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ABSTRACT

Studies of brain activity during number processing suggest symbolic and nonsymbolic

numerical stimuli (e.g., Arabic digits and dot arrays) engage both shared and distinct neural

mechanisms. However, the extent to which number format influences large-scale functional

network organization is unknown. In this study, using 7 Tesla MRI, we adopted a network

neuroscience approach to characterize the whole-brain functional architecture supporting

symbolic and nonsymbolic number comparison in 33 adults. Results showed the degree of

global modularity was similar for both formats. The symbolic format, however, elicited

stronger community membership among auditory regions, whereas for nonsymbolic, stronger

membership was observed within and between cingulo-opercular/salience network and

basal ganglia communities. The right posterior inferior temporal gyrus, left intraparietal

sulcus, and two regions in the right ventromedial occipital cortex demonstrated robust

differences between formats in terms of their community membership, supporting prior

findings that these areas are differentially engaged based on number format. Furthermore,

a unified fronto-parietal/dorsal attention community in the nonsymbolic condition was

fractionated into two components in the symbolic condition. Taken together, these results

reveal a pattern of overlapping and distinct network architectures for symbolic and

nonsymbolic number processing.

AUTHOR SUMMARY

Previous studies of local activity levels suggest that both shared and distinct neural

mechanisms support the processing of symbolic (Arabic digits) and nonsymbolic (dot sets)

number stimuli, involving regions distributed across frontal, temporal, and parietal cortices.

Network-level characterizations of functional connectivity patterns underlying number

processing have gone unexplored, however. In this study we examined the whole-brain

functional architecture of symbolic and nonsymbolic number comparison. Stronger

community membership was observed among auditory regions during symbolic processing,

and among cingulo-opercular/salience and basal ganglia networks for nonsymbolic. A dual

versus unified fronto-parietal/dorsal attention community organization was observed for

symbolic and nonsymbolic formats, respectively. Finally, the inferior temporal gyrus and left

intraparietal sulcus, both thought to be preferentially involved in processing number

symbols, demonstrated robust differences in community membership between formats.
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INTRODUCTION

The representation and manipulation of numerical information in the brain has received con-

siderable attention over the last 20 years. A longstanding debate in the field regards the extent

to which symbolic (e.g., Arabic digits) and nonsymbolic (e.g., dot arrays) number formats en-

gage shared versus distinct neural mechanisms (Cohen Kadosh & Walsh, 2009; Knops, 2017;

Leibovich & Ansari, 2016; Reynvoet & Sasanguie, 2016). Regions of the bilateral intraparietal

sulcus (IPS) have been found to be involved in symbolic (Ansari et al., 2005; Eger, Sterzer, Russ,

Giraud, & Kleinschmidt, 2003; Holloway, Battista, Vogel, & Ansari, 2013; Kaufmannet al.,

2005; Pinel, Dehaene, Riviére, & LeBihan, 2001) and nonsymbolic (Ansari & Dhital, 2006;

Cantlon, Brannon, Carter, & Pelphrey, 2006; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004)

numerical processing during both adaptation and number comparison paradigms, support-

ing proposals that the IPS provides a substrate for quantity encoding shared between formats

(Dehaene & Cohen, 1995; Dehaene, Piazza, Pinel, & Cohen, 2003). A recent meta-analysis

of the extant functional magnetic resonance imaging (fMRI) literature supports the notion that

the parietal lobe subserves a shared representation of numerical magnitude across nonsym-

bolic and symbolic formats, detecting convergence of activation foci between symbolic andSymbolic number processing:
Operating on numerical information
derived from a learned notation
system, e.g., Arabic numerals or
number words.

nonsymbolic number processing in several bilateral parietal areas, as well as medial superior

Nonsymbolic number processing:
Operating on numerical information
derived from sets of perceptual
elements, e.g., dot arrays or tone
sequences.

frontal gyrus (Sokolowski, Fias, Mousa, & Ansari, 2016). Such findings suggest shared neural

resources for numerical processing across formats.

In addition to evidence for shared neural substrates across numerical formats, there is also

considerable evidence for distinct mechanisms between formats. Symbolic number compar-

ison has been shown, for instance, to engage left superior temporal gyrus (STG) (Holloway,

Price, & Ansari, 2010) as well as bilateral angular gyri, to a greater extent than nonsymbolic

number comparison, potentially reflecting increased reliance on verbal mechanisms during

number symbol processing (Ansari, Lyons, van Eimeren, & Xu, 2007; Dehaene et al., 2003;

He, Zuo, Chen, & Humphreys, 2014; Holloway et al., 2010). A meta-analytic contrast between

formats suggests a general asymmetry in parietal activations, such that Arabic digits preferen-

tially engage left inferior parietal cortex, whereas nonsymbolic stimuli more strongly engage

distributed areas of right superior parietal, right frontal, and insular cortices (Sokolowski et al.,

2016). Symbolic number processing has also been shown to engage ventral occipitotemporal

(vOT) areas involved in the decoding of visual symbols (Dehaene & Cohen, 1995), such as

during active processing of Arabic digits (Grotheer, Herrmann, et al., 2016; Pollack & Price,

2019; Shum et al., 2013; Yeo, Wilkey, & Price, 2017). However, it is unclear the extent to

which vOT areas are differentially engaged between symbolic and nonsymbolic number for-

mats. For example, the meta-analytic contrast performed by Sokolowski et al. (2016) found no

clusters in the vOT. In summary, the current state of evidence suggests that symbolic and non-

symbolic number processing share neural resources in frontal and parietal regions, but also

engage distinct mechanisms distributed across the frontal, parietal, and temporal cortices.

While prior work has focused on the extent to which brain regions are similarly or differ-

entially activated across number formats, complementary questions remain in regards to how

these regions interact and participate in functional networks during number processing. Since

the earliest theories of numerical cognition, there has been an implicit understanding that

multiple brain systems and subnetworks are involved in extracting and operating on numeri-

cal information (Campbell, 1994; Dehaene, 1992; McCloskey, 1992; McCloskey, Caramazza,

& Basili, 1985), yet to date, whole-brain network-level descriptions have gone unexplored.

We propose that description of symbolic and nonsymbolic number processing mechanisms in

terms of their widespread functional interactions amongmultiple brain areas and systems, such
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as those implicated in visual perception, attention, and cognitive control, will shed new light

on the format-dependent versus format-independent processing debate, and provide comple-

mentary insights into how numerical cognition is accomplished in the human brain.

Graph theory provides a methodological framework for characterizing complex networks,

such as those derived from whole-brain functional connectivity data (Bassett & Gazzaniga,

2011; Bassett & Sporns, 2017). One application that has been particularly fruitful in cogni-

tive neuroscience has been the use of graph topology–based clustering techniques to group

brain regions into functional subnetworks, which can then be associated with various cognitive

and behavioral functions (Garcia, Ashourvan, Muldoon, Vettel, & Bassett, 2018; Power et al.,

2011; Sporns & Betzel, 2016). In the present study, we collected 7 Tesla fMRI data in adults who

performed a numerical magnitude comparison task involving symbolic and nonsymbolic stim-

uli. We employed task-evoked functional connectivity (i.e., beta-series correlation; Rissman,

Gazzaley, & DEsposito, 2004) and modularity maximization–based clustering (Lancichinetti

& Fortunato, 2012) to assess the network topology, or organization, of symbolic and nonsym-

Beta-series correlation:
A method for measuring functional
connectivity in event-related fMRI
data that assesses how similarly two
regions respond to trials of a given
condition.

bolic number comparison. We contrasted topologies between formats first at the macroscale

(i.e., global level involving all regions), then the community level (i.e., involving groups of re-

Community:
A subnetwork of nodes (e.g., regions)
that are more densely connected to
each than to other nodes of the
network.

gions), and finally the individual region level. Specifically, we asked the following questions:

(1) Is there a difference in the whole-brain functional connectivity structure (i.e., global mod-

ularity) between the symbolic and nonsymbolic formats? (2) What is the topographic layout

of functional communities in response to each format? (3) To what extent is the connectiv-

ity within and between each community significantly different between formats? (4) Do any

regions demonstrate a significant change in their whole-brain connectivity profile between

formats?

Given that the same task was performed across all trials, we expected that multiple task-

level processes would be shared between formats, for example, involving cognitive control

and response selection mechanisms. We thus predicted a similar macroscale network archi-

tecture would be observed for each format (Krienen, Yeo, & Buckner, 2014), indicated by

an equivalent degree of global modularity, and the inclusion of a fronto-parietal network in-

volving IPS and prefrontal regions. We hypothesized, however, that differences would arise

among regional communities, with the symbolic format differentially engaging ventral visual

and temporoparietal pathways involved in object recognition and orthographic decoding, and

the nonsymbolic format engaging an occipitoparietal pathway involved in object location,

individuation, and summation coding. Furthermore, if the posterior inferior temporal gyrus

(pITG) is preferentially involved in the recognition of Arabic numerals, we expected this region

to show increased interaction with parietal regions. However, if the pITG plays a nonspecific

role in number processing more generally, we expected a similar pattern between formats in

the functional interactions of this region.

RESULTS

Behavioral Results

Descriptive statistics of behavioral performance are provided in Table 1. Mean reaction times

were computed from correctly answered trials only. Symbolic comparison trials elicited a sig-

nificantly lower error rate than nonsymbolic trials using paired tests (t(32) = 2.20, p = 0.035).

A significant difference in mean reaction time was also observed, whereby nonsymbolic trials

required approximately 45 ms more time to complete than symbolic trials (t(32) = −6.27, p =

5.02 × 10−7). In sum, participants were both faster and more accurate when solving symbolic

versus nonsymbolic comparisons.
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Table 1. Scanner task performance.

Standard

Mean deviation Minimum Maximum

Symbolic condition accuracy (%) 97.1 3.7 85.0 100.0

Nonsymbolic condition accuracy (%) 94.9 7.0 71.3 100.0

Symbolic condition reaction time (ms) 774.2 142.6 550.9 1,133.6

Nonsymbolic condition reaction time (ms) 818.8 129.0 627.1 1,130.2

Global Modularity Across Topological Scales

Our first question was, is there a difference in overall modular organization between formats?

Themodularity of a network is indexed by the statistic,Q*, and provides a summarymeasure ofModularity (Q):
Indexes the quality ofa network
partition relative to a null model
and, when maximized, summarizes
the extent of segregation versus
integration among a network’s
communities.

the extent to which a network can be decomposed into nonoverlapping communities when

each node (i.e., region) is assigned to only one community (see Methods for algorithmic defini-

tion). A positiveQ* value indicates that intracommunity connections are stronger than chance

and thus, Q* summarizes the modular topology of a network in regards to the relative bal-

ance of segregated versus integrated connectivity structure (high versus low Q*, respectively)

(Newman, 2006). For each subject, we extracted the max Q* observed over 100 iterations

for the symbolic and nonsymbolic networks separately, and performed this procedure at each

step of the structural resolution parameter (γ) over the resolution range of interest (Figure 1;Structural resolution parameter (γ):
A free variable in the modularity
quality function that affects the
number and size of communities
detected.

see Methods for more details on this range). A paired t test was performed at each step and

revealed no significant difference between the max Q* in the symbolic versus nonsymbolic

conditions (p > 0.05 uncorrected). This result indicates that there was no consistent difference

between formats at any topological scale in the degree of global segregation/integration across

the brain.

Figure 1. No format differences in global modularity. The maximum global modularity (Q*) value
for each participant/format was extracted at every step along the resolution sweep (γ = 0.05–5.0,
with steps of 0.05). The mean lines are plotted along with shaded bars representing the standard
deviation across participants.
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Community Topology

While our first analysis indicated a similar modular structure between formats at the global

level, similar macroscale characteristics can arise from differing underlying topologies, mak-

ing it important to supplement global metrics with more fine-grained assessment of specific

network elements (Sporns, 2014). Therefore, we investigated the subnetwork organization of

functional communities, looking at community topography for each format separately and dif-

ferences between formats in the degree of community allegiance.

Functional communities within format The graph-theoretical concept of allegiance refers to theAllegiance:
The extent to which two regions
belong to the same community,
measured by the probability of
shared community membership
across multiple partitions.

probability of two regions being assigned to the same community across multiple partitions of

a network, and has been used extensively to study community organization during task perfor-

mance (Bassett, Yang, Wymbs, & Grafton, 2015; Bertolero, Thomas Yeo, & D’Esposito, 2015;

Braun et al., 2015; Chai, Mattar, Blank, Fedorenko, & Bassett, 2016; Mattar, Cole, Thompson-

Schill, & Bassett, 2015; Rizkallah et al., 2018; Telesford et al., 2016). The allegiance matrix

contains the probability for every region pair, that is, the tendency for two brain regions to be

part of the same functional community, and thus describes region-to-region associations with

respect to shared community membership. Where functional connectivity asks of two regions,

“How much do they communicate?,” allegiance asks, “Do they belong to the same group?”

While the two metrics are related (and especially so in functional connectivity matrices due to

the transitive nature of time series correlations), they can in principle diverge in a number of

scenarios. For instance, two regions may exhibit relatively low connectivity to each other but,

due to stronger association with other members of the same community, demonstrate high

allegiance. In another case, a hub region with strong connectivity to two communities may

demonstrate relatively low allegiance to any one region, due to inconsistency in its commu-

nity assignment (i.e., it belongs equally to two communities). From these examples, one can

appreciate that allegiance and connectivity provide complementary information about rela-

tionships among nodes of a network. Importantly, however, an allegiance-based approach has

some advantages. As an allegiance matrix is derived from network partitions (which reduceNetwork partition:
A decomposition of network (i.e.,
clustering solution) in which each
node is assigned to exactly one
community.

connectivity information down to singular community assignments), allegiance values are ro-

bust to (1) noise inherent in connectivity measurements, as well as (2) differences in raw con-

nectivity strengths and/or distributions across conditions or subjects, making them appealing

for studying functional reconfiguration across task states (Bassett et al., 2015). In other words,

the allegiance matrix serves as a pure representation of a network’s modular topology. Indeed,

an allegiance-based approach was shown to be more sensitive to differences in functional net-

work architecture compared with connectivity information alone (Bassett et al., 2015). In this

study we used group-level allegiance measures to assess community and region-level topology

during symbolic and nonsymbolic number comparison (see Methods).

To evaluate community-level organization, onemust first define the topological “resolution”

of interest, which relates to the size of communities detected via modularity maximization and

Modularity maximization:
An algorithmic process to determine
a partition that maximizes the
modularity quality index (Q), i.e., the
optimal clustering solution.

is modulated by the resolution parameter γ (Reichardt & Bornholdt, 2006). Since our goal was

to compare topologies between the symbolic and nonsymbolic networks, we sought a reso-

lution at which there was a maximal balance between similarities and differences in group-

level community structure between formats (Mattar et al., 2015). Based on this heuristic, we

found an optimal resolution at γ = 2.45 and used this value for subsequent community-level

analyses (see Methods for details on this procedure). Our group-level consensus clustering

Consensus clustering:
An algorithm for determining a
representative network partition from
many partitions of the same network
or from multiple subjects.

procedure delineated 44 communities for symbolic (25 nonsingleton and 19 singleton, where

singleton refers to a community of just one region) and 36 communities for nonsymbolic (23
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nonsingleton, 13 singleton). We reduced the set of communities to only those that demon-

strated a strong modularity contribution (Q*c) at the subject level, ensuring that the commu-

nities of interest were (1) not driven by noise, and (2) not solely a feature of the group-level

networks, but biologically meaningful in individuals (Bassett, Owens, Daniels, & Porter, 2012;

Betzel et al., 2017; Guimerà, Sales-Pardo, & Amaral, 2004). Briefly, we computed the Q*c for

each community in the subject-level connectivity matrices and compared against null models,

selecting for further analyses only those that exceeded the 99th percentile of the null distribu-

tion (see Supporting Information Methods and Supporting Information Results Figure S1), in an

approach adapted from Betzel et al. (2017). This procedure resulted in 10 of 25 communities

selected for symbolic and 10 of 23 communities selected for nonsymbolic (Figure 2).

One challenge in interpreting functional brain network results based on data-driven cluster-

ing solutions is the assignment of labels to the resulting communities (Yeo et al., 2011). Using

the widely adopted Power et al. (2011) network definitions, we took a quantitative approach in

which we calculated the voxel-wise overlap of our final community assignments with the con-

sensus assignments from Power et al. (acquired from https://www.jonathanpower.net/2011-

neuron-bigbrain.html). In almost all cases where an analogous community existed in the Power

et al. partition, a clear “winner” was determined based on the relative percentage overlap ver-

sus other communities, including the default mode network (DMN), fronto-parietal task con-

trol network (FPN), dorsal attention network (DAN), sensorimotor network (SMN), visual (Vis),

auditory (Aud), hippocampus (Hipp), thalamus (Thal), and basal ganglia (BG) communities.

In the case of our smaller communities, involving the dorsal caudate (CdD), ventral caudate

and nucleus accumbens (CdV/NAc), and precuneus (Prec), there was not a corresponding

Power et al. assignment, so we labeled these according to their anatomical description in the

Brainnetome atlas (see Methods and Supporting Information Table S1) (Fan et al., 2016). One

nonsymbolic community, involving primarily bilateral insular regions, was composed equally

of voxels within the cingulo-opercular task control (CO, 40.1%) and salience network (SN,

39.9%) communities from Power et al. Given that a clear distinction could not be made in this

case, we refer to this community by using the combined label CO/SN.

Qualitative differences were observed between formats in the existence and topography of

individual communities (Figure 2). The FPN community, for instance, was more distributed in

the nonsymbolic condition, including bilateral superior and inferior parietal regions as well as

a majority of prefrontal regions in the right hemisphere. For symbolic, the regions making up

the FPN in nonsymbolic were largely divided into a more ventral FPN and a DAN community,

with the DAN including superior parietal lobule (SPL) regions and a region of right pITG (see

next section and Supporting Information Figure S2 for further investigation of the dual versus

unified FPN/DAN network architecture between formats). Furthermore, a left-lateralized audi-

tory (Aud) community, including left STG and bilateral superior temporal sulcus regions, was

only detected in the symbolic condition, and a CO/SN community, involving primarily bilat-

eral insular regions, was only detected in the nonsymbolic condition. On the other hand, the

visual, sensorimotor, default mode, and subcortical communities were topographically com-

parable between formats. Supporting Information Table S1 includes labels and community

assignments for all regions of the Brainnetome Atlas.

As a final analysis of community topography, we sought to determine whether the observed

dual versus unified FPN/DAN network architecture in the symbolic and nonsymbolic con-

ditions, respectively, was specific to the particular γ value employed in these analyses (i.e.,

γ = 2.45), or was robust across γ values. The dual FPN/DAN network architecture in the sym-

bolic condition persisted across a relatively large range of γ (Supporting Information Figure S2),
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Figure 2. Functional communities by format. Group-level communities were determined for symbolic and nonsymbolic formats separately.
The depicted communities represent the reduced set that passed our selection criterion of showing strong modularity in subject-level con-
nectivity matrices (see Supporting Information Methods and Supporting Information Figure S1 for details on the selection procedure). Cortical
regions are plotted to a surface representation and subcortical regions are presented as 3D volumes. Community labels were determined
based on voxel-wise overlap with the networks delineated in Power et al. (2011), or, when an analogous network did not exist in Power et al.,
based on the anatomical region(s). Colors were chosen to match those networks where possible. Gray indicates regions that did not belong to
a selected community; black indicates regions excluded based on signal dropout (see Supporting Information Methods).

whereas these communities were not consistently distinguished in the nonsymbolic condition,

suggesting that the observed difference in FPN/DAN integration between formats is robust

across γ values.

Differences in the degree of within- and between-community allegiance between formats While the

previous analysis delineated the functional communities present within each condition sep-

arately, the detection of a community is driven in part by the organization of the rest of the

network. As such, the existence of a community in one condition but not the other does not

necessarily indicate that allegiance among these regions (i.e., within-community allegiance) is

stronger in that condition per se. Furthermore, even if community assignments are similar be-

tween conditions, differences may exist in the hierarchical organization of the network and/or

Network Neuroscience 720
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the degree of integration across communities, properties that can be captured by the strength

of between-community allegiance. Allegiance values within or between communities provide

an indication of how strongly connected, or “allegiant,” the members of a given community

are to each other across subjects. A mean allegiance of 0.8 within a community (Figure 3C

and D), for example, specifies that the regions of this community were members of the same

community in 80% of participants (on average across region pairs). To quantitatively assess

whether statistically significant differences existed at the community level, we extracted the

vector of region-to-region connections (allegiance values below the diagonal) from the two

group-level matrices (Figure 3A and B), for each pair of communities identified in the sym-

bolic and nonsymbolic conditions. To assess the difference between formats, a paired t test

was then performed on the vectors of allegiance values (e.g., allegiance across regions of the

symbolic DAN community in the symbolic matrix versus the same regions in the nonsymbolic

matrix). A Monte Carlo permutation procedure with 50,000 iterations was used to determineMonte Carlo permutation:
A technique used for nonparametric
hypothesis testing in which a null
distribution is constructed by
randomly resampling observed data.

the significance of the observed t statistics, whereby subject-level partitions from each con-

dition were randomly relabeled, null group-level allegiance matrices were constructed, and

allegiance values were compared for each community, constructing a null distribution for each

t statistic of interest. This represents a nonparametric approach to significance testing that is

appropriate for repeated measures (Nichols & Holmes, 2004). Z scores for the true (i.e., ob-

served) t statistics were computed as (Ttrue − µTnull
)/σTnull

, and p values were assigned based

on the position of the value t statistic within the null distribution (Figure 3E and F). No com-

munity pairs survived FDR correction for multiple comparison across the 55 tests of within-

and between-community allegiance conducted for each set of communities (Figure 3E and F)

(Benjamini & Hochberg, 1995). However, given the data-driven, exploratory approach em-

ployed here assessing all pairwise associations, we did not expect effect sizes to be strong

enough to pass such a stringent criterion. The goal here was rather to look for underlying

patterns in the data that could then generate hypotheses for future research. In line with rec-

ommendations for exploratory research, we report the outcome of our multiple comparison

correction procedure but also present the observed effect sizes (z scores) as well as the uncor-

rected p values, with a strong caution that these findings must be confirmed in future studies

(Althouse, 2016; Feise, 2002; Rothman, 1990; Streiner, 2015; Thompson, Wright, & Bissett,

2020).

Several differences were observed between formats in regards to within- and/or between-

community allegiance based on an uncorrected threshold of p < 0.05 (two-tailed) (Figure 3E

and F). Of the communities identified in the symbolic condition, stronger allegiance was

found for symbolic versus nonsymbolic among regions of the auditory (Aud) community (Aud:

z score = 2.11, p = 0.019). This suggests that not only was an auditory community identi-

fied in the symbolic condition and not the nonsymbolic condition, but that the regions of this

community are significantly more functionally coupled to each other during symbolic trials.

Furthermore, allegiance between the dorsal attention (DAN) and visual (Vis) communities was

stronger in the symbolic condition (DAN–Vis: z score = 1.97, p = 0.015). Weaker allegiance

was observed in the symbolic condition between basal ganglia (BG) and both the default mode

(DMN) and sensorimotor (SMN) communities (BG–DMN: z score = −2.09, p = 0.010; BG–

SMN: z score = −1.70, p = 0.016), and between the hippocampal (Hipp) and thalamic (Thal)

communities (Hipp–Thal: z score = −1.97, p = 0.004). Of the communities identified in the

nonsymbolic condition, stronger allegiance (nonsymbolic > symbolic) was found among re-

gions of BG and cingulo-opercular/salience network (CO/SN) community (BG: z score = 2.02,

p = 0.021; CO/SN: z score = 2.50, p = 0.005). In nonsymbolic condition, the CO/SN and BG

communities were also more allegiant to each other (CO/SN–BG: z score = 1.94, p = 0.004),
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Figure 3. Comparison of community allegiance between formats. (A and B) Group-level allegiance matrices are presented, indicating at
each cell in the matrix the proportion of subjects in which two regions were assigned to the same community. Matrix cells are reordered based
on the community composition of the symbolic (A) and nonsymbolic (B) formats, respectively, but the values are identical within each format.
(C and D) Mean allegiance across region pairs is depicted for each format and was computed using communities as defined for symbolic
and nonsymbolic, respectively. Black bars represent standard error of the mean across region pairs. (E and F) Allegiance difference within and
between communities detected in each format. No p values survived correction for multiple comparisons (p < 0.05, FDR corrected for 55
tests along + below the diagonal). The CdD community was composed of two regions (right/left dorsal caudate) and thus contained only one
region-to-region connection. In this case, since a paired t test was not possible, the z score for CdD represents that of the simple difference
between formats. DMN = default mode network; Thal = thalamus; FPN = fronto-parietal network; Vis = visual; DAN = dorsal attention network;
BG = basal ganglia; SMN = sensorimotor network; Hipp = hippocampus; CdV/NAc = ventral caudate/nucleus accumbens; Aud = auditory;
Prec = precuneus; CO/SN = cingulo-opercular/salience network; CdD = dorsal caudate.
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and both more allegiant to the SMN community (CO/SN–SMN: z score = 2.00, p = 0.014;

BG–SMN: z score = 1.73, p = 0.016). Additionally, greater allegiance between the Hipp and

Thal communities was observed in the nonsymbolic condition (Hipp–Thal: z score = 1.98,

p = 0.004). Weaker allegiance in the nonsymbolic condition was observed between the FPN

and both the Vis and and CO/SN communities (FPN–Vis: z score = −1.98, p = 0.022; FPN–

CO/SN: z score = −1.96, p = 0.021).

We additionally asked whether the differences between formats we observed in commu-

nity allegiance could have been captured by a simpler analysis of raw connectivity strengths.

We therefore assessed the relation between allegiance and connectivity values for each format

separately, and then critically, whether connectivity information provided a similar pattern of

statistically significant differences between formats. These analyses were performed using the

median group-level connectivity matrices, group-level allegiance matrices, and the commu-

nities as defined at γ = 2.45. We first constructed two 10 × 10 matrices representing the

mean allegiance and mean connectivity within/between the 10 communities, for each format

separately. We then computed the correlation between these matrices, excluding the mirrored

values above the diagonal. In other words, we asked, “before taking the difference between

formats, are community-level allegiance and connectivity values related?” We found that (as

expected) these values were highly related (Pearson r = 0.64, p < 0.001 in the symbolic

data; Pearson r = 0.55, p < 0.001 in the nonsymbolic data). Next, to determine whether a

similar pattern of statistically significant differences could be observed using the connectiv-

ity data, we correlated the values depicted in the matrices of Figure 3E and F with those in

Supporting Information Figure S3 (excluding values above the diagonal). Neither set of re-

sults were significantly correlated (Pearson r = 0.07, p = 0.60 using symbolic communities;

Pearson r = 0.23, p = 0.08 using nonsymbolic communities), though a marginal positive ef-

fect was observed using the nonsymbolic communities. We found the effect sizes of the values

within these matrices (i.e., z scores of difference between formats, determined via our Monte

Carlo procedure) were relatively smaller in the connectivity data (Supporting Information

Figure S3) compared with the allegiance data (Figure 3E and F). This analysis highlights the di-

vergence between connectivity and allegiance metrics, and suggests that an allegiance-based

approach is sensitive to changes in community topology that are not captured by simple con-

nectivity differences.

