heat-inactivated (56�C:

; 80�C: ; 100 �C: ) media and basal medium ( ) were added to near confluent EC cultures and long-term survival under hypoxia was monitored.
(b) Effect of enzymatic digestion on EC survival. Size fractionated < 1 kDa fraction of melanoma SF-CM was treated with 100 and 200 mg/mL of trypsin for 30 min at
37 �C. Untreated ( ), trypsin treated samples (100 mg/mL: ; 200 mg/mL: ) and basal medium ( ) were added to near confluent EC cultures and mon-
itored for long-term survival under hypoxia. (c) Effect of protein precipitation on EC survival. Size fractionated < 1 kDa fractions of melanoma SF-CM and basal medium
were subjected to protein precipitation using acetone. Reconstituted protein and non-protein fractions were added to subconfluent EC cultures and survival under hyp-
oxia was monitored (< 1 kDa SF-CM untreated: ; < 1 kDa SF-CM protein fraction: ; < 1 kDa SF-CM non-protein fraction: ; basal medium: ; basal
medium protein fraction: ; basal medium non-protein fraction: ). (d,e) Effect of lipid extraction on EC survival. Size fractionated < 1 kDa SF-CM fractions of
melanoma SF-CM were treated with 1%, 3%, or 10% fatty-acid free BSA. BSA-poor (flowthrough) fractions were obtained as described under ‘Materials and Methods’. (d)
Untreated ( ), BSA treated flowthroughs (1%: ; 3%: ; 10%: ; ) and basal medium ( ) were added to subconfluent ECs to monitor cell survival
under hypoxia. (e) Morphology of ECs under various treatments at 48 h hypoxia. Scale bar, 100 mm. Normalized cell viability (%) in (a–d) is expressed relative to survival
of basal medium (serum-free DMEM) treated ECs at 24 h normoxia and represent mean § SEM of four independent experiments, conducted in triplicate. �p < 0.05.
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long-term EC survival under hypoxia. As a control, basal
medium was subjected to the same treatment. No EC survival
was observed (Fig. 5c). We also performed a BSA back
exchange assay, with increasing concentrations of fatty acid-
free BSA, to separate the lipid and non-lipid components pres-
ent in the < 1 kDa SF-CM fraction. Post-treatment, samples
were size fractionated to obtain BSA-rich (retentate) and BSA-
poor (flowthrough) fractions. We observed EC survival under
hypoxia when treated with the BSA-poor fractions (flow-
through) of the 1% and 3% BSA-treated samples. Interestingly,
treatment of the < 1 kDa SF-CM fraction with 10% BSA
resulted in the removal of the observed survival effect from the
flowthrough, suggesting that BSA selectively adsorbs the sur-
vival factor/s at a higher concentration (Fig. 5d, e). This selec-
tive separation of the melanoma-specific survival factor/s
suggests that it might be a lipid/lipophilic molecule.

Global changes in gene expression upon treatment with
melanoma conditioned medium

To characterize the molecular mechanisms underlying the sur-
vival effect, we performed a whole genome gene expression
study and analyzed the changes in relative mRNA abundance
induced by treating ECs with melanoma CM or basal medium
for 12 h under hypoxic and normoxic conditions. The 12 h
time point was chosen, as basal medium-treated ECs under
hypoxia maintain substantial morphological integrity and cell
viability; prolonging the treatment results in extensive cell
death. Based on the confidence level of their expression meas-
urements (Affymetrix presence calls), 27,410 probesets passed
the set filtering threshold and were used for further statistical
analysis. Unsupervised multidimensional scaling (MDS) analy-
sis identifies hypoxic/normoxic growth conditions and mela-
noma CM treatment as the main sources of variability in our
dataset. Samples treated with melanoma CM clustered apart
from basal medium-treated control samples, indicating that
CM treatment induces a consistent modification in the pattern
of expressed genes. This modification appears to be minimally
modified by the hypoxic/normoxic culturing condition, consis-
tent with the observation that variations in cell morphology
and viability is minimal at the 12 h time point (Fig. 6a and
Fig. S4). To identify the genes regulating the observed survival
effect, we compared the gene expression profile of ECs treated
with melanoma CM to that of ECs grown in basal medium,
under hypoxia. Using a random variance t-test, 694 probesets
were significantly modulated as a consequence of the mela-
noma CM treatment. The 694 probesets represent 524 individ-
ual transcripts, of which 296 were induced and 228 were
repressed. A table reporting all the genes passing the test along
with p values, fold change, and per gene FDR estimates is
posted as Table S1. Probesets passing the test were clustered
and displayed as a Heatmap using the clustering tool in BRB
ArrayTools. Additionally, we visualized the expression values
of the same probesets in ECs treated for 12 h under normoxia
(Fig. S4) and observed a similar pattern of gene expression
modulation.

