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Abstract 

Background:  A challenge of understanding the mechanisms underlying cognition including neurodevelopmental 
and neuropsychiatric disorders is mainly given by the potential severity of cognitive disorders for the quality of life 
and their prevalence. However, the field has been focused predominantly on protein coding variation until recently. 
Given the importance of tightly controlled gene expression for normal brain function, the goal of the study was to 
assess the functional variation including non-coding variation in human genome that is likely to play an important 
role in cognitive functions. To this end, we organized and utilized available genome-wide datasets from genomic, 
transcriptomic and association studies into a comprehensive data corpus. We focused on genomic regions that are 
enriched in regulatory activity—overlapping transcriptional factor binding regions and repurpose our data collection 
especially for identification of the regulatory SNPs (rSNPs) that showed associations both with allele-specific binding 
and allele-specific expression. We matched these rSNPs to the nearby and distant targeted genes and then selected 
the variants that could implicate the etiology of cognitive disorders according to Genome-Wide Association Stud-
ies (GWAS). Next, we use DeSeq 2.0 package to test the differences in the expression of the certain targeted genes 
between the controls and the patients that were diagnosed bipolar affective disorder and schizophrenia. Finally, we 
assess the potential biological role for identified drivers of cognition using DAVID and GeneMANIA.

Results:  As a result, we selected fourteen regulatory SNPs locating within the loci, implicated from GWAS for cogni-
tive disorders with six of the variants unreported previously. Grouping of the targeted genes according to biological 
functions revealed the involvement of processes such as ‘posttranscriptional regulation of gene expression’, ‘neuron 
differentiation’, ‘neuron projection development’, ‘regulation of cell cycle process’ and ‘protein catabolic processes’. We 
identified four rSNP-targeted genes that showed differential expression between patient and control groups depend-
ing on brain region: NRAS—in schizophrenia cohort, CDC25B, DDX21 and NUCKS1—in bipolar disorder cohort.

Conclusions:  Overall, our findings are likely to provide the keys for unraveling the mechanisms that underlie cogni-
tive functions including major depressive disorder, bipolar disorder and schizophrenia etiopathogenesis.
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Background
Looking back over the past decade of human genomics, 
one can therefore assert that the successful completion of 
Human Genome Project [1] and 1000 genomes [2] pilot 
project produced a remarkable increase in our knowledge 
on genetic variants. Among these, the most common 
type of variation are single nucleotide polymorphisms 
abbreviated to SNPs. One estimate is that there are 150 
million SNPs in the human genome. However, most SNPs 
lack any functional significance and only a small fraction 
of base substitutions can have phenotypic manifestations 
appearing as changes in the amino acid sequence of the 
resulting protein product, or changes to the level of gene 
expression [3, 4]. These functional SNPs play a vital role 
with respect to inter individual’s disease susceptibility 
and drug response [5, 6]. The framework of the Genome-
Wide Association Studies, GWAS, [7] has dominated 
the investigation of the correlation between the pheno-
type and certain genetic variants. Presently, more than 
16,000 SNPs and small insertions/deletions have been 
associated with specific human outcomes, diseases and 
traits according to the GWAS Catalog by the US National 
Human Genome Research Institute (NHGRI) [7, 8]. 
It should be noted that about 85% of potentially func-
tional variants are expected to be located in non-coding 
regions, and a smaller number thereof is believed to act 
through the regulation of gene expression [9, 10].

The problem is it seems impossible to distinguish the 
association signals detected from a causative variant and 
from a number of tag SNPs that are likely part of a larger 
region of linkage disequilibrium [11]. Moreover, several 
causal variants may converge to create the significant 
GWAS signals, which are related to one common tag SNP 
[12]. Thus, the association of any genetic variants with 
the disease does not necessarily mean the functional-
ity of these variants. The GWAS-implicated associations 
accordingly, can be difficult to transfer into the under-
standing of molecular mechanisms that underlie the phe-
notypic outcome. In general, GWAS signals have rarely 
been tracked to causal polymorphisms thus far. This adds 
to the complexity of the development of effective methods 
for disease treatment and prevention [13].

A second problem is the significant heterogeneity of 
natural human populations that can be taken care of 
through proper quality control and study setup including 
extended cohorts of patients and controls. Using the data 
from The Encyclopedia of DNA Elements, ENCODE, 
[14] can play an important role in contributing to the 

latter issue. Since the ENCODE Project was initiated with 
the aim to find all functional elements in the genome, 
it has accumulated numerous data on chromatin and 
transcribed genes obtained from various cell lines and 
tissues, and based on these, candidate regulatory SNPs 
may be found. In particular, available ChIP-seq data on 
allele-specific binding of different transcription factors 
(TFs) could be considered as a clear sign that the SNPs 
with regulatory potential are located within the genome 
regions occupied by these factors [15–17]. ChIP-seq data 
on allele-specific binding of active chromatin marks can 
also provide important insights towards the localization 
of regulatory variants particularly in combination with 
allele-specific expression profiles from RNA-seq [15, 16]. 
Thus, the study of allele-specific events of any kind seems 
very valuable for identifying the functional regulatory 
consequences of non-coding SNPs. Notably; these allow 
analyzing the functionality of a significant amount of 
SNPs utilizing a relatively small amount of experimental 
datasets [17].

There is overwhelming evidence for the existence of 
substantial genetic influences on general and specific 
cognitive abilities, and brain-behaviour relationships 
in healthy and pathological conditions [18, 19]. Nev-
ertheless, until recently the genetics of cognition was 
constrained by the lack of information. The neurologi-
cal mutations with rather severe cognitive effects have 
been practically prevalent throughout the known vari-
ants [20]. The current advances in the identification of 
genetic variation when integrated with the results of 
genome-wide expression analyses now allow to investi-
gate the molecular-genetic mechanisms that drive cog-
nition and disorders thereof [21]. Therefore, the goal of 
this work was to reveal novel drivers of certain human 
neurodevelopmental and neuropsychiatric  traits, and/
or disorders including major depression, schizophrenia, 
bipolar affective disorder and autism spectrum disorders. 
The methodology applied focuses on adopting genome-
wide datasets (ChIP-Seq, ChIA-PET and RNA-Seq data) 
to find the functional SNP variants in the human genome 
and unravel the underlying mechanisms that are likely to 
promote cognitive deficits.

Results
Algorithm overview
An overview of the bioinformatic algorithm is shown in 
Fig. 1 as a flow chart. Further details regarding each step 
are described in the “Methods” section 
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1.	 Integrating ChIP-seq data from multiple human cell 
lines. The motivation was to select functional vari-
ants through the comprehensive bioinformatics anal-
ysis. At the first stage, we collected and incorporated 
all ChIP-Seq data for human cell lines of different ori-
gin that were available at the time of download (July 
2015).

2.	 Genomic alignment and data filtering. The goal 
of this technical step was to align raw input reads 
against the human genome. We kept only the hits 
that passed our primary quality filtering (in particu-
lar, alignment coverage) to ensure further accurate 
identification of the allele-specific events. To avoid 
the alignment biases that favored the reads contain-
ing the reference allele during further bias bind-
ing analysis [22] we realigned the ChIP-Seq reