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• Daniel Röshammar3,4

• Bengt Hamrén3
• Andrew C. Hooker1

Received: 23 June 2017 / Accepted: 14 October 2017 / Published online: 4 November 2017

� The Author(s) 2017. This article is an open access publication

Abstract Population model-based (pharmacometric)

approaches are widely used for the analyses of phase IIb

clinical trial data to increase the accuracy of the dose

selection for phase III clinical trials. On the other hand, if

the analysis is based on one selected model, model selec-

tion bias can potentially spoil the accuracy of the dose

selection process. In this paper, four methods that assume a

number of pre-defined model structure candidates, for

example a set of dose–response shape functions, and then

combine or select those candidate models are introduced.

The key hypothesis is that by combining both model

structure uncertainty and model parameter uncertainty

using these methodologies, we can make a more robust

model based dose selection decision at the end of a phase

IIb clinical trial. These methods are investigated using

realistic simulation studies based on the study protocol of

an actual phase IIb trial for an oral asthma drug candidate

(AZD1981). Based on the simulation study, it is demon-

strated that a bootstrap model selection method properly

avoids model selection bias and in most cases increases the

accuracy of the end of phase IIb decision. Thus, we rec-

ommend using this bootstrap model selection method when

conducting population model-based decision-making at the

end of phase IIb clinical trials.

Keywords Model averaging � Model selection �
Pharmacometrics � Phase IIb clinical trial � Dose finding

study � Mathematical modelling � Dose–effect relationship

Introduction and background

Quantifying the probability of achieving the targeted effi-

cacy and safety response is crucial for go/no-go investment

decision-making in a drug development program. This is

particularly crucial when analyzing phase IIb (PhIIb) dose-

finding studies to select the phase III dose(s) given the

costs of phase III studies.

It has previously been shown that population model-

based (pharmacometric) approaches can drastically

increase the power to identify drug effects in clinical trial

data analysis compared to conventional statistical analysis

(e.g., [1]). On the other hand, the model-based approach

can be hindered by model selection bias if a single model

structure is assumed and used for the analysis (e.g., [2, 3]).

There have been several attempts through model averaging

and model selection to weaken the model structure

assumptions by considering multiple possible model can-

didates in the analysis [4–9].

In this paper, we introduce four methods that assume a

number of pre-defined model candidates and then combine

or select those candidate models in different ways to make

predictions and to account for uncertainty in those predic-

tions. The first method is ‘‘simple’’ model selection where a

set of model structures are pre-specified and a model is
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chosen according to a statistical criterion. Uncertainty in

model prediction is then derived from parameter uncertainty,

based on a bootstrap procedure using the selectedmodel. The

second method is a bootstrapped model selection procedure,

where, for each bootstrap dataset, the best-fit of the candidate

models is chosen according to a statistical criterion. Simu-

lation from each bootstrap selected model with its optimal

parameter will then generate a distribution of the quantities

of interest, accounting for both model and parameter

uncertainty (similar methods can be found in the literature,

e.g., [11, 12]). The third method is a conventional model

averaging procedure where each candidate model is fit to the

data and uncertainty is quantified via bootstrap. Simulations

(including parameter uncertainty) from each candidate

model of the distributions of the quantities of interest are then

combined as a weighted average depending on model fit to

the original data. The fourth method is a bootstrapped model

averaging procedure, where the weighting for the weighted

average calculations are based on model fit to each boot-

strapped dataset (as opposed to the model-fit to the original

data).

Comparison of these methods and a standard statistical

method (pair-wiseANOVAand the groupwise estimate of an

average change from baseline) are done using clinical trial

simulations of dose-finding studies. Tomake the simulations

as realistic as possible, we have based themon the protocol of

an actual PhIIb trial for an oral asthma drug candidate

(AZD1981) as well as the data from the placebo arm of that

trial. Drug effects using various model structures were sim-

ulated for five different dose arms (placebo plus four active

arms). The different analysis methods were then used to

calculate the probability of achieving target endpoint and

then choose the minimum effective dose (MED).

Methods

Phase IIb dose-finding case study

Part of the PhIIb clinical trial data and the study protocol of

the asthma drug candidate AZD1981 (ClinicalTrials.gov/

NCT01197794) was utilized in this work. One endpoint

goal of the study was to demonstrate that the drug

improved the forced expiratory volume in 1 s (FEV1) of

asthma patients by, on average, at least 0.1 L (placebo and

baseline adjusted). This clinical trial was chosen as a case

study since FEV1 is a highly variable endpoint (standard

deviation of 0.3 L in the placebo effect) relative to the

expected effect magnitude; hence it is hard to characterize

the dose–effect relationship from PhIIb clinical trials.

This study was conducted for 12 weeks and FEV1 was

measured every 2 weeks (for a total of 7 measurements, or

visits). The first measurement was a screening visit and the

second measurement was used as a baseline measurement

after which either placebo, AZD1981 10, 20, 100 or

400 mg was administered twice daily (bid).

The data from the placebo group and the lowest dose

group of the PhIIb clinical trial for AZD1981 was provided

for this analysis. Dosing information was not provided;

however, as there were no statistically significant differ-

ences between the placebo group and the lowest dose group

as described in [13], in this paper we refer this dataset as a

‘‘placebo’’ dataset. This dataset comprises 324 patients

with a total of 1803 FEV1 measurements.

Models

Placebo model

The following placebo model was developed using the

placebo dataset from the PhIIb clinical trial for AZD1981:

FEV1 ¼ FEV1Baseline þ
0 if visit ¼ 1; 2

FEV1Placebo if visit ¼ 3; 4; 5; 6; 7

� �� �

� ð1þ �1Þ þ �2

FEV1Placebo ¼ h1 þ g1
FEV1Baseline ¼ h2e

g2

� ð1þ h3ðFEV1%of normal � FEV1%of normalÞÞ
� ð1þ h4ðAge� AgeÞÞ

�
1 if Male

h5 if Female

�

g1 �Nð0;x2
1Þ

g2 �Nð0;x2
2Þ

�1 �Nð0; r21Þ
�2 �Nð0; r22Þ

where FEV1%of normal is the percentage of FEV1 at visit 2

compared to the predicted normal and FEV1%of normal is its

population mean, Age is the mean of the age of the

patients. All the estimated model parameters can be found

in Table 1.

Previously Wang et al. [14] have modelled a placebo

effect on the FEV1 measurement. The model presented

here differs slightly from Wang et al. in that this model

employs a step function for the placebo effect model with

respect to visit, while Wang et al. have used exponential

models with time as the independent variable. Wang et al.

state that the placebo effect plateaus at 0.806 week�1 while

the current dataset contains FEV1 measurements only

every 2 weeks; hence the rate constant of the exponential

model was not estimable from this dataset.

Drug effect models

In this work, we simulate and estimate using a number of

different dose–effect relationships DEj:
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DE0 ¼ 0 ðno treatment effect)

DE1ðdose; p1Þ ¼ p1 � dose ðlinear model)

DE2ðdose; p1; p2Þ ¼ p1 � logð1þ p2doseÞ ðlog-linear model)

DE3ðdose;EMAX;EC50Þ ¼ EMAX � dose

EC50þ dose
ðEmax model)

DE4ðdose;EMAX;EC50; cÞ ¼ EMAX � dosec

EC50c þ dosec
ðsigmoid Emax model)

To create simulated datasets, we add different simulated

drug effects, with different parameters, using the above

models, to the FEV1 measurements of the placebo data

(more detail below). For estimation using the model-based

analysis methods described below, we embed these dose–

effect relationships into the placebo model as follows:

FEV1j ¼ Baseline þ PlaceboEffectþ DEj

� �
� ð1þ �1Þ þ �2

Analysis methods

Statistical analysis used for the PhIIb clinical trial

for AZD1981

The primary statistical analysis of the data from the PhIIb

clinical trial for AZD1981 to determine the MED was

performed using a pair-wise ANOVA and a group wise

estimate of treatment effect. Briefly, the treatment effect

was measured as the change from baseline (average of all

available data from visits 3–7 minus baseline) per dose

group. The MED was identified via a two-stage step-down

procedure to select either 400, 100, 40, 10 mg or ‘‘stop’’

(do not proceed to phase III). The procedure was as fol-

lows: (1) starting with the highest (400 mg) dose-arm

conduct a one-sided ANOVA comparison with the pla-

cebo-arm. (2) If the difference is significant (significance

level of 0.05) check that the average treatment effect in the

arm is greater than the primary efficacy variable (0.1 L).

(3) If both steps 1 and 2 are satisfied then proceed to the

next dose dose-arm (100 mg) and repeat, otherwise move

to step 4. (4) Choose the lowest dose arm where both steps

1 and 2 are satisfied (Note that if 100 mg satisfies steps 1

and 2 but 40 mg does not then the MED will be 100 mg in

this process, even if 10 mg might also satisfy steps 1 and

2).

Model selection and averaging analysis methods

Below is an overview of four methods that assume a

number of pre-defined model candidates and then combine

or select those candidate models in different ways to make

predictions and to account for uncertainty in those pre-

dictions. For the given example, the methods were meant to

compare with the standard determination of the MED,

identified in the original study using the two-stage step-

down procedure described earlier in this section. Thus, in

the following methods, there should be a test for drug

effect as well as a determination if that effect is greater

than a given minimum effect size. In all methods, the test

for drug effect is done using a likelihood ratio test (LRT)

against the placebo model (5% significance level) [8].

Determination of effect sizes at specific doses is done by

first computing the change from baseline average (popu-

lation mean) effect size, and uncertainty around that effect

size, predicted by the different methods described below,

for a given dose. MED is then chosen as the lowest studied

dose with a predefined probability to be above a target

effect. For a full technical description of the methods, we

refer the readers to the Appendix. The methods below are

previously presented by the authors as a conference con-

tribution [9], and Method 3 was presented at an earlier

conference [10].

Table 1 Estimated Parameters

of the placebo model of FEV1

of Asthma patients based on the

placebo and lowest dose group

of the PhIIb clinical trial for

AZD 1981

Model parameter Description Estimated value (RSE%)

h1 Placebo effect 0.169 L (11.9)

h2 Baseline 2.51 L (0.828)

h3 Covariate effect of FEV1%of normal 0.0129 L-1(3.87)

h4 Covariate effect of age -0.0105 year-1 (5.01)

h5 Covariate effect of sex 0.719 (1.43)

x1 SD of IIV of the placebo effect 0.303 L (8.88)

x2 SD of IIV of the baseline 0.105 (5.97)

r1 SD of proportional RUV 0.0832 (7.60)

r2 SD of additive RUV 0.102 L (18.8)

IIV inter-individual variability, RUV residual unexplained variability, SD standard deviation, RSE the

relative standard error was approximated using a variance–covariance matrix, and the computational result

was verified using preconditioning [19]
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Method 1: model selection

1. Fit each candidate model structure to the original data

and estimate the model parameters and maximum

likelihood (see Fig. 1).

2. For each candidate model, perform a numerical

identifiability test (see appendix for detail) and LRT

against the placebo model and reject any model

structure that fails either of these tests.

3. Select one model structure among the remaining model

candidates using a statistical criterion based on the

maximum likelihood (e.g., the Akaike information

criterion, AIC, the Bayesian information criterion,

BIC, etc.).

4. Quantify parameter uncertainty using case sampling

bootstrap and the selected model structure.

5. Simulate the quantities of interest (with uncertainty);

in this case, the dose-endpoint (change from baseline

population mean effect size) relationships using the

selected model structure and model parameters

obtained from the bootstrap procedure.

6. Make a decision; in this case, choose the lowest dose

(given allowed dose levels) that has a probability of

achieving target endpoint greater than a predefined

limit.

Method 2: bootstrap model selection

1. Create bootstrap datasets based on the original data

using a case sampling bootstrap procedure (see Fig. 2).

2. For each bootstrap dataset estimate parameters and the

maximum likelihood for each candidate model

structure.

3. For each bootstrap dataset, and for each candidate

model, perform a numerical identifiability test and

LRT against the placebo model and reject any model

structure that fails either of these tests.

4. For each bootstrap dataset, select one model structure

among the remaining model candidates using a statis-

tical criterion based on the maximum likelihood (e.g.,

AIC, BIC, etc.).

5. For each bootstrap dataset, simulate the quantities of

interest; in this case, the dose-endpoint (change from

baseline population mean effect size) relationships

using the selected model structure and model param-

eters obtained from that bootstrap dataset.

6. Summarize the simulations; in this case, compute the

probability of achieving the target endpoint at each

dose of interest using the simulated dose-endpoint

relationships.

7. Make a decision; in this case, choose the lowest dose

(given allowed dose levels) that has a probability of

achieving the target endpoint greater than a predefined

limit.

Method 3: model averaging

1. Fit each candidate model structure to the original data

and estimate model parameters and maximum likeli-

hood (see Fig. 3).

2. For each candidate model, perform a numerical

identifiability test and LRT against the placebo model

and reject any model structure that fails either of these

tests.
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3. For each model structure, quantify parameter uncer-

tainty using case sampling bootstrap methodology to

obtain the distribution of the model parameters.

4. For each model structure, simulate the quantities of

interest; in this case, the dose-endpoint relationships

using the model parameters obtained from the boot-

strap method.

5. For each model structure, summarize the simulations;

in this case, compute the probability of achieving the

target endpoint at each dose of interest using the

simulated dose-endpoint relationships.

6. Compute the weighted average of the summary

variables obtained in step 5; in this case, the proba-

bility of achieving the target endpoint at each dose

over the model structures, where the weights are

derived from the maximum likelihood obtained in step

1 (e.g., AIC, BIC, etc.).

7. Make a decision; in this case, choose the lowest dose

(given allowed dose levels) that has a probability of

achieving target endpoint greater than a predefined

limit.

Method 4: bootstrap model averaging

1. Create bootstrap datasets based on the original data

using a case sampling bootstrap procedure (see Fig. 4).

2. For each bootstrap dataset estimate parameters and the

maximum likelihood for each candidate model

structure.

3. For each bootstrap dataset, and for each candidate

model, perform a numerical identifiability test and

LRT against the placebo model and reject any model

structure that fails either of these tests.

4. For each bootstrap dataset and each model structure,

simulate the quantities of interest; in this case, the

dose-endpoint (change from baseline population mean

effect size) relationships using the selected model

structure and model parameters obtained from that

bootstrap dataset.

5. Summarize the simulations; in this case, compute the

weighted average of the probability of achieving the

target endpoint at each dose using the dose-endpoint

relationships for all the model structures and all the

bootstrap datasets (except the ones that failed the LRT

or identifiability test). The weights are derived from

Fig. 2 Method 2 bootstrap model selection
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the maximum likelihood obtained in step 2 (using AIC,

BIC, etc.).

6. Make a decision; in this case, choose the lowest dose

(given allowed dose levels) that has a probability of

achieving the target endpoint greater than a predefined

limit.

Single model based approach

To compare the proposed methods against the idealized

situation where the underlining true model structure is

known before the analysis, we compare with a single model

based approach where the model used to analyze the

dataset is the same as the model used to simulate that

dataset. Note that this single model based analysis using

the simulation model is an idealistic scenario. In a real

PhIIb dataset analysis (i.e., when analyzing data that was

not simulated) it is not realistic to assume the exact

underlying model structure is known a priori. The method

has the following steps:

1. Perform LRT between the model with and without

drug effect. If the model does not pass the LRT, make

a ‘‘stop’’ decision.

2. If the model with drug effect passes the LRT, estimate

the parameter uncertainty using a case sampling

bootstrap.

3. Simulate the quantities of interest (with uncertainty);

in this case, the dose-endpoint (change from baseline

population mean effect size) relationships using the

model parameter distribution obtained from the boot-

strap procedure.

4. Make a decision; in this case, select the dose based on

the required probability of achieving the target

endpoint.

Numerical experiments

To test the proposed model averaging and selection

methodologies, we have simulated dose-finding studies

under various designs and experimental scenarios. All

numerical computations were done using NONMEM [15]

Prob. Success at 10 mg = 2 %
Prob. Success at 40 mg = 2 %

Prob. Success at 100 mg = 2 %

0

10

20

30

0.0 0.1 0.2 0.3

C
ou

nt

Simulated Endpoint at 400 mg

Prob. Success at 400 mg = 72 %

Prob. Success at 10 mg = 21 %
Prob. Success at 40 mg = 45 %

Prob. Success at 100 mg = 60 %

0

10

20

30

0.0 0.1 0.2 0.3

C
ou

nt

Simulated Endpoint at 400 mg

Prob. Success at 400 mg = 88 %

Prob. Success at 10 mg = 20 %
Prob. Success at 40 mg = 43 %

Prob. Success at 100 mg = 61 %

0

10

20

30

0.0 0.1 0.2 0.3

C
ou

nt

Simulated Endpoint at 400 mg

Prob. Success at 400 mg = 87 %

Averaged Profability of Success at 400mg
     = Probability of Success at 400 mg using Placebo model     ( 0 %) x weight derived from AIC (0.00)
 + Probability of Success at 400 mg using Linear model       (72 %) x weight derived from AIC (0.39)
     + Probability of Success at 400 mg using LogLinear model (88 %) x weight derived from AIC (0.33)
     + Probability of Success at 400 mg using Emax model        (87 %) x weight derived from AIC (0.28)
     = 81 %
Averaged Profability of Success at 100 mg = 38 %
Averaged Profability of Success at 40 mg = 28 %
Averaged Profability of Success at 10 mg = 13 %

PhIIb
Dataset

Dose

1: Parameter estimation
with candidate models

2: LRT and 
identifiability tests

Linear

LogLinear

Emax

Sigmoid

4: Simulation of quantity of interest
(with parameter uncertainty)

3: Parameter uncertainty 
quantification (e.g., bootstrap) 0.00

0.05

0.10

0.15

0.20

10
m

g
40

m
g

10
0m

g

40
0m

g

E
nd

p
oi

nt

TV =
0.10

0.00

0.05

0.10

0.15

0.20

10
m

g
40

m
g

10
0m

g

40
0m

g Dose

E
nd

p
oi

nt

TV =
0.10

0.00

0.05

0.10

0.15

0.20

10
m

g
40

m
g

10
0m

g

40
0m

g Dose

E
nd

p
oi

nt

TV =
0.10

5: summarize the simulations
 compute prob. of 

achieving target endpoint

6: Compute the weighted average of the summary variables

7:
 M

ak
e 

a 
d

ec
is

io
n

Identifiability test failed

Fig. 3 Method 3 model averaging

586 J Pharmacokinet Pharmacodyn (2017) 44:581–597

123



version 7.3, PsN [16] version 4.6 on a Linux Cluster, with

Intel Xeon E5645 2.4 GHz processors, 90 GB of memory,

Scientific Linux release 6.5, GCC 4.4.7 and Perl version

5.10.1. To assure reproducibility of the numerical experi-

ments we had a fixed random seed when the bootstrap

method was performed using PsN. All computation outside

of NONMEM and PsN was done using R version 3.2 [17]

and all plots are made using ggplot2 [18].

Simulation studies based on placebo data

To create simulated datasets, we have simply added dif-

ferent simulated drug effects to the FEV1 measurements of

the placebo data. We have randomly generated the artificial

drug effect so that the theoretical minimum effective dose

(tMED, i.e., the exact dose that achieves a drug effect of

0.1 L) is uniformly distributed in the ranges shown in

Table 2.

For each Simulation Study 1–5, we have constructed

300 PhIIb clinical trial simulation datasets (1500 datasets

in total). Simulation Studies 1–4 are constructed to test

each analysis method for the accuracy of finding tMED,

while Simulation Study 5 is constructed to test each

method for the accuracy of Type-1 error control.

In each Simulation study, log-linear, emax and sig-

moidal models (described above) were used to simulate the

drug effects (DEj) (100 datasets each for each of three

model structures, hence 300 total simulated datasets in one

simulation study). For each data set, we first randomly

choose tMED in the range shown in Table 2. Then the

model parameters are chosen randomly as follows:

For the log-linear model, p1 and p2 are chosen so that

DE2ð1000; p1; p2Þ� unifð0:2; 0:3Þ
DE2ðtMED; p1; p2Þ ¼ 0:1

For the emax model, EMAX and EC50 are chosen so

that

EMAX� unifð0:2; 0:3Þ
DE3ðtMED;EMAX;EC50Þ ¼ 0:1

For the sigmoidal model, EMAX, EC50 and c are cho-

sen so that

Fig. 4 Method 4 bootstrap model averaging
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EMAX� unifð0:2; 0:3Þ
c� unifð0:5; 4Þ

DE4ðtMED;EMAX;EC50;NÞ ¼ 0:1

Note that to determine the parameters p1 and p2 for the

log-linear model, we need to solve a nonlinear equation

numerically and we do so by using the uniroot function in

R. As can be seen in Fig. 5, we can create diverse realistic

simulated drug effects by the above choice of model

parameters while the range of tMED is constrained.

Numerical experiment 1: dose finding accuracy

The simulated data from Simulation Studies 1–4 (when a

drug effect is present) was analyzed using the methods

presented above to determine the dose finding accuracy of

the methods. Each method was used to find the MED for

each trial simulation dataset and the probability of finding

the correct dose was calculated (see Table 2).

For the model-based approaches, the MED dose was

chosen as the minimum dose arm (of the investigated

doses) with more than a 50% probability of achieving the

target endpoint. 50% was chosen to match the statistical

analysis used for the PhIIb clinical trial for AZD198, which

evaluates if the average treatment effect in a dose arm is

greater than the primary efficacy variable.

Numerical experiment 2: type-1 error control

accuracy

All methods presented above were used to determine the

MED based on the data from Simulation Study 5 (the

simulation study without simulated drug effect) to test the

type-I error rate of the proposed methods. That is, the

probability of choosing the MED to be either 10, 40, 100,

or 400 mg while there is no simulated drug effect. The

MED selection using the model-based approaches were

determined at a 50% confidence level to fairly compare the

method with the pairwise ANOVA method.

Numerical experiment 3: decision-making accuracy

In the previous two numerical experiments the MED using

the model-based approaches are determined at a 50%

confidence level to fairly compare the method with the

pairwise ANOVA method. However, in reality, more than

50% certainty may be desired when making a decision

about which dose to use in a phase III trial [20]. For

example, from an investment perspective, it may be more

crucial to reduce the risk of proceeding to a phase III trial

with insufficient effect than to determine the exact MED of

a drug.