The gene expression changes identified appear consistent
with the observed survival activity of melanoma CM.
Among the genes more differentially expressed, we observed

increased expression of transcripts encoding cytokines and
other gene products involved in cytokine signaling (CXCL2,
CCL2, IL32, A2M, JAK3, STAT6, CXCR7, CASP1), cell
metabolism, and survival (INSR, IGF1R, AKT3, MAP2K5,
JUNB). A number of transcripts encoding proteins involved
in apoptosis and inhibition of transcription (ID2, EID3,
FAS) were among the most repressed ones. To gain further
insight into the biological functions altered as a conse-
quence of the gene expression changes induced by CM
treatment, we performed pathway analysis and interrogated
different databases using the pathway analysis tool in BRB
ArrayTools. The threshold of determining significant gene
sets was set at p < 0.005. Different pathways were signifi-
cant under the test conditions used including KEGG “pro-
teasome” (hsa03050) showing coordinated downregulation
of multiple proteasome subunits, and GO “regulation of gly-
colysis” (GO:0006110) showing augmented expression of
transcripts involved in glucose metabolism and energy pro-
duction. Heatmaps displaying expression of genes in rele-
vant pathways are shown in Fig. 6b. Furthermore, we
clustered and imaged the expression values of genes consti-
tuting the “Apoptosis,” “MAPK kinase signaling,” “Insulin
signaling,” and “Cytokine-cytokine receptor signaling” path-
ways of the KEGG database under hypoxic and normoxic
conditions. We could clearly identify two main clusters of
genes showing consistent modulation upon melanoma CM
treatment. Consistent with the observed survival effect
induced by melanoma CM, genes involved in the proapop-
totic signaling cluster were downregulated in CM-treated
group, whereas genes involved in the pro-survival signaling
cluster were upregulated (Fig. 6c).

The gene expression changes observed in the microarray
experiments were validated by real-time PCR. For all the tran-
scripts tested, the results of the real-time PCR validation experi-
ments were in good agreement with the microarray analysis. Of
note, this validation experiment was performed with both
unfractionated (Fig. 6d) and fractionated < 1 kDa (Fig. 6e) SF-
CM to rule out the effect of growth factors and other large
mass bioactive molecules present in unfractionated CM. Gene
expression changes under normoxic conditions are provided in
Fig. S5.

Melanoma conditioned medium induces a pro-survival
signal transduction cascade in endothelial cells

As a robust survival response was generated in hypoxic ECs
upon treatment with melanoma conditioned media, we pro-
ceeded to investigate the signal transduction events mediating
this effect. Caspases are a group of endoproteases that play a
central role in the regulation of programmed cell death in
response to environmental stresses, such as hypoxia.38 We
therefore evaluated the levels of active caspases 3/7 in ECs
treated with the < 1 kDa fraction of SF-CMs from a panel of
cell lines. At 16 h of hypoxia treatment, levels of active caspases
were 2.5-fold higher in melanocyte < 1 kDa SF-CM-treated
samples, and about 3-fold higher in breast and pancreatic
tumor < 1 kDa SF-CM-treated samples, as compared to the
melanoma < 1 kDa SF-CM treatment (Fig. 7a). Furthermore,
we evaluated the phosphorylation status of AKT, ERK-1/2, and
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p38 MAPK that are known to be central mediators of the sur-
vival signaling cascade in ECs. We observed pronounced AKT
and ERK-1/2 activation upon treatment with both fractionated

and unfractionated melanoma SF-CM under hypoxia, as com-
pared to other SF-CMs and basal medium. Consistent with the
microarray observations, phosphorylated p38 MAPK levels