Region-level Allegiance Profiles Across Topological Scales

To provide insights into how the functional roles of particular regions may differ based on

number format, we investigated the extent to which node-level allegiance profiles changed

between the symbolic and nonsymbolic conditions. In the community-level analysis, we used

modularity maximization to define communities of interest and followed this up with quan-

titative analysis of allegiance differences between formats. This process necessitated a partic-

ular setting of the resolution parameter (γ = 2.45). Regions, on the other hand, make up the

fundamental units of the network and were predetermined by the atlas parcellation, so region-

level analyses need not be constrained to a particular topological scale. We reasoned that a

more comprehensive assessment of regional allegiance profiles would be to summarize differ-

ences between formats across a large range of resolutions (Betzel & Bassett, 2016). We thus

performed the following analysis of allegiance profile (dis)similarity for every resolution step

across our range of interest, γ = 0.05–5, with steps of 0.05 (see Methods for more details on

this range).
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The allegiance profile of a region was defined as the vector of group-level allegiance val-

ues from one region to all others, which characterizes a region’s position in the network in

relation to the network’s community structure. We computed the (dis)similarity of a region’s

allegiance profile between the symbolic and nonsymbolic conditions using Pearson correlation

coefficient converted to Fisher Z values, with lower values indicating greater dissimilarity. The

significance of dissimilarity was assessed using a similar Monte Carlo permutation approach

as before, involving 10,000 random reshufflings of the subject-level partitions to construct a

null distribution of group-level allegiance matrices (Nichols & Holmes, 2004). From these null

matrices, a z score and p value for the observed dissimilarity coefficient (inverse of Fisher Z)

was computed for every region. To characterize the overall robustness of allegiance profile

differences across the resolution sweep, we counted the number of steps in which a region

demonstrated a significant dissimilarity in its allegiance profile between formats (p < 0.05

one-tailed, uncorrected), and the counts are depicted as a histogram in Figure 4A. In order to

reduce the set of regions to those that showed the greatest total count, we first fit a negative

binomial curve to the observed distribution, which is commonly used to model overdispersed

count data (Bliss & Fisher, 1953; Hartley, 1958;White & Bennetts, 1996).We then assessed the

goodness of fit of this theoretical distribution to the observed counts using a quantile-quantile

plot (Figure 4B). In general, there was high overlap in the observed versus fitted distribution,

with the exception of five outlying regions (highlighted in yellow, Figure 4B): the (1) right

caudal lingual gyrus, (2) right caudal cuneus gyrus, (3) right area 4 in precentral gyrus, (4)

right ventrolateral area 37 in pITG, and (5) left intraparietal area 7 (hIP3). These five regions

demonstrated higher counts than expected given the observed pattern, indicating that, relative

to other regions, they showed robust differences in community allegiance between formats

across a wide range of organizational scales. We highlight these regions in Figure 4C, includ-

ing their anatomical description and location, as well as plots of their dissimilarity z scores

across the full resolution sweep.

The right pITG region sits posterior but immediately adjacent to the putative “Number Form

Area” as described in recent literature. The volumetric location of this region relative to the

peak coordinates reported across multiple studies, including an fMRImeta-analysis, is depicted

in Figure 5 (Abboud, Maidenbaum, Dehaene, & Amedi, 2015; Amalric & Dehaene, 2016;

Grotheer, Ambrus, et al. , 2016; Grotheer, Herrmann, et al., 2016; Hermes et al., 2017; Shum

et al., 2013; Yeo et al., 2017). Both the right pITG and left intraparietal hIP3 regions were

part of the DAN community—one part of the dual fronto-parietal networks identified in the

symbolic condition (Figures 2 and 3; Supporting Information Table S1).

As a supplementary analysis, we investigated the extent to which the observed differences

in regional allegiance profiles related to differences in the raw connectivity profiles of each

region, using the median group-level connectivity matrices in place of the group-level alle-

giance matrices (Supporting Information Figure S4). We found that the count of significant

steps over the resolution sweep was positively related to the degree of connectivity dissim-

ilarity (Spearman’s rho = 0.202, p = 0.004), indicating that, albeit a modest relation, there

is overlap between allegiance and connectivity at the region level. However, the specific re-

gions showing the greatest counts versus connectivity dissimilarity differed. For instance, three

regions showing a high count from the allegiance analysis (right caudal lingual gyrus, right

area 4, and left intraparietal hIP3) demonstrated connectivity dissimilarity z scores near 0.

Along with Supporting Information Figure S3, this indicates that allegiance and connectivity

information are largely independent and that allegiance-based analyses can detect changes in

regional community membership regardless of strong and/or consistent changes in the region’s

raw connectivity profile.
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Figure 4. Regions showing robust differences in allegiance profile between formats. (A) Histogram plot showing counts of significant steps
over the resolution sweep from all 202 regions, in terms of a significant dissimilarity in allegiance profile between the symbolic and nonsym-
bolic conditions (p < 0.05, uncorrected). The red line indicates the fitted negative binomial distribution, and pobs indicates the probability of
the selected count, given the distribution of all counts observed. (B) Quantile-quantile (QQ) of the fitted distribution (x-axis) with respect to the
sample distribution (y-axis). Note the five regions highlighted in yellow that show considerable deviation from what was expected given the
counts demonstrated by the rest of the regions. (C) Table of the five regions showing the most robust differences in allegiance, with z scores
over the resolution sweep plotted in the rightmost column. The dashed magenta line indicates γ = 2.45, the setting for the community-level
analysis (Figure 3) and the red dot indicates p < 0.05 at that step. Both occipital regions were members of the visual community in the symbolic
and nonsymbolic conditions (at γ = 2.45), so are presented as blue. The precentral gyrus region was a part of the CO/SN community (magenta)
in the nonsymbolic community (and not selected in the symbolic condition). The pITG and hIP3 regions were part of the DAN community in
the symbolic condition (green). In the nonsymbolic condition, the hIP3 region was part of the FPN community while the pITG region was not
selected (see Supporting Information Table S1 for the community assignments of all regions).
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Figure 5. Posterior ITG region (ventrolateral area 37) relative to reported “Number Form Area” coordinates. The ventrolateral area 37
(A37vl) Brainnetome region in the posterior ITG showed significant differences in its allegiance profile between the symbolic and nonsym-
bolic conditions (see the region-level allegiance analysis in Figure 4). This region is depicted (red) along with spheres centered at the peak
MNI coordinates (x,y,z) from several recent studies demonstrating Arabic numeral-selectivity versus other stimuli, using either fMRI or electro-
corticography measurements, as well as from an fMRI meta-analysis of numeral versus other symbol processing (Abboud et al., 2015; Amalric
& Dehaene, 2016; Fan et al., 2016; Grotheer, Ambrus, et al., 2016; Grotheer, Herrmann, et al., 2016; Hermes et al., 2017; Shum et al.,
2013; Yeo et al., 2017). Where coordinates were reported in Talairach space, the tal2mni.m function was used to convert to MNI space via
the Brett transform (http://imaging.mrc-cbu.cam.ac.uk/downloads/MNI2tal/tal2mni.m). The A37vl region sits immediately posterior to these
coordinates, and was the only ITG region in the Brainnetome Atlas that survived our signal dropout threshold (the others are more anterior).

DISCUSSION

Little is currently known regarding the network architecture of brain systems supporting numer-

ical cognition. While region-based analyses have provided important insights into the neural

mechanisms of numerical cognition, a growing body of work outside the numerical cognition

field suggests that understanding the network topology of those mechanisms, as well as how

this topology is reconfigured across task states, can provide additional meaningful insights

(e.g., Braun et al., 2015; Cohen & D’Esposito, 2016; Cole, Bassett, Power, Braver, & Petersen,

2014; Hearne, Cocchi, Zalesky, & Mattingley, 2017; Shine et al., 2019). In this study, we used

measurements of task-evoked functional connectivity and network-based analysis to assess the

similarities and differences between symbolic and nonsymbolic numerical magnitude process-

ing. Our findings provide evidence for a similar global topology across formats, but selective

differences in community and region-level organization.

No Difference in Global Modularity Between Formats

In regards to functional connectivity networks, the modularity index has been considered as a

measure of segregated versus integrated information processing among functional subsystems,

with lower modularity indicating greater integration across the brain (Bertolero, Yeo, Bassett,

& D’Esposito, 2018; Godwin, Barry, & Marois, 2015; Shine et al., 2016). Our results showed

no evidence of a difference in global modularity in subject-level connectivity networks at any

topological scale (Figure 1), suggesting that the balance of segregated versus integrated in-

formation processing among subnetworks of the brain is similar between formats. It is worth

noting, however, that the task employed here involved comparison of each stimulus to the ref-

erence number 5, with symbolic and nonsymbolic trials intermixed across the experiment. We

speculate that global topological differences between formats may be more pronounced when

more than one stimulus must be processed, as is the case in tasks using simultaneous or se-

quential presentation of two stimuli to be compared, and/or if comparison tasks are performed
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separately for each format. For instance, in separate tasks, global topological differences may

emerge from the adoption of different strategies or attentional states (Bertolero et al., 2018;

Cocchi et al., 2014; Cohen & D’Esposito, 2016; Heinzle, Wenzel, & Haynes, 2012), rather

than a difference in symbolic versus nonsymbolic processing per se. Our use of intermixed

stimuli prevented participants from anticipating one format versus another, thus our results

are likely to reflect format-dependent processing differences, rather than strategic differences

related to task context.