For this experiment, we define the ‘‘correct’’ decision to

be when any dose higher than the theoretical MED is

selected. For example, for Simulation Study 3

(40 mg\tMED� 100 mg), if either 100 or 400 mg is

chosen then the correct decision was made; while if dose

10 or 40 mg is chosen, or a ‘‘stop’’ decision is made, then

the incorrect decision was made. Each method was then

used to find the MED (70% confidence level for the model-

based approaches) for each simulated dataset from Simu-

lation Studies 1–4 (when a drug effect is present). The

probability of each method making the correct decision

was then calculated.

Table 2 Various scenarios of

the simulation studies
Theoretical minimum effective dose (tMED) Correct dose finding/decision

Simulation Study 1 0–10 mg 10 mg

Simulation Study 2 10–40 mg 40 mg

Simulation Study 3 40–100 mg 100 mg

Simulation Study 4 100–400 mg 400 mg

Simulation Study 5 No drug effect Stop
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Fig. 5 Plot of (some of) the simulated drug effect for Simulation

Study 3. The theoretical minimum effective dose (the exact dose that

achieves the target endpoint of 0.1 L) ranges between 40 and 100 mg

hence the 100 mg dose is the correct dose selection for this simulation

study
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Numerical experiment 4: probability of achieving

target endpoint estimation accuracy

In the model averaging and selection methods investigated

here, the dose selection is based on the probability of

achieving the target endpoint, hence, accurate estimation of

this probability is crucial. In this experiment, we investi-

gate this probability estimation for each simulated dataset

from Simulation Studies 1–4 (when a drug effect is pre-

sent) in the following manner:

1. Select a predefined limit, p, for the probability of

achieving the target effect.

2. Allow any dose (any positive real number) to be

selected (not just the investigated dose levels) and

choose the dose that is estimated to achieve the target

endpoint with probability p using the proposed model-

based methods.

3. Repeat steps 1 and 2 for all 1200 simulated phase IIb

datasets and count the number of times a dose above

the theoretical minimum effective dose (tMED) is

selected, from which the empirical probability of

achieving the target effect is calculated.

4. Repeat steps 1–3 for p ¼ 0:01; 0:02; . . .; 0:99.

Note that if a method estimates the probability of

achieving the target endpoint without bias, then the selec-

ted doses should be above tMED with probability p.

Results

To concisely present the results for each of Numerical

Experiments 1, 3, and 4, we has combined the results of

Simulation Studies 1–4. Hence, for those experiments, the

results are based on 1200 PhIIb clinical trial simulations.

We refer the readers to the Appendix for a detailed dis-

cussion of the result for each simulation study. Further, the

uncertainty of the numerical experiments has been quan-

tified by randomly sampling trial simulations with

replacement (1200 trial simulations for Numerical Exper-

iments 1, 3, and 4, and 300 trial simulations for Numerical

Experiment 2) and repeated the numerical experiments. For

example, for Numerical Experiments 1, 3, and 4, 1200 trial

simulations were sampled with replacement 100 times to

produce 100 sets of the 1200 trial simulations. For each set

of trial simulations, the numerical experiments were

performed.

Numerical experiment 1: dose finding accuracy

The dose finding accuracy of the various investigated

methods is presented in Fig. 6. As can be seen, all the

model based methods could find the correct dose more

often than the statistical method used in the PhIIb

AZD1981 study protocol. In addition, we can see that

Methods 2 and 4 outperform Methods 1 and 3 and the

Single Model Based approach (using the simulation

model).

Numerical experiment 2: type-1 error control

accuracy

The Type-I error control of the various investigated

methods is presented in Fig. 7. As can be seen, Methods

1–4 control the type-I error accurately. Furthermore, we

can see that the LRT is necessary for Methods 1, 2, and 4 to

properly control the Type-1 error. Lastly, we see that the
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type-I error is lower than expected for the standard statis-

tical test and Single Model Based method (using the

Simulation Model).

Numerical experiment 3: decision-making accuracy

The decision-making accuracy of the various investigated

methods is presented in Fig. 8. As can be seen, all model

based method (Methods 1–4 and the Single Model Based

method) makes the correct decision more often than the

Statistical method employed in the AZD 1981 study pro-

tocol. Also, we can see that Method 4 performs relatively

poorly compared to Methods 1–3.

Numerical experiment 4: probability of achieving

target endpoint estimation accuracy

The Probability of achieving target endpoint estimation

accuracy of the various investigated model-based methods

is presented in Fig. 9. Note that if the investigated method

estimates the probability of achieving the target endpoint

without bias then the QQplot in Fig. 9 should follow the

line of unity.

As can be seen in Fig. 9, Methods 2 and 4, using AIC as

the statistical criteria in the methods, can calculate the

probability of achieving target endpoint accurately. The

bias on the calculated probability of achieving the target

endpoint of the conventional model selection method

(Method 1) is clearly observed. As discussed in literature

(e.g., [2, 3]), if model selection is made based on one

dataset the bias in the model selection procedure will be

carried forward to subsequent analyses and any resulting

quantity may be biased. Although the regular model

averaging method (Method 3) should significantly decrease

the effect of model selection bias, we still observe the

presence of bias. Lastly, we observed that AIC is a more

suitable statistical criterion than BIC for the proposed

model averaging and selection methods.

Discussion

This work presents model averaging and selection methods

that incorporate both model structure and parameter esti-

mation. We have tested the proposed methods through

realistic PhIIb dose finding and decision-making scenarios

and demonstrated that the proposed methods could help

increase the overall probability of making the correct

decision at the end of PhIIb studies.