Figure 6. Global changes in gene expression upon treatment with melanoma conditioned medium (a–c). Changes in relative mRNA abundance induced by treating endo-
thelial cells (EC) with melanoma CM or basal medium for 12 h under hypoxic and normoxic conditions. (a) Unsupervised Multidimensional scaling (MDS) analysis of the
27,410 probesets passing Affymetrix presence calls (green sphere: basal medium, hypoxia; green cube: basal medium, normoxia; blue sphere: melanoma CM hypoxia;
blue cube: melanoma CM, normoxia). Probesets were filtered out if called “absent” in > 80% of the samples. (b) Heatmaps of pathways significantly altered as a conse-
quence of melanoma CM treatment at 12 h of hypoxia; KEGG “proteasome” (hsa03050), GO “regulation of glycolysis” (GO:0006110). p< 0.005. (c) Heatmaps of genes con-
stituting pro-apoptotic and pro-survival signaling pathways obtained from pathway analysis (p < 0.005). A consistent downregulation of genes involved in pro-apoptotic
signaling and an upregulation of genes involved in pro-survival signaling was observed with melanoma CM-treated ECs, as compared to basal medium treatment, both
under hypoxic and normoxic conditions. (d,e) Differential expression of select genes from the microarray experiment was verified using real-time quantitative PCR. ECs
were treated with (d) unfractionated or (e) fractionated (< 1 kDa) serum-free melanoma conditioned medium under hypoxia for 12 h. Changes in transcript abundance
were normalized to B2M expression and are expressed as log2 ratio relative to basal medium (serum-free DMEM) treatment. �p < 0.05.
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were downregulated in both fractionated and unfractionated
melanoma SF-CM treatments, indicating the induction of a
pro-survival signaling cascade (Fig. 7b).

Melanoma specific endothelial cell survival effect is
mediated via the AKT and p38 MAPK/ ERK-1/2 signaling
pathway

To corroborate our observation of activation of AKT and ERK-1/2
signaling when treated with the< 1 kDa fraction of the melanoma
SF-CM, we blocked the respective signaling pathways using spe-
cific inhibitors. We observed that blocking AKT signaling, using
the AKT inhibitor LY294002, reduced long-term EC survival
under hypoxic conditions. Alternatively, blocking ERK-1/2 signal-
ing using the inhibitor PD98059 also reduced EC survival under
hypoxia. In contrast, inhibiting p38 MAPK signaling with the
inhibitor SB203580 resulted in viable ECs similar to untreated <

1 kDa SF-CM (Fig. 8a and b). FACS analysis, performed at 12 h
of hypoxia treatment, corroborated these results (Fig. 8c and d).
These results suggest that the survival specific factor produced by
the melanoma cells induces a pro-survival effect in ECs under
restrictive hypoxic conditions, and is mediated by the AKT and
p38 MAPK/ ERK-1/2 signaling pathway.

Discussion

In this study, we analyzed the angiogenic potential of a
panel of human melanoma cell lines with respect to their
ability to promote EC survival under tumor-associated hyp-
oxic conditions. Although the melanoma cell lines differed
in their clinical staging, in vitro and in vivo growth proper-
ties,29 all tested melanoma conditioned supernatants were
capable of eliciting a survival response in ECs under hyp-
oxic conditions. Moreover, the survival response was not
EC subtype specific as melanoma CM-treated HMVECs
were also capable of long-term survival under hypoxia. The
survival response was determined to be regulated by pre-
vention of apoptotic cell death. Interestingly, however, all
diluted melanoma CMs induced a shift in the EC popula-
tions to an apoptotic phenotype, suggesting dose depen-
dency. We also observed that all size fractions (up to and
including < 1 kDa) of the melanoma conditioned media
were capable of generating pro-survival responses in ECs.
Furthermore, this effect seemed to be an attribute specific
to melanoma pathophysiology as neither melanocytes nor
aggressive breast and pancreatic cell lines were capable of
preventing EC apoptosis under hypoxia.