Community Allegiance Versus Functional Connectivity

The remaining analyses focused on a comparison of network architectures between number

formats at the subnetwork (i.e., community) and region levels. Our approach leveraged the

concept of community allegiance, which characterizes region-to-region associations in terms

of shared membership among functional subnetworks (see Results section for a more thorough

introduction). Intuitively, functional connectivity indexes the extent to which two regions di-

rectly interact, whereas allegiance indexes the tendency for two regions to be associated with

the same community. Compared with connectivity, allegiance-based analysis is in principle

more robust to noise and intersubject variance, and has been shown to be particularly sen-

sitive to reconfigurations in brain network architectures (Bassett et al., 2015). We found that

while connectivity and allegiance measures were related (which is expected, given that al-

legiance is derived from partitions of connectivity matrices), they also diverged considerably

(see Results, as well as Supporting Information Figures S3 and S4). The present study indicates

that an allegiance-based approach offers a unique and complimentary perspective on network

organization, and suggests that future research assessing functional brain networks may benefit

from the methodology described herein.

Fronto-parietal Unification and Fractionation Between Formats

In contrast to the global level, our community-level results revealed that the topography of

fronto-parietal control systems differed considerably between formats. Specifically, during non-

symbolic trials, the fronto-parietal network (FPN) was a unitary community composed of 33

regions, while during symbolic trials, these regions were largely fractionated into two distinct

communities, a dorsal attention (DAN) community and more ventrally/anteriorly positioned

FPN (Figure 2A and B). Distinctions have previously been made between dorsal and ventral

attention systems (Corbetta & Shulman, 2002). Previous literature suggests the DAN is involved

in the voluntary deployment of attentional control based on goals and expectations as well as

ultimately linking stimuli to responses, whereas the ventral network is involved in reorienting

of attention to relevant stimuli (Corbetta, Patel, & Shulman, 2008; Ptak, Schnider, & Fellrath,

2017). Through top-down signaling, the DAN in particular is thought to bias sensory areas to

be responsive to appropriate features of inputs, and is often found to be functionally connected

to visual areas in the ventral occipitotemporal (vOT) cortex (in line with the inclusion of the

right pITG region in the symbolic DAN community in the current data; see further discussion

below and Figure 2A) (Corbetta et al., 2008; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006;

Ptak, 2012; A. C. Vogel, Miezin, Petersen, & Schlaggar, 2012). While both formats may engage

the DAN, we speculate that nonsymbolic dot arrays place greater demand on the (ventral) at-

tentional reorienting system by containing multiple objects organized randomly across space.

While we did vary the location of the digits across trials (e.g., see Figure 2), it may be that the

perceptual regularity of the symbolic stimuli leads to reduced interactions between the DAN

and more ventral/anterior components of the FPN during task performance (Vossel, Geng, &

Fink, 2014). A potentially related finding came from a recent study by Dixon et al. (2018),
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who showed that an FPN subsystem (“FPCNB”), which has a qualitatively similar spatial pro-

file to our symbolic FPN community, was integrated with the DAN across a range of task states

involving externally directed attention and perception. The other component of the FPN, the

“FPCNA,” was more integrated with the default mode network (DMN) and recruited during

internally directed thought (Dixon et al., 2018). The authors suggest that the FPCNB represents

task-relevant information (e.g., rules and response mappings) and exerts moment-to-moment,

top-down control of the DAN, allowing the DAN to deploy this information in the guidance of

spatial attention (e.g., saccades) and ultimately action initiation (Baldauf & Desimone, 2014;

Bichot, Heard, DeGennaro, & Desimone, 2015; Dixon et al., 2018). The unified FPN/DAN

community we observed in the nonsymbolic condition supports this account, possibly reflect-

ing a stronger engagement of this distributed, visuospatial attentional control system when

processing dot sets compared to single digits.

It is important to note that while Power et al. (2011) and Yeo et al. (2011) distinguish sep-

arate dorsal attention, ventral attention, and fronto-parietal networks, their boundaries (along

with the cingulo-opercular network; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008)

are not completely consistent across the literature, nor with our own data-driven community

assignments. During task performance, multiple components of these networks are recruited

and likely integrated to form a so-called “task-positive” network (Dwyer et al., 2014; Fox et al.,

2005). The extent to which each of these putative systems separately contribute to cognitive

and attentional control is an ongoing area of research (Petersen & Posner, 2012). In general,

our findings indicate that symbolic and nonsymbolic comparison differentially engage large-

scale association networks, and further, suggest that assessment of community-level topology

may help to incorporate canonical mechanisms of cognitive control and attention into our

understanding of number processing.

Cingulo-Opercular/Salience Network and Basal Ganglia Allegiance Increases During

Nonsymbolic Processing

A second pattern of results at the community level involved stronger allegiance, that is, shared

community membership, within and between the cingulo-opercular/salience (CO/SN) and

basal ganglia (BG) communities in the nonsymbolic condition (Figure 3F). The CO network

has been implicated in tonic alertness and task-set maintenance, and demonstrates sustained

activity across trials of a cognitive task (Dosenbach et al., 2007; Sadaghiani & D’Esposito,

2015). As part of the dual control network architecture proposed by Dosenbach et al. (2008),

the CO operates in parallel to the FPN, which is instead thought to be involved in phasic

alertness and adaptive control on a trial-level basis. Our beta-series approach specifically fo-

cused on coupling in trial-level responses, and thus is expected to be less sensitive to cou-

pling extending across multiple trials. And even so, the same “task-set” should have been

engaged regardless of format, given the trials were intermixed and the same comparison oper-

ation was required. Thus, it is difficult to interpret the difference we observed between formats

involving CO/SN allegiance within the context of the dual control network framework. On

the other hand, this community was a hybrid between the CO and SN communities in the

Power et al. (2011) parcellation. The SN is involved in the detection of relevant stimuli, in-

cluding both internal and external cues, and, for instance, is particularly engaged during odd-

ball paradigms in response to surprising or deviant cues (Menon, 2015). It is implicated in a

broad range of goal-directed cognitive functions and is thought to integrate processing among

disparate functional subnetworks, potentially filtering input to the ventral attention system

(Chang, Yarkoni, Khaw, & Sanfey, 2013; Corbetta et al., 2008). The increased allegiance during

nonsymbolic comparison within the CO/SN community in our data may be due to the fact that
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dot arrays simply involve more visual objects to detect and process, requiring stronger com-

munication among regions in this network. However, this interpretation is highly speculative

and further empirical investigation is clearly required to elucidate the mechanisms underlying

this finding.

We also observed significantly increased allegiance among regions of the basal ganglia

(BG) community, including bilateral putamen, globus pallidus, ventral caudate, and nucleus

accumbens (Figure 2B) in the nonsymbolic versus symbolic condition (Figure 3F). BG struc-

tures are generally implicated in motor initiation and control, including eye movements, but

are also known to participate in multiple cognitive processes such as inhibition, working

memory, decision-making, and learning (Helie, Chakravarthy, & Moustafa, 2013; Leisman,

Braun-Benjamin, & Melillo, 2014; Middleton & Strick, 2000; Packard & Knowlton, 2002;

Wei & Wang, 2016). Multiple parallel cortico-basal ganglia loops are thought to be required

during a stimulus-response task, where some cognitive operation is performed (e.g., < or > 5)

and then linked to amotor output (e.g., press left or right) (Guthrie, Leblois, Garenne, & Boraud,

2013). Since symbolic and nonsymbolic trials required the same motor responses, our finding

of increased integration among BG for nonsymbolic trials may relate to the longer response

times in the nonsymbolic condition (Yarkoni, Barch, Gray, Conturo, & Braver, 2009). Interest-

ingly, BG regions are often shown to coactivate with the SN, and our observation of greater

BG–CO/SN allegiance in the nonsymbolic condition (Figure 3F) further suggests a mechanistic

link between these findings (Menon, 2015). Given the diverse roles of the BG, CO, and SN

systems in cognition, however, the pattern of increased allegiance among these communities

is difficult to interpret and requires future investigation.

Symbolic Processing Engages an Auditory Community

A final result of interest from the community-level analysis was the observation of the auditory

(Aud) community for symbolic trials (Figures 2 and 3E). The Aud community was left lateralized

and extended along the left superior and middle temporal gyri (STG/MTG; i.e., Brodmann area

22), involving a set of auditory cortex regions involved in the representation of phonemes and

phonological retrieval (Binder, 2015; Liebenthal, Binder, Spitzer, Possing, &Medler, 2005). Left

temporal regions overlapping with the Aud community found here have been both theoreti-

cally (Dehaene & Cohen, 1997) and empirically (Prado, Mutreja, & Booth, 2014) implicated

in verbal arithmetic fact retrieval, but their role in symbolic quantity processing has been less

well appreciated. The comparison task we employed here does not explicitly require a digit

to be mapped to its phonological representation, and thus we did not predict a priori the en-

gagement of a superior temporal network. However, our analysis indicates this system forms a

coherent functional community during only the symbolic condition, potentially indicating the

implicit binding of number symbols to their spoken word forms. These results are in line with

previous studies showing increased functional activation in the superior/middle temporal cor-

tex during symbolic compared with nonsymbolic number comparison (Holloway et al., 2010;

Castaldi, Vignaud, & Eger, 2019) and addition (Van Der Ven, Takashima, Segers, Fernández,

& Verhoeven, 2016). Our analysis suggests a functional network involving bilateral superior

temporal cortex regions is engaged during symbolic but not nonsymbolic number comparison.

Robust Differences in Community Allegiance of Visual Regions Between Formats

In our region-level analysis we asked, at each step across the resolution range, whether a

region showed a difference between formats in its profile of community membership. To

identify those regions that showed a robust effect (i.e., regardless of topological scale), we

counted the number of steps in which a significant difference was observed. The two regions
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showing the highest count were located in the right ventromedial occipital cortex (Figure 4).

While we controlled for total occupied area and luminance across formats, it is possible that

the visual processing streams engaged by the symbolic and nonsymbolic stimuli quickly di-

verge, and that this is reflected in differential patterns of community affiliation for primary

visual cortex as well as higher level visual regions, specifically observed here in the caudal

cuneus and lingual gyri, respectively. In a study of symbolic and nonsymbolic processing by

Holloway et al. (2010), a univariate contrast between formats found multiple occipital areas

more engaged by nonsymbolic stimuli, and this was after subtracting out activation associated

with control conditions that were matched in terms of total pixels. Our findings of allegiance

differences involving visual regions seem convergent, and could reflect engagement of ob-

ject location, individuation, and summation mechanisms thought to underlie nonsymbolic

number processing (Verguts & Fias, 2004). Indeed, these stages are proposed to serve as the

inputs necessary for numerical magnitude representation in parietal cortex, and have been

shown to involve an occipitoparietal pathway including the inferior and middle occipital gyri

(Roggeman, Santens, Fias, & Verguts, 2011). Symbolic numerals may take an alternative route to

their associated magnitude representations, bypassing the multi-object normalization and ac-

cumulation mechanisms required to process dot sets (Bulthé et al., 2019; Santens, Roggeman,

Fias, & Verguts, 2010), and instead engage a ventral stream object-recognition pathway ex-

tending into the ITG (Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; Harel,

2016; Price & Devlin, 2011).We hesitate to make any mechanistic interpretations, but our data

at least indicate that the “position” of these visual regions with respect to community topology

is significantly altered between formats. Taken together with the trend of greater allegiance

during symbolic trials between the Visual and DAN as well as FPN communities (Figure 3E

and F), our results build on prior univariate work, suggesting that number format influences

not only local activity but also the distributed interactions of occipital regions.

Robust Differences in Community Allegiance of the pITG and hIP3 Between Formats

A growing body of evidence suggests that number symbol processing engages a region in pos-

terior inferior temporal gyrus (pITG) that preferentially responds to digits compared to other

symbols (Grotheer, Herrmann, et al., 2016; Hermes et al., 2017; Pollack & Price, 2019; Shum

et al., 2013). Given this literature, we hypothesized that if this region is preferentially engaged

during the recognition of Arabic numerals, it would show a greater tendency to join a func-

tional community involving parietal areas during the symbolic trials. Among the 202 regions

analyzed here, the right pITG (Figure 5) was one of only five regions demonstrating robust dif-

ferences in its allegiance profile between conditions (Figure 4). Its affiliation with the symbolic

DAN community (Figure 2 and Supporting Information Table S1) provides evidence that inter-

actions between the right pITG and superior parietal cortex and intraparietal sulcus (IPS) are

particularly relevant for processing number symbols. This is in line with recent electrocorticog-

raphy and fMRI work showing coupling between lateral vOT and parietal areas during numeral

recognition and arithmetic tasks, including behavioral relevance of task-evoked coupling for

math ability and developmental increases over adolescence (Battista et al., 2018; Daitch et al.,

2016). Even at rest a similar pattern of robust connectivity is observed, specifically involving

pITG to IPS regions (Abboud et al., 2015; Nemmi, Schel, & Klingberg, 2018). Building on this

literature, we found that connectivity patterns of the pITG are differentiated in a task context,

and that selective coupling of the pITGwith parietal regions during symbolic processing occurs

even while performing a simple magnitude comparison task. Our analysis further indicates that

the topological position of the pITG with respect to large-scale community organization is a

distinguishing feature between formats, suggesting the pITG plays a pivotal role in the sym-

bolic number processing network. The pITG to parietal coupling we observed here may reflect
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a mechanism by which visual number forms are “mapped” to magnitude representations in the

IPS. Alternatively, though not mutually exclusive, this interaction may represent a more general

process of recurrent exchange between neural populations in the vOT (tuned to learned sets

of visual features) and the DAN (involved in feature-based, attentional control), whereby pre-

sentation of a preferred stimulus (e.g., a number symbol) elicits efficient attentional capture,

allowing for identification and further task-level processing. Such an argument has been made

for the role of the visual word form area in reading and why it shows similarly strong connec-

tivity to the DAN (A. C. Vogel et al., 2012; note the visual word form area is near the pITG

region described here, albeit in left vOT). Whatever the case, the present results, together with

other recent findings, suggest work looking into the mechanistic contributions of the pITG and

its functional interactions will be a fruitful avenue for future research in numerical cognition.

Finally, we found that a region in the hIP3 subdivision of the left IPS demonstrated robust

differences in its allegiance profile between formats. The IPS has been extensively implicated

in number processing tasks and thought to be involved in the representation of both sym-

bolic and nonsymbolic magnitude information (Ashkenazi, Henik, Ifergane, & Shelef, 2008;

Dehaene et al., 2003; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Piazza et al.,

2004). Compared with the right IPS, the left IPS has been shown to be more sharply tuned to

Arabic numerals than to nonsymbolic arrays (Piazza, Pinel, Le Bihan, & Dehaene, 2007) and

is also thought to be more affected by the ontogenetic process of learning number symbols

(Ansari, 2008; Cantlon et al., 2006; Rivera, Reiss, Eckert, & Menon, 2005; S. E. Vogel, Goffin,

& Ansari, 2015). Interestingly, Santens et al. (2010) reported a differential connectivity profile

of the left IPS between symbolic and nonsymbolic processing, despite this region being equally

activated by both formats. Our findings are convergent, demonstrating that the left hIP3 takes

on a distinct pattern of community membership between formats, and that this distinction is

pronounced relative to other brain regions. This line of evidence indicates that, while both

formats may engage the left IPS, the functional pathways to and from this region are divergent

between symbolic and nonsymbolic processing, and highlights the additional level of insight

afforded by connectivity-based approaches. It is important to note that the analysis we have

performed here does not directly speak to the question of whether symbolic and nonsymbolic

number engage shared representations in the IPS, as has been a topic of intense study in recent

years (e.g., Bulthé, De Smedt, & Op de Beeck, 2015, 2018; Lyons, Ansari, & Beilock, 2015).

Our results instead provide complementary evidence that the whole-brain functional architec-

tures involving left hIP3 are different between formats, and suggest that a more comprehensive

understanding of hIP3 function during number processing will require a characterization of this

region’s role with respect to functional network dynamics. Furthermore, given previous reports

that symbolic processing in the left IPS changes over development, longitudinal studies look-

ing at the trajectory of this region’s connectivity profile over learning may provide mechanistic

insights into the acquisition of symbolic number abilities.

Limitations

One limitation of this work is that our community-level analyses were conducted at a partic-

ular setting of the structural resolution parameter (γ = 2.45), which influences the size and

composition of the detected communities (e.g., see Methods) (Fortunato & Hric, 2016). We

determined this setting based on the heuristic of maximizing the balance across regions of

community stability and change between conditions (Mattar et al., 2015). The goal here was

to be sensitive to differences in community organization while avoiding an unrealistic scenario

in which a majority of regions change their community affiliation (i.e., assuming that there is
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some common functional architecture between formats). For other questions, such as “What

is the shared community structure across task states?,” using a heuristic where partitions are

maximally consistent between conditions may be more appropriate. At other settings of γ, the

number of communities as well as regional allegiance profiles will change (e.g., see Methods),

and thus additional patterns of community-level differences between formats may have been

observed.

Another limitation to note is that the Brainnetome Atlas we used to define our nodes repre-

sents a parcellation of the brain at particular spatial scale (n = 246 regions) and was derived

based on structural-connectivity patterns. We chose this atlas because it has been shown to

capture areas with relatively homogenous functional connectivity profiles (Fan et al., 2016).

However, node definitions at different spatial scales or based on different properties, for ex-

ample, anatomical, architectonic, or random subdivisions, may demonstrate different patterns

from what we observed (Fornito, Zalesky, & Breakspear, 2013; Sporns, 2014; Zalesky et al.,

2010).

Conclusions

In summary, in this study we adopted a data-driven, network neuroscience approach to charac-

terize the whole-brain functional architecture supporting symbolic and nonsymbolic number

comparison. Our findings provide several novel insights. A unified fronto-parietal control

network in the nonsymbolic conditionwas fractionated into FPN andDANcommunities during

symbolic number processing. We found evidence for stronger allegiance among a left-lateralized

Auditory network in the symbolic condition, potentially reflecting access to phonological rep-

resentations of number word forms. The right pITG, proximal to the putative “Number Form

Area,” joined the DAN system in the symbolic condition only, supporting its proposed role in

the processing of number symbols. Both the right pITG and the hIP3 subdivision of the left

IPS demonstrated robust differences in their community allegiance profiles between formats.

Taken together, these results reveal a pattern of overlapping and distinct network architectures

for symbolic and nonsymbolic number processing, and highlight the additional level of insight

provided by analysis of functional network topology.

METHODS

Participants

Forty neurologically healthy, right-handed subjects participated in the study for undergraduate

course credit. Of those recruited, 6 participants were excluded from analyses due to high levels

of motion and 1 was excluded for significant signal dropout (exclusion criteria detailed below),

resulting in a final sample of 33 participants (19.5 ± 0.9 years, 20 females). All subjects had

normal or corrected-to-normal vision. Informed consent was obtained from each subject in

accordance with the Vanderbilt University Institutional Review Board policy.

fMRI Tasks

Participants completed two consecutive runs of an event-related number comparison paradigm.