Through all the numerical experiments, the model based

approaches (Methods 1–4 and Single Model Based

method) outperformed the pairwise ANOVA based method

used in the AZD1981 study protocol. Numerical Experi-

ments 1 and 4 have shown that Methods 2 and 4 perform

better than other methods for finding MED and estimating

probability of achieving endpoint. Numerical Experiment 3

has shown that Method 2 can be used to make the invest-

ment decision more accurately than Method 4. Experiment

2 has shown that Type-1 error can be appropriately con-

trolled using the LRT and the Type-1 error control of

Method 2 is marginally better than the other methods

(Method 1, 3 and 4). Thus, within the scope of our

numerical experiment, Method 2 was the most accurate and

precise compared to the other tested methods.

The numerical experiments indicated that AIC is a more

suitable statistical criterion than BIC for the model aver-

aging and selection methods we have tested. BIC takes the

number of observations into account when weighing the

penalty for the extra degrees of freedom. For nonlinear

mixed effect models, the informativeness of the dataset not

only depends on the number of observations but also a

number of individuals. Hence, we conjecture that, by

naively using the number of observations, BIC does not

properly weigh the penalty term and some other way of

quantifying the ‘informativeness of observations’ is

necessary.

Although we have conducted a wide-range of numerical

experiments within the scope of this project, we believe the

accumulation of more experiences of these and other

methods through applying them to more scenarios would

be desirable. For example, it would be interesting to

compare and/or integrate the methods presented here with

the MCP-Mod approach [21, 22]. The MCP-Mod

methodology allows model averaging and selection meth-

ods for the ‘‘Mod’’ portion of that framework, but entails an

initial multiple comparison procedure (the ‘‘MCP’’ portion)

that may be redundant with the LRT used here. To promote

the application and further development of the proposed

methodologies, we have made the methodologies
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Fig. 8 Probability of making the correct decision (the correct

decision is defined as choosing the dose that is above tMED)
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investigated here available as a GUI based open source

software (available at www.bluetree.me and the Mac App

Store, app name: modelAverage) as well as an R script

supplied as the supplementary material of this paper.

Conclusion

We recommend the use of the bootstrap model selection

method (Method 2) presented in this paper when con-

ducting model-based decision-making at the end of phase

IIb study. The studies here indicate the proposed method

reduces the analysis bias originating from model selection

bias of single model structure based analyses. As a con-

sequence of including model structure uncertainty, the

quantified uncertainty may appear to be larger than single

model based uncertainty; however, the method appears to

more accurately reflect the true uncertainty of the investi-

gated models and estimated parameters. The proposed

method increases the probability of making the correct

decisions at the end of phase IIb trial compared to con-

ventional ANOVA-based Study Protocols.
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Appendix: Detailed description of the method

In this section, we present step by step explanations of our

model selection and averaging methodologies. We have

implemented this methodology in the C?? language, and

an open source software with a graphical user-interface is

available at www.bluetree.me and the Mac App Store (app

name: modelAverage). Also, easy to read (computationally

not optimized) R script used for the numerical experiments

presented in this is available as the supplementary material.

Prior to the analysis

We assume that prior to the analysis there are multiple

candidate models pre-specified before the collection of the

data, and subsequently collected study data is available.

We denote X0 to be the independent variables (e.g.,

patient number, dosage, observation time, covariates) of

the original dataset, and y0 be the dependent variable (e.g.,

observed biomarker values). For simplicity, we consider X0

to be Nrecords � Nind variables matrix and y0 to be a vector of

Nrecords elements. We denote candidate model structures as

modeli ðx; h; g; �Þ where x is a vector of independent

variables, h is a vector of fixed effect parameters, g is a

vector of random effect variables related to individual
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Fig. 9 The accuracy of the calculated probability of achieving a

target endpoint. The x-axis is the predefined limit for the probability

of achieving target endpoint where the dose was chosen. The y-axis is

the probability that the chosen dose by the various methods is above

tMED. If the probability of achieving the target endpoint is estimated

without bias, the plot should lie on the line of identity (red straight

line). Grey shaded areas are 95% confidence intervals calculated by

the random sampling with replacement of the 1200 trial simulation

datasets
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variabilities, and � is a vector of random variable related to

residual (unexplainable) variabilities. We denote the dose–

effect relationship embedded in model structure modeli by

DEi ðdose; h; gÞ. We assume we have Nmodel candidate

models and we denote the placebo model by model0 hence

we have Nmodel þ 1 models in total.

Create bootstrap datasets based on the original
data and estimate parameters for each bootstrap
dataset

Construct bootstrap datasets based on ðX0; y0Þ and we

denote them as fðXi; yiÞg
Nbootstrap

i¼1 . We have used case sam-

pling bootstrap in our numerical experiment; however, it

can be extended to other types of bootstrap methods.

Estimate parameters and the maximum likelihood from

each bootstrap dataset and estimate maximum likelihood

parameters for each model for each bootstrap dataset and

denote them as ðbhij; bXij; bRijÞ for i ¼ 0; . . .;Nbootstrap and

j ¼ 0; . . .;Nmodel, i.e.,

ðbhij; bXij; bRijÞ ¼ argmaxðh;X;RÞlðmodeljð�; h; �; �Þ;X;R;Xi; yiÞ;

where l is a likelihood function for the nonlinear mixed-

effect model (we refer the readers to [23] for more detailed

discussion and approximation methods for this likelihood

function), and we denote the maximum likelihood as a blij ,
i.e.,

blij ¼ lðmodeljð�; bhij; �; �Þ; bXij; bRij;Xi; yiÞ:

Conduct numerical identifiability test and LRT

In order to have a rigorous Type-I error control in our

model selection and averaging methods, each model that

we use is subject to the LRT against the placebo model.