Figure 7. Melanoma conditioned medium induces a pro-survival signal transduction cascade (a) Caspase induction in endothelial cells (ECs) under hypoxia. ECs were
treated with < 1 kDa fractions of various serum-free melanoma conditioned media (SF-CM), under hypoxic conditions. ECs cultured with HUVEC medium under normoxic
conditions were used as a negative control for apoptosis and the addition of Etoposide (25 mg/mL) served as the positive control for apoptosis induction. Levels of active
caspase 3/7 were measured at 16 h of treatment. Data are represented as mean § SD of three independent experiments, conducted in triplicate. (b) Serum-starved ECs
were treated with unfractionated or fractionated (< 1 kDa) SF-CM under hypoxic conditions. Cells were lysed and western blotting was performed to detect total and acti-
vated forms of AKT (MW, 60 kDa), ERK-1/2 (MW, 42.44 kDa), and p38 MAPK (MW, 43 kDa). SF-CM treatment lanes: 1. BLM, 2. Mel57, 3. 1F6, 4. PANC-1, 5. MCF-7, 6. hMEL, 7.
Basal medium.
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Figure 8. Inhibition of the melanoma-specific survival effect (a,b). Effect of pathway inhibitors on endothelial cell (EC) survival. ECs were treated with < 1 kDa fractions of
(a) Mel57 or (b) 1F6 SF-CM, in the presence of PI3 kinase inhibitor (LY294002), MEK inhibitor (PD98059) or p38 MAPK inhibitor (SB203580) and long-term survival under
hypoxia was monitored (< 1 kDa SF-CM: ; C LY294002, 50 mM : ; C PD98059, 20 mM: ; C SB203580, 10 mM: ). Normalized cell viability (%) in (a,
b) is expressed relative to survival of basal medium (serum-free DMEM) treated ECs at 24 h normoxia and represent mean § SEM of three independent experiments, con-
ducted in triplicate. All inhibitor treated samples were compared to treatment with melanoma SF-CM < 1 kDa treatment. �p < 0.05. (c,d) Bivariate FACS analysis of ECs
treated with pathway inhibitors. (c) Representative dot plots of ECs treated with< 1 kDa melanoma SF-CM fraction with or without pathway inhibitors, and basal medium
(serum-free DMEM) at 12 h of hypoxia. Treated cells were stained with Annexin V (X-axis) and Propidium Iodide (PI, Y-axis) and subjected to flow cytometry analysis to
determine percentages of apoptotic, necrotic, and viable cells. (d) Relative percentages of apoptotic and necrotic ECs with different treatments at 12 h hypoxia. Data are
derived from three independent experiments. �p < 0.05.
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The clinical relevance and therapeutic potential of targeting
angiogenesis have led to the development of several targeting
modalities including neutralization of pro-angiogenic ligands
using monoclonal antibodies, soluble decoy traps to inhibit
receptor signaling, broad blocking with tyrosine kinase inhibi-
tors, and vascular disrupting agents that target the established
tumor vasculature. Much of these efforts in melanoma have
focused on VEGF and bFGF.22,23 The role of both mitogens in
supporting melanoma growth in vivo has been estab-
lished.29,31,39 Graeven et al. demonstrated that bFGF is critical
for melanoma growth in vivo, whereas VEGF is dispensible.40

Additionally, several in vivo studies report the role of these
mitogens in promoting survival of tumor endothelium.41,42

However, VEGF and bFGF were not capable of inducing EC
survival under hypoxic conditions. Moreover, the melanoma
cell lines tested vary in VEGF expression profile.31 Thus,
although BLM produced the highest levels of VEGF, Mel57 and
1F6 cell lines recorded low VEGF production. Furthermore,
inhibition of the VEGF signaling axis, either by ligand neutrali-
zation or receptor blocking, in melanoma CM-treated ECs did
not induce apoptosis under hypoxia. These data suggest that
angiogenic events during melanoma development are not
restricted to VEGF and bFGF signaling.

As the < 1 kDa melanoma-specific fraction excludes known
angiogenic factors, we attempted to further characterize this
factor/s. Heat inactivation, trypsin, and chymotrypsin digestion
did not alter the survival promoting attributes of the mela-
noma-specific fraction. Global changes in endothelial gene
expression were visualized by comparing melanoma CM treat-
ment and basal medium treatment. Of the transcripts most dif-
ferentially regulated, proangiogenic modulators such as
chemokine (C-C motif) ligand 2 (CCL2), angiopoetin-like-4
(ANGPTL4), v-akt murine thymoma viral oncogene homolog
3 (AKT3), and insulin receptor (INSR) were upregulated in the
melanoma CM-treated samples. Furthermore, genes involved
in pro-apoptotic cascade such as (FAS) and (ID2) were down-
regulated upon melanoma CM treatment. The gene expression
data were further verified with the small molecule fraction
treatment, and similar changes in transcript abundance were
observed.