For each trial, participants judged whether an Arabic digit (symbolic) or dot array (nonsym-

bolic) was less or more than five by pressing a button with either their right index or right

middle finger, respectively, as quickly and accurately as possible. A total of 160 trials were

presented, composed of 80 symbolic trials and 80 nonsymbolic trials that were intermixed and

pseudo-randomly ordered (i.e., no more than 3 consecutive trials were of the same number

or format). Stimulus numerosity was either 2, 4, 6, or 8, which occurred at equal probability

and was counterbalanced across formats. Stimuli were created using the MATLAB package
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first described by Piazza et al. (2004). Nonsymbolic stimuli were controlled for total surface

area across numerosities by reducing dot size with increasing numerosity. Additionally, stim-

uli were controlled for total occupied area and luminance across formats (i.e., on average, dot

sets contained the same number of pixels as numerals) in an effort to control for nonnumerical

visual parameters across trials. Stimulus duration was 500 ms and interstimulus intervals (ISI)

ranged from 3,300–7,300 ms, in 1,000-ms increments, with an average of 5,300 ms. ISI was

counterbalanced across numerosities and formats.

Imaging

Imaging was performed using a 7 Tesla (7T) Philips Achieva scanner with a 32-channel head

coil. An MP2RAGE (Marques et al., 2010) image was acquired for anatomical reference,

aligned to the anterior/posterior commissures, with the following parameters: TR = 4.315 ms,

TE = 1.92 ms, flip angle = 7, 240 coronal slices, voxel size = 1 mm3, imaging matrix = 240

× 240 × 192, acquisition time = 1,010 s. These images were corrected for B1-field inhomo-

geneities, as well as proton density and T2* effects according to the procedure described by

Marques et al. (2010). For the event-related experiment, functional T2*-weighted images were

acquired over two runs of 243 volumes each, with the following parameters: TR = 2, 000 ms,

TE = 25 ms, flip angle = 63, 46 axial slices (with no interslice gap), voxel size = 2.5 mm3,

imaging matrix = 96× 96 × 46, acquisition time = 500 s per run (16 m 40 s of functional data

total).

Preprocessing

fMRI data was preprocessed in AFNI (Cox, 1996) using the afni_proc.py program. Preprocess-

ing involved slice-time and motion correction, coregistration, normalization to the MNI152

2009c template using affine registration, smoothing with a 4-mm kernel, and scaling. All trans-

formations of the raw functional data were concatenated and applied in one step to reduce

multiple resampling and interpolation errors. Head-motion/outlier censoring was performed by

removing volumes from the activation model (described below) that demonstrated between-

volume movement of >0.3-mm Euclidean norm distance or if >5% of voxels in a volume

(within a brain mask) were determined to be outliers. Across our final sample, the percentage

of censored volumes was 4.0 ± 4.1%.

Beta-Series Estimation

To assess task-related functional connectivity, we used a beta-series correlation method (BSC)

(Rissman et al., 2004). This method allows for estimation of condition-specific, task-evoked

connectivity by looking at correlated fluctuations in coactivity patterns across multiple stim-

ulus events. Compared with an alternative, commonly used methodology of standard or gen-

eralized psychophysiological interaction analysis (PPI/gPPI) (Friston et al., 1997; McLaren,

Ries, Xu, & Johnson, 2012), BSC has been shown to be more powerful for detecting task-

evoked connectivity in event-related designs that feature many trials, short stimulus durations,

and short ISIs, such as we have implemented here (Cisler, Bush, & Steele, 2014). To com-

pute trial-wise beta (i.e., activation) maps, we employed the “least-squares separate” (LS-S)

method proposed by Mumford et al. (2012) using AFNI’s 3dLSS function (Geib, Stanley,

Dennis, Woldorff, & Cabeza, 2017; Mumford Turner, Ashby, & Poldrack, 2012). Compared

with the original implementation of BSC in which each trial is included as a separate regressor

in a single general linear model (GLM), the LS-S method includes a regressor for the trial of inter-

est and then a nuisance regressor with all other trials of interest combined. This method is more

computationally efficient and, importantly, was found to produce more accurate estimates of
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trial-specific activations in simulations (Mumford Turner, Ashby, & Poldrack, 2012). Also in-

cluded in these subject-level GLMs were the following nuisance regressors: 6 motion param-

eters, 6 motion derivatives, 0th- to 4th-order Legendre polynomials to model low-frequency

drifts (per run), the first five principal components in white matter voxels, and first five princi-

pal components in the lateral ventricles. Tissue masks were created using the Computational

Anatomy Toolbox (CAT12) in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)

(Gaser & Dahnke, 2016). The ventricle region of interest (ROI) was created by masking the

cerebrospinal fluid segmentation with the lateral ventricle regions from the Neuromorphome-

tric Atlas included in CAT12. The inclusion of these tissue-based principal component regres-

sors, known as the aCompCor method, was intended to account for nonneural physiological

fluctuations as well as residual motion-related noise and has been shown to improve con-

nectivity estimates in resting-state studies (Caballero-Gaudes & Reynolds, 2017; Ciric et al.,

2017; Muschelli et al., 2014). The preprocessed 4D functional data (after smoothing and scal-

ing) served as the inputs into the 3dLSS function for beta-series estimation. Censoring was

performed at this stage and resulted in GLMs with a mean of 933 ± 32 volumes (i.e., obser-

vations) out of 972 collected volumes. These models included trials/volumes from a separate

identification task (not analyzed here) performed at the beginning of the scanning session. The

inclusion of all acquired data into one model ensured more accurate estimates of nuisance

effects. For each trial a separate GLM was constructed that included a total of 42 nuisance

regressors plus a regressor for the trial of interest and one for the sum of all other trial re-

sponses. The output of this process involved 3D beta maps for every trial indicating the model

coefficient at each voxel, serving as trial-level activation maps that could then be sorted by

formats.

Within-Format Normalization

To ensure that differences in voxel-wise activity levels and/or variance between formats did

not confound our estimates of connectivity, prior to extraction of average beta series from

ROIs, we implemented a within-format normalization procedure in which the beta maps were

first separated by format and concatenated, then each voxel-wise beta series was normalized

by subtracting the voxel-wise mean and dividing by the voxel-wise standard deviation. This

procedure was adapted from themultivariate pattern analysis literature, in which normalization

of beta values is commonly employed prior to classifier training (Misaki, Kim, Bandettini, &

Kriegeskorte, 2010). With this procedure, we could be more certain our connectivity estimates

were derived from covariance in the pattern of trial-level activation, rather than biased by the

magnitude of activations, per se.

Beta-Series Extraction and Scrubbing

We extracted the average beta series in each of 202 cortical and subcortical ROIs from the

Brainnetome Atlas (Fan et al., 2016), which represented the reduced set of ROIs (originally

246) after accounting for signal dropout (Figure 6; see Supporting Information Methods). We

chose the Brainnetome Atlas as it a connectivity-based parcellation which provides a bio-

logically plausible set of fine-grained regions in both cortex and subcortex (Fan et al., 2016).

Since censoring (i.e., exclusion of high-motion/outlier volumes) was performed in subject-level

GLMs, some trials’ convolved response contained fewer volumes in the final model. Note that

the hemodynamic response to a single trial lasted approximately 13.1 s and spanned either

six or seven volumes of data at our 2-s sampling rate (TR). We expected less reliable beta

estimates for trials in which the response profile contained censored volumes. Therefore, we

implemented a “beta-scrubbing” approach similar to Ray et al. (2017), in which we excluded

trials during which two or more volumes were censored (i.e., the associated beta was removed
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Figure 6. Functional connectivity and consensus clustering pipeline. The data processing pipeline is depicted, starting from trial-level beta
map estimation to final group-level allegiance matrices and community assignments. Gray arrows indicate the stepwise progression from one
stage of processing to the next. All plots portray representative data from the analysis.

from the series before running correlations). Across the original sample of 40 subjects, the

median number of retained trials was 147 (91.9%). We determined six subjects were outliers

in the number of retained trials based on a threshold of 3.5 × the median absolute deviation

(MAD), a metric for robust outlier detection (Leys, Ley, Klein, Bernard, & Licata, 2013). These

subjects thus demonstrated a significant degree of motion compared with the rest of the sample

and were excluded from further analyses, along with one additional subject who demonstrated

significant signal dropout (see Supporting Information Methods). In the final sample of 33 sub-

jects, out of 80 trials presented for each format, there was an average of 74.2 ± 5.8 (92.8 ±
7.3%) trials used for symbolic and 74.6 ± 5.2 (93.2 ± 6.4%) used for nonsymbolic. A paired

t test indicated the number of retained trials was not significantly different between formats

(t(32) = −1.08, p = 0.29)
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Functional Connectivity

To construct subject-level connectivity matrices, we computed the Pearson correlation be-

tween all region pairs by using the average beta-series vector from each region, yielding a

202× 202matrix that was symmetric about the diagonal (Figure 6). Matrices were constructed

for symbolic and nonsymbolic trials separately. Correlation coefficients were Fisher Z trans-

formed and converted to z scores via dividing by the standard error ( 1√
N−3

), where N is the

number of observations (i.e., betas) retained after the scrubbing procedure (Fisher, 1915). The

z-score matrices served as the final subject-level matrices for network analyses.