That is to say, we have imposed the following to the

estimated likelihood:

blij ¼ 0 if jblij �bli0j\v20:05ðdfÞ;blij otherwise:

(

wherebli0 is the estimated likelihood of the placebomodel, df

is the degree of freedom of the Chi square distribution that is

calculated as the number of the dose–effect relationship

related parameters (i.e., linear: df ¼ 1, logLinear: df ¼ 1,

emax: df ¼ 2, sigmoidal df ¼ 3). Also, to reduce the chance

of contaminating the model averaging and selection by non-

identifiablemodels, we conduct numerical identifiability test

to remove the models that are locally-practically non-es-

timable from a bootstrap dataset. We do so by re-estimating

themodel parameters using preconditioning [19].We denote

the estimated parameter and maximum likelihood using

preconditioning by ðehij; eXij; eRijÞ and elij, respectively. We

reject the model by setting the likelihood to be zero if bhij andehij are significantly different while blij and elij are similar. In

particular, for our numerical experiment, we have imposed

the following:

blij ¼ 0 if jblij �elijj\0:1 and
bhij � ehijbhij þ ehij
�����

�����
inf

[ 0:10;

blij otherwise:

8><
>:

where the division of
bhij � ehijbhij þ ehij is the elementwise division

of the vectors.

We acknowledge that the presented numerical identifi-

ability test can only provide the evidence of non-estima-

bility and does not necessarily prove the estimability of the

model parameters; however, we have observed that this

simple identifiability test has successfully reduced the

number of non-estimable models included in the model

averaging and selection schemes.

Simulate the quantities of interest (e.g., dose-
endpoint relationships)

In this case, we construct the dose-endpoint relationships

based on the estimated parameters in Step 2 and the defi-

nition of the model based clinical trial endpoint. Construct

the estimated dose-endpoint relationships for each boot-

strap dataset for each model and denote them as hijðdoseÞ.
For example, if the endpoint is defined as the average effect

like this FEV1 case study

hijðdoseÞ ¼ EgðDEjðdose; hij; gÞ;XijÞ;

where Egð�;XÞ denotes expectation over g with g�NðXÞ.
Other choices of the endpoint definition would be the

median or percentile of ðDEjðdose; hij; gÞ;XijÞ.
Depending on the definition of the endpoint and the

structure of the dose–effect relationship with respect to g, a

stochastic simulation may be required to compute hijð�Þ.
The candidate drug effect for this case study is linear with

respect to g and the end point defined by the study protocol

is an average over the population, which we can analyti-

cally determine, hijðdoseÞ.
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Summarize the simulations

Based on the computed likelihoodblij and the dose-endpoint
relationship hijðdoseÞ, we compute the probability of

achieving target endpoint versus dose relationship. In this

step, we need to choose a weighting scheme where models

are selected or averaged. We denote this weight function as

wj and it will depend on the likelihood blij and the structure

of the model (i.e., the number of model parameters). We

denote the weight of the ith bootstrap sample with Model j

as wij.

For the weights calculated based on AIC, we let wij to be

the following:

wij ¼ wjðblijÞ ¼ exp lnðblijÞ � Nparaj

	 


where Npara j is the number of parameters of Model j.

For the weights calculated based on BIC, we let wij to be

the following:

wij ¼ wjðblijÞ ¼ exp lnðblijÞ � Npara jlnðNobsÞ=2
	 


:

where Nobs is the number of observations (total number of

FEV1 measurements in a dataset).

Using this weight function, we can define the probability

of achieving the target endpoint pðdoseÞ as follows:

Method 1: model selection

pðdoseÞ ¼
X

i¼0;...;Nbootstrap

1=ð1þ NbootstrapÞ if hikðdoseÞ[TV

0 otherwise:

�

where k ¼ argmaxjðw0jÞ:

Method 2: model selection using bootstrap

maximum likelihood

pðdoseÞ ¼
X

i¼0;...;Nbootstrap

1=ð1þ NbootstrapÞ if hikiðdoseÞ[TV

0 otherwise

�

where ki ¼ argmaxjðwijÞ.

Method 3: model averaging

pðdoseÞ ¼
X

i¼0;...;Nbootstrap j¼0;...;Nmodel

w0jP
j¼0;...;Nmodel w0j

if hijðdoseÞ[TV

0 otherwise:

8<
:

Method 4: model averaging using bootstrap

maximum likelihood

pðdoseÞ ¼
X

i¼0;...;Nbootstrap j¼0;...;Nmodel

wijP
j¼0;...;Nmodel

wij

if hijðdoseÞ[TV

0 otherwise:

8<
:

Detailed analyses of numerical experiments

In this section, we investigate the numerical computational

results presented in the ‘‘Results’’ Section more in detail.

Effect of excluding the simulation model

from the set of candidate models

All the numerical experiments presented so far has the

simulation model (the model that was used to create a trial

simulation dataset) included as one of the candidate
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Fig. 10 The accuracy of calculated probability of achieving target endpoint. The Methods 1–4 used in this example did not include the

simulation model

J Pharmacokinet Pharmacodyn (2017) 44:581–597 593

123



models. It is natural to suspect superior performance of the

model averaging methods compared to the study protocol

can be spoiled if the simulation model is not included in the

set of candidate models. Numerical Experiments 1 and 4

were re-run with candidate models excluding the simula-

tion models.

As can be seen in Fig. 10, Method 2 and 4 can still be

used to accurately estimate the probability of achieving

target endpoints. As can be seen in Fig. 11, if the simula-

tion model is excluded from the set of candidate models,

the probability of finding correct dose decreases; however,

it still performs superior to the ANOVA based statistical

method used in the Study Protocol.