In response to soluble factors secreted by tumor cells,
several signaling cascades are activated in angiogenic ECs.
Central components of the activated signaling pathways in
ECs include the mitogen-activated protein kinases (MAPK)
and the serine/threonine-specific protein kinase AKT that
regulate diverse cellular functions including cell growth,
proliferation, survival, and migration.43 A previous study
has demonstrated the activation of the MAPK-ERK and
PI3-K/AKT survival pathways in immortalized and primary
rat brain ECs upon treatment with CM derived from
human melanoma cells.44 These signaling events contributed
to an increase in proliferative and migratory responses of
ECs and could be attenuated with specific pathway inhibi-
tors. The signal transduction pathways triggered by the mel-
anoma-specific fraction in our study, also showed the
involvement of the AKT and p38 MAPK/ ERK-1/2 signaling
axis. Under hypoxic conditions, activation of AKT and
ERK-1/2 was visible in all melanoma CM-treated samples.
The levels of active caspases, the downstream effectors of

apoptosis, were also lower in melanoma CM-treated sam-
ples as compared to other conditioned media treatments.

Taken together, our data demonstrate the presence of small
molecule melanoma-specific factor/s capable of promoting
long-term EC survival under hypoxic conditions. This observa-
tion draws a parallel with a previous study where a small mole-
cule fraction (< 3 kDa) of CM from malignant colon cancer
cells was capable of preventing EC apoptosis.45 Elucidation and
further characterization of the survival-specific molecule/s
could assist in the development of new anti-angiogenic thera-
pies to target the aggressive attributes of malignant melanoma.

Materials and methods

Reagents

Tissue culture reagents, unless otherwise specified, were
obtained from Biowhittaker (Walkersville, MD). Human
recombinant VEGF, bFGF and epidermal growth factor (EGF)
were purchased from PrepoTech (Rocky Hill, NJ). Sugen 5416
was obtained from Cayman Chemical Company (Ann Arbor,
MI) and human VEGF neutralizing antibody was purchased
from R&D Systems Europe (Abingdon, UK). Inhibitors
LY294002, PD98059, and SB203580 were purchased from Cell
Signaling Technology, Inc. (Bioke, Leiden, NL). Antibodies
against Akt, Phospho-Akt (S473), p44/42 MAPK (ERK1/2),
Phospho-p44/42 MAPK (ERK1/2), p38 MAPK, and Phospho-
p38 MAPK (Thr180/Tyr182) were from Cell Signaling and
mouse anti-human b actin monoclonal antibody was from
Abcam (Cambridge, UK). Gelatin was obtained from Sigma-
Aldrich and Fibronectin from Roche Diagnostics. SDS-PAGE
reagents were obtained from BioRad (Hercules, CA). TaqMan
Gene Expression assays were purchased from Applied Biosys-
tems (Carlsbad, CA), TRIzol reagent and First Strand cDNA
synthesis kits were purchased from Invitrogen (Carlsbad, CA).
All other reagents were from Sigma-Aldrich Chemie B.V.
(Zwijndrecht, NL), unless stated otherwise.

Cell lines and culture conditions

The five human melanoma cell lines BLM, M14, Mel57, 530,
and 1F6 were kindly donated by Dr. van Muijen (Department
of Pathology, University of Nijmegen, The Netherlands) and
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) with glutamine supplemented with 10% FBS. The
modified human melanoma cell line, Mel57-VEGF165 was
maintained in DMEM supplemented with 10% FBS and
1 mg/mL G418. Normal human epidermal neonatal melano-
cytes (NHEM-neo) were maintained in MBM-4 medium sup-
plemented with the MGM-4 Bulletkit (Clonetics Melanocyte
Cell Systems, Lonza Benelux BV, Breda, NL). Immortalized
human melanocytes (Hermes 1), a gift from Dr. Sviderskaya
(Department of Basic Medical Sciences, St George’s Hospital
Medical School, London, UK), were grown in RPMI medium
with glutamine supplemented with 10% FBS, 12-O-tetradeca-
noylphorbol-13-acetate (TPA, 200 nM), cholera toxin (200
pM), human stem cell factor (SCF, 10 ng/mL), and endothelin
1 (10 nM) and maintained under conditions of 10% CO2, as
previously described.46 Human breast carcinoma cells (MCF-
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7, Cama-1 and SKBr3) were gifts from Dr. M. Schutte
(Department of Medical Oncology, Josephine Nefkens Insti-
tute, Erasmus MC, The Netherlands) and were cultured in
RPMI medium with glutamine supplemented with 10% FBS.
Pancreatic cancer cells (PANC-1, MIAPaCa-2, and BxPC-3)
were donated by Dr. W. Dinjens (Department of Pathology,
Josephine Nefkens Institute, Erasmus MC, The Netherlands)
and were grown in RPMI 1640 medium with glutamine sup-
plemented with 10% FBS.