Modularity Maximization and Consensus Clustering

To characterize network topology during the symbolic and nonsymbolic conditions, we em-

ployed the graph-theoretical approach of modularity maximization. This data-driven cluster-

ing procedure attempts to partition a network into nonoverlapping communities where each

node is assigned to exactly one community, such that there is high within-community and low

between-community connectivity (Newman, 2006). The modularity quality function quanti-

fies the degree to which this is achieved given a partition of matrix w. Specifically, we em-

ployed a generalized Louvain algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008)

that maximized a variant of the standard Newman–Girvan quality function, termed Q*, which

incorporates an asymmetric treatment of negative weights, as proposed by Rubinov & Sporns

(2011; Dwyer et al., 2014). This modified treatment of negative weights is recommended for

functional networks because of differing neurobiological significance of positive and negative

correlations in BOLD timeseries (for further discussion, see Rubinov & Sporns, 2011) and is

calculated as follows:

Q∗ =
1

v+ ∑ij
(w+

ij − γe+ij )δMi Mj
− 1

v+ + v− ∑ij
(w−

ij − γe−ij )δMi Mj

where each brain region i is assigned to community Mi and region j is assigned to community

Mj; δMi Mj
= 1 if Mi = Mj and equals 0 otherwise; e±ij is the within-community connection

strength expected by chance for either positive or negative weights; v+ and v− denote the sum

of all positive and negative weights in the network, respectively; and, γ is the structural resolu-

tion parameter, which influences the size of the detected communities (Reichardt & Bornholdt,

2006) (see below for details of a data-driven approach to choosing a value for this parameter).

The Louvain algorithm uses a two-step procedure in which first every node is assigned to its

own community, and iterative moves are made assigning a node to its neighboring community

until a maximum Q* is reached. In a second step, the resulting communities are combined

into a smaller network that sums the node weights within each community, and this simplified

network gets submitted back to the first step for a second pass, and so on, until no changes

can be made in step 1 to improveQ* (Blondel et al., 2008). Critically, the resulting community

structure is dependent on the random order of moves considered at each pass. In principle,

there is some “optimal” partition of the network, that is, a partition or set of partitions exists that

returns the highest possibleQ* for that matrix. In practice, the optimal partition of a given net-

work is unknown and multiple iterations of modularity maximization result in distinct, though

often similar, solutions, referred to as the so-called degeneracy of modular solutions (Good,

De Montjoye, & Clauset, 2010). Degeneracy can be leveraged through the use of consensus

clustering methods, which aggregate across many partitions of the same network to define a

consensus partition (Lancichinetti & Fortunato, 2012). We implemented a multistep approach

that involved modularity maximization and consensus clustering at the subject level, then con-

sensus clustering at the group level (Figure 6).
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Each fully weighted, subject-level matrix was first partitioned using the generalized com-

munity Louvain algorithm (Blondel et al., 2008) (via the community_louvain.m function of the

Brain Connectivity Toolbox (BCT), http://www.brain-connectivity-toolbox.net, with the “neg-

ative_asym” flag). The algorithm was run 103 times, with each iteration resulting in a single

partition of the 202 regions into communities (i.e., a vector of values indicating the commu-

nity assignment for each region). From these partitions, a 202 × 202 allegiance matrix was

constructed which represents, at each cell, the percentage of iterations in which two regions

were assigned to the same community (Bassett et al., 2015) (via the agreement_weighted.m

function of the BCT). The subject-level allegiance matrix was then further clustered using a

consensus clustering procedure to obtain a final, consensus partition of regional communities

(Lancichinetti & Fortunato, 2012) (via the consensus_und.m function of the BCT; note the “tau”

parameter was set to 0.5 for all analyses herein, which thresholds the allegiance matrix to re-

move elements weaker than 0.5, i.e., when there is less than 50% agreement across partitions).

The final subject-level partitions were then used to create a group-level allegiance matrix that

represented, at each cell, the percentage of subjects in which two regions were assigned to

the same community. The same consensus clustering procedure was then used to determine

the final group-level community assignments (Figure 6). Because assigned community labels

are arbitrary, labels were maximally matched between the final partitions of the symbolic and

nonsymbolic conditions based on community overlap (via the pair_labeling.m function of the

Network Community Toolbox, http://commdetect.weebly.com). As a final step, permutation

testing was performed to reduce the set of communities to only those demonstrating signifi-

cance at the subject level (see Supporting Information Methods).

Defining the Structural Resolution Parameter

When applying modularity maximization, an important consideration is the definition of the

free parameter, γ, referred to as the structural resolution parameter. The effect of γ is such

that lower values result in fewer and larger communities, and higher values result in more and

smaller communities, which provides some constraint on the topological scale of the resulting

partitions.We fully sampled this parameter space in Figure 7A and B, varying γ from 0.05 to 15.

At the highest settings, the algorithm discovered as many communities as there were regions

(i.e., all singletons, which refers to regions that are assigned a community unto themselves).

To further refine this space to a range of interest, we determined the point at which there was

relatively little change in community structure. We used a sliding window approach in which

we calculated average normalized variation of information, a measure of partition distance,

over community partitions within a window size of 0.35 (Meilǎ, 2007). This procedure revealed

that at approximately γ = 5, there was little change in community structure, suggesting that a

stable set of strongly connected (nonsingleton) communities existed at this topological scale,

and that beyond this point, nodes from these communities progressively became singletons

and no new community organization was discovered (Figure 7B and C). We therefore adopted

the range from γ = 0.05 to 5 as our resolution range of interest for all subsequent analyses.

With the range of interest defined, we still needed to determine the ideal setting of γ for

the community-level analysis (note that for the global- and region-level analyses, we present

the results across the full range of interest; Figures 1 and 4). Though setting γ to an arbitrary

value of 1 is common practice, this is not necessarily optimal. A more principled approach

involves “sweeping” across parameter space and using some heuristic to determine the op-

timal value, for example, where community definitions are most consistent across repeated

iterations (Betzel & Bassett, 2016; Betzel et al., 2017; Gu et al., 2015). Since we were inter-

ested here in a comparison of network architecture between the symbolic and nonsymbolic
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Figure 7. Resolution parameter sweep. (A and B) Results of a parameter “sweep,” in which the structural resolution parameter (γ) was varied
from 0 to 15 in increments of 0.05, with 100 iterations of the multistep consensus clustering approach at each level of γ. The mean for each
format is plotted in red and blue, with shaded regions indicating the SD across iterations. (C) Mean partition distance over sliding window
of ±3 steps (window size = 0.35 γ) is plotted for each format, measured using the normalized variation of information (Meilǎ, 2007). This
plot indexes the change in community structure over incremental steps in γ, highlighting the point in parameter space in which no new scale
of community organization is discovered, at γ ≈ 5. We used this result to define the range of interest for our analyses of format differences
across resolutions (i.e., γ = 0.05–5). (D) The red dashed line indicates the γ at which the variability (SD) of flexibility was maximal, with
flexibility defined as the number of regions that changed their community assignment between the symbolic and nonsymbolic conditions.
The maximum SD would result from half of all regions changing community assignments and the other half maintaining their assignment. The
distribution at each gamma value represents the result of all pairwise comparisons of the 100 group-level partitions generated for each format
at that step. The mean of this distribution (black circle) was used to determine the optimal gamma setting for further analyses (i.e., γ = 2.45).

conditions, we wanted to conduct our investigation at a resolution that would be sensitive

to both similarities and differences between formats. To achieve this, we employed a heuris-

tic, used previously by Mattar et al. (2015), where the optimal γ value is that which maxi-

mizes variability in the flexibility coefficient across regions. Flexibility is defined simply as the
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proportion of (task) conditions in which a region changes its assigned community (calculated

via the flexibility.m function of the Network Community Toolbox). With only two conditions,

a region’s flexibility can be 1 or 0, and the variability of flexibility is the standard deviation of

the vector of 1’s and 0’s (one value for each of the 202 region). By maximizing the variability of

flexibility across brain regions, we are looking for a γ at which there is a balance between sta-

ble and changing community assignments between conditions (i.e., is maximal if exactly half

of regions change their assignment between conditions). Importantly, the procedure does not

ensure the differences are significant within subjects (which we assess via permutation testing),

just that some differences and some similarities exist between the final group-level partitions

of each condition. This approach is thus orthogonal to the prospect of finding reliable within-

subject effects. To determine the optimal γ setting for further investigation, we performed the

multistep group partitioning procedure 100 times at each value of γ, ranging from 0.05 to 5

in increments of 0.05 (for this analysis, subject-level matrices were partitioned 100 times with

community_louvain.m). For each iteration, we calculated the flexibility of nodal assignments

between formats in the final group-level partitions (Figure 7D). At low levels of γ there are

fewer communities (Figure 7A) and the region assignments are stable between formats, thus

resulting in many regions with a flexibility of 0, that is, low variability across regions. At high

levels of γ, there are many communities, including an increasing number of singletons. After

γ values ≈ 2.8, the number of nonsingleton communities detected drops, due to the fact that

a few previously detected communities break apart into singleton communities. Ultimately,

we found a maximum in the mean variability (SD) of flexibility at an intermediate value of

γ = 2.45. The subsequent community-level analyses involved modularity maximization using

this value.
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