Accuracy of the probability of achieving target

endpoint estimation for each simulation study

Q–Q plots similar to Fig. 9 are plotted for each Simulation

Study in Fig. 12. Surprisingly, the calculated probability of

achieving the target endpoint based on the model-based

approach using the simulation model (i.e., using the model

structure that was used to simulate the drug effect) was not

very accurate especially in Simulation Studies 1 and 4.

Further investigation on this simulation study has shown

that the values of ED50 used for Emax or Sigmoidal

models in Simulation Study 1 were below 10 mg and for

the Simulation Study 4 were near 400 mg hence the design

of the experiment was poor for these simulation studies.

Due to the uninformative design of the study, the model-
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Fig. 11 Probability of finding the correct dose
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Fig. 12 The accuracy of calculated probability of achieving target

endpoint. The x-axis is the predefined limit for the probability of

achieving target endpoint where the dose was chosen. The y-axis is

the probability that the chosen dose by the various methods is above

tMED. If the probability of achieving the target endpoint is estimated

without bias, the plot should lie on the red straight line
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based analysis of data with simpler models provided more

accurate predictions than with the model used to simulate

the drug effect.

We can observe that Methods 2 and 4 slightly under-

estimate the probability of achieving target endpoint for

Simulation Study 3; however, the inaccuracy of these

methods are significantly less than that of other methods.

Methods 2 and 4 are consistently more accurate than the

other methods, hence, they can help reduce the risk of

inaccurate estimation of the probability of achieving target

endpoint by properly averaging over multiple possible

model structures.

Precision of the estimation of the MED

To quantify the precision of the proposed methods, for each

method and simulation, we have calculated the difference

between the estimated dose that achieves a target effect

with 70% probability and the estimated dose that achieves

a target effect with 50% probability (we refer to this as the

‘estimated MED range’). For comparison, the estimated

MED range obtained using Methods 1, 3, 4 and Single

Model Based method are compared against Method 2. The

differences of the estimated MED range of various meth-

ods and Method 2 are depicted in Fig. 13. As can be seen,

the estimated MED range is usually wider when estimated

using Method 4 when comparing with Method 2. That is to

say, Method 2 usually estimates the MED more precisely

than Method 4. Although Methods 2 and 4 are similarly

accurate, as demonstrated in Figs. 9, 10, 11 and 12, since

Method 4 is less precise than Method 2, we have observed

worse performance in Experiment 3.

Method 1 is typically more precise than Method 2 and

the Single Model Based method is often more precise than
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Fig. 13 Precision of the estimation of the MED compared to Method 2. The various methods were compared against Method 2 for the estimated

MED range. A positive difference indicates the method has a larger estimated MED range, hence poorer precision

Table 3 Probability of selecting the correct dose (either 10, 40, 100, or 400 mg)

Sim. study 1 (%) Sim. study 2 (%) Sim. study 3 (%) Sim. study 4 (%) Average (%)

Study protocol 48.0 32.7 30.0 49.0 39.9

Method 1 67.3 46.7 21.0 60.3 48.8

Method 2 66.0 48.3 26.7 65.7 51.7

Method 3 65.3 42.7 25.7 59.7 48.4

Method 4 66.0 44.0 31.3 60.0 50.3

Method 1 (w/o sim. model) 65.0 41.7 18.3 61.3 46.6

Method 2 (w/o sim. model) 64.0 44.7 20.0 66.7 48.9

Method 3 (w/o sim. model) 63.0 38.3 21.0 61.7 46.0

Method 4 (w/o sim. model) 63.0 42.0 25.0 63.0 48.3

Single model based (using simulation model) 68.0 45.0 42.0 49.0 51.0

For the model averaging and selection methods as well as the single model based analysis, the minimum dose with more than a 50% probability

of achieving the target endpoint was selected
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Method 2. Both Method 1 and the Single Model Based

method only used one model to simulate the endpoint

hence more precision; however, as can be seen in Figs. 9,

10, 11 and 12 these methods are not accurate and, hence,

not desirable methods.

Dose finding accuracy for each simulation study

In Table 3, the probability of choosing the correct dose was

tabulated. By using Method 2, the probability of choosing

the correct dose has increased from 39.92 to 51.67%

compared to the study protocol. What is particularly

noteworthy is that the dose finding accuracy has increased

from 49 to 65.7% for Simulation Study 4 where the highest

tested dose was the correct dose choice.

For all simulation studies except for simulation study 1,

the bootstrap model selection and averaging methods

(Methods 2 and 4) outperformed simple model selection

and averaging methods (Methods 1 and 3). For all

simulation studies except for simulation study 3, the model

selection and averaging methods outperformed the study

protocol even if the simulation model is not included in the

candidate models. The overall performance of Methods 2

and 4 are similar to the case where idealized single model

based analysis was done using the simulation model.

Decision-making accuracy for each simulation study

As can be seen in Table 4, Method 2 (bootstrap model

selection) consistently outperforms Method 4. As discussed

in the previously, Method 4 is generally less precise than 2.

As a result, Method 4 does not perform as well as Method 2

when a dose is selected not based on the median.

Effect of the identifiability test

We have repeated all of the numerical experiments without

identifiability tests. No significant difference in the results

was observed. In order to correctly count the degree of

freedom for AIC, we need to reject the models that are not

identifiable; however, in practice, the inclusion of non-

identifiable models did not influence the analysis results

within the scope of this investigation. Figure 14 shows the

probability of finding the correct dose for Numerical

Experiment 1 both with and without the identifiability test.

As can be seen, the identifiability test does not significantly

influence the dose finding accuracy.
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