Primary cultures of HUVEC were established by isolating
ECs from umbilical cords with collagenase digestion, as
described.47 Primary EC cultures from eight separate donors
were used for this study. Adult Human Dermal Microvascular
Endothelial cells (HMVECs) were obtained from Clonetics
(Lonza Benelux BV, Breda, NL). EC’s were routinely cultured
in Human Endothelial-SFM (Invitrogen) supplemented with
20% heat inactivated new born calf serum, 10% heat inactivated
human serum, 20 ng/mL bFGF, and 100 ng/mL EGF, on 0.1%
gelatin coated flasks. All experiments and assays were per-
formed on fibronectin (10 mg/mL)-coated plates, with ECs
between passages 3 and 6. NHEM-neo, ECs, and tumor cells
were routinely cultured in a well-humidified incubator (20%
O2, 5% CO2 37�C; referred throughout as normoxia) and pas-
saged when confluent. To inflict profound cell death within
24–48 h, severe hypoxic treatments were conducted by placing
cultures in a well-humidified hypoxic chamber (Pro-ox-110,
Biospherix, Redfield, NY) maintained at 1% O2, 1% CO2, 37�C
(referred throughout as hypoxia).

Preparation and fractionation of melanoma conditioned
medium (CM)

Tumor cells and melanocytes were maintained in standard
culture medium. Upon 70–80% confluency, the cells were
washed twice and CM was prepared by incubation in either
DMEM supplemented with 10% FBS or serum-free DMEM
to generate CM and SF-CM, respectively, under normoxic or
hypoxic conditions. For all experiments where CM was used,
DMEMC 10% FBS was used as the control and for experi-
ments with SF-CM, serum-free DMEM was used as the con-
trol. Controls are referred throughout as basal medium. The
conditioned media were collected after 96 h, centrifuged at
1,500 rpm for 5 min to remove cellular components and
stored at ¡20�C. Where applicable, conditioned media were
size fractionated using ultrafiltration devices with specific
molecular weight cutoffs of 50,000 Da, 5,000 Da, 3,000 Da
(Amicon Inc., Beverly, MA), and 1,000 Da (Microsep, Pall
Corporation, Ann Harbor, MI) and stored at ¡20�C until
use.

Cell survival assay

ECs were seeded at a density of 6 £ 103 cells per well in 96-well
cluster plates and grown to 60% confluence. After 24 h in endo-
thelial culture medium, tumor CM was added to cultured cells,
and incubations continued for 24–72 h under normoxic or hyp-
oxic conditions. After 24–72 h, cells were fixed with 10% tri-
chloroacetic acid, washed under tap water, and stained with
SRB. After washing with 1% acetic acid, plates were dried at

50�C and the dye was solubilized in 10 mM Tris buffer. The
absorbance was measured using a microplate reader (Victor
1420, Wallac, Turku, Finland) at 510 nm. All reported EC sur-
vival data have been normalized to EC survival with basal
medium treatment at 24 h under normoxic conditions and are
denoted as normalized cell viability (%).

Cell morphology

ECs were seeded at a density of 3 £ 104 cells per well in 24-well
cluster plates and grown to 60% confluence. After 24 h in endo-
thelial culture medium, CM was added to the ECs, and incuba-
tions continued for 24–72 h under normoxic or hypoxic
conditions. After 24–72 h, cells were analyzed microscopically
using an Axiovert 100 M inverted microscope with a 10X/0.30
Plan-Neofluar objective (Carl Zeiss) and images were captured
with an Axiocam MRC digital camera using AxioVision 4.5
software (Carl Zeiss B.V., Sliedrecht, NL).

Flow cytometry

ECs cultured under hypoxic conditions in the presence of mela-
noma CM or basal medium were stained with FITC Annexin
V/Dead Cell Apoptosis Kit (Molecular Probes, Carlsbad, CA),
as per the manufacturer’s instructions, and analyzed by flow
cytometry (FACScan, Becton Dickinson, Palo Alto, CA). Data
analysis was performed using the FlowJo software (TreeStar
Inc., Ashland, OR).

Detection of adherent apoptotic cells

Yo-Pro-1 (Molecular Probes) staining was used for microscopic
detection of adherent apoptotic cells. Endothelial culture
medium supplemented with 25 mg/mL Etoposide was used as a
positive control for apoptosis. Briefly, after 24 h of incubation
with melanoma CM or basal medium under hypoxia, detached
cells were removed and ECs were incubated with 0.5 mM Yo-
Pro-1 for 15 min at 37�C. Fluorescence was visualized using an
Axiovert 100 M inverted microscope with a 10X/0.30 Plan-
Neofluar objective (Carl Zeiss) and an ORCA II ER camera
(Hamamatsu Photonics Systems).

Growth factors and inhibitors

Recombinant human VEGF (10 ng/mL) or bFGF (200 ng/mL)
was added to ECs and survival under normoxia and hypoxia
was monitored. Alternatively, VEGFR kinase inhibitor Sugen
5416 (5 mM) or VEGF-neutralizing antibody (0.3 mg/mL) was
added to the melanoma CM. For pathway inhibition studies,
ECs were treated with LY294002 (50 mM), PD98059 (20 mM),
and SB203580 (10 mM) for 12 h in the presence of melanoma-
CM and cell viability was analyzed by flow cytometry. Alterna-
tively, EC survival was assayed up to 72 h.

ELISA

To determine the presence of VEGF in the melanoma superna-
tants, a commercial ELISA kit for human VEGF165
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(Quantikine, R&D Systems) was used, and assays were per-
formed according to the manufacturer’s specifications.

Heat inactivation of the melanoma conditioned media

Conditioned media were heat inactivated for 30 min at 56, 80,
and 100�C.

Trypsin and chymotrypsin digestion of the melanoma
conditioned media

Conditioned media were subjected to trypsin (100 and 200 mg/
mL) and chymotrypsin (100 and 200 mg/mL) treatments
(Sigma-Aldrich). Digestions were carried out at 37�C for 30 min
and the reaction was terminated by the addition of 1 mg/mL soy-
bean trypsin inhibitor (Sigma-Aldrich) or L-1-Tosylamide-2-
phenylethyl chloromethyl ketone (TPCK)-treated inhibitor.
Alternatively, for smaller size fractions (< 1 kDa) of CM treated
with trypsin and chymotrypsin, the reaction was terminated by
the removal of trypsin and chymotrypsin with a 3 kDa cutoff
fractionation column (MW trypsin D 24 kDa, MW
chymotrypsinD 25 kDa).

Acetone precipitation

In order to determine if the survival factor/s were present in the
protein or non-protein phase, conditioned media were treated
with ice-cold acetone in a 1:2 (v/v) ratio. The reaction was vor-
texed, incubated for 1 h at ¡20�C and pelleted by spinning at
14,000 rpm for 10 min at 4�C. The upper aqueous non-protein
phase was collected and evaporated to a film in a rotary evapo-
rator and subsequently dissolved in water. The air-dried pro-
tein pellet was reconstituted in serum-free basal medium. Both
fractions were filter sterilized and assayed for their ability to
promote EC survival under normoxic and hypoxic conditions.

BSA back exchange assay

Bovine serum albumin (BSA) back exchange assay was per-
formed to separate the lipid and non-lipid components of the
< 1 kDa SF-CM fraction. Briefly, the < 1 kDa SF-CM frac-
tions were treated with 1, 3, or 10% (w/v) fatty acid free BSA
(Sigma-Aldrich) for 30 min at 37�C. Treated samples were
fractionated using a 30 kDa cutoff fractionation column (MW
BSA D 66 kDa) to obtain the BSA rich fraction (retentate)
and BSA poor fraction (flowthrough). Both fractions were fil-
ter sterilized and assayed for their ability to promote EC sur-
vival under normoxic and hypoxic conditions. Cell viability
was measured using the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-
Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, as
described elsewhere.

RNA isolation

Total RNA was extracted using TRIzol (Invitrogen) following
manufacturer’s instructions. Purified RNA was quantified by
spectophotometric analysis using a NanoDrop 2000 (Thermo
Fisher Scientific Inc., CA) and analyzed on an Agilent 2100

Bioanalyzer (Agilent Technologies, CA). Only RNA with RIN
>8.0 were used for the microarray experiment.

Affymetrix GeneChips

In this study, we used the Affymetrix HG-U133-plus 2.0 Gene-
Chip (Affymetrix Inc., Santa Clara, CA). Target synthesis was
performed using 5 mg total RNA as template, as described in
the Affymetrix Gene Expression Manual. GeneChips were
washed and stained using the Affymetrix fluidic station 430
and analyzed using Affymetrix 3000 7 G GeneChip scanner.
Gene expression values were summarized from probesets using
RMA as implemented in Affymetrix Gene Expression Console.
The same software was used to quality control (QC) the Gene-
Chips. Chips not meeting QC criteria were excluded from fur-
ther analysis. RMA expression summaries were merged with
the Affymetrix MAS 5.0 Presence calls into a single matrix, fil-
tered in Excel and imported into BRB ArrayTools for further
analysis.48 Probesets were filtered out if called “absent” in >

80% of the samples. Correlation among samples was assessed
using the MDS and the hierarchical clustering tools in BRB
ArrayTools. We identified genes that are differentially
expressed among the two classes using a random variance t-test
as implemented in the class comparison tool in BRB Array-
Tools (developed by Dr. Richard Simon and BRB-ArrayTools
Development Team). An estimate of the associated false discov-
ery rate (FDR) was computed per gene using the method of
Benjamini and Hochberg. Genes were considered significant if
p < 0.001. A table reporting all the genes passing the test along
with p values, fold change, and per gene FDR estimates is
posted under supplementary information. Gene clustering and
visualization were performed using BRB ArrayTools. Pathway
analysis was performed using the GeneSet Class Comparison
tool in BRB ArrayTools. For GeneSet enrichment, Gene Ontol-
ogy, BioCarta, and KEGG databases were independently que-
ried. The microarray data from this publication have been
submitted to the GEO database (http://www.ncbi.nlm.nih.gov/
geo/) and assigned the identifier GSE33115.

Real-time RT-PCR

Microarray gene expression data were validated by measuring
differential gene regulation in treated ECs, from three separate
donors, using real-time PCR. Briefly, total RNA extraction was
performed with TRIzol Reagent (Invitrogen), according to the
manufacturer’s instructions. Reverse transcription was per-
formed with 2 mg total RNA using the First-Strand cDNA Syn-
thesis Kit (Invitrogen). 50 ng of cDNA was used for the qPCR
reaction. Quantitative PCR was performed in duplicates, using
the iCycler (Bio-Rad Laboratories, Munich, Germany) with
specific TaqMan Gene Expression assays (Applied Biosystems).
The reactions were incubated in a 96-well optical plate at 50�C
for 2 min (UDG incubation) and 95�C for 10 min, followed by
40 cycles of 95�C for 15 sec and 60�C for 60 sec.

Active caspases

Levels of active caspase-3/7 in treated ECs were assayed using
the commercially available SensoLyte Homogeneous AnaRed
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Caspase-3/7 Assay Kit (AnaSpec Inc., Fremont, CA), according
to manufacturer’s instructions. Briefly ECs were seeded at a
density of 6 £ 103 cells/ well in 96-well black cluster plates and
grown to 60% confluence. Various SF-CMs were added to cul-
tured cells and incubated at 37�C under normoxic or hypoxic
conditions. At 16 h and 24 h of treatment, caspase 3/7 substrate
solution was added to the cells, and incubated in the dark for
1 min with gentle shaking. Fluorescence intensity was mea-
sured at 635 nm using a fluorescence microplate reader.

Western blot analysis

To determine pathway effectors of the survival response,
sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophore-
sis was performed. Briefly, subconfluent EC cultures were
washed twice and serum starved for 12 h in medium containing
0.5% serum, followed by treatment with fractionated or unfrac-
tionated conditioned media. Treated ECs were rinsed twice
with ice-cold PBS, scraped, and pelleted. Lysis was conducted
in the presence of protease and phosphatase inhibitor cocktail
tablets (Roche) and the protein concentration was measured
with Coomassie Plus Reagent (Pierce). Equal amounts of pro-
teins were loaded on 12% gels, electrophoresed, and transferred
to polyvinylidene difluoride membranes (BioRad). Membranes
were blocked for 1 h at room temperature with 5% nonfat dried
milk (BioRad) in PBS/ 0.05% Tween-20, followed by overnight
incubations with primary antibodies against total AKT (rabbit
polyclonal, 1:1000 dilution), phospho-AKT (Ser473) (mouse
monoclonal, 1:1000 dilution), total ERK-1/2 (rabbit polyclonal,
1:1000 dilution), phospho-ERK (mouse monoclonal, 1:1000
dilution), total p38 MAPK (rabbit polyclonal, 1:1000 dilution),
and Phospho-p38 MAPK (Thr180/Tyr182) (mouse monoclo-
nal, 1:2000 dilution). Post-washing, the membranes were incu-
bated with IRDYE labeled secondary antibodies (LI-COR) for
1 h at room temperature and scanned using the Odyssey Infra-
red Imaging System (LI-COR Biosciences).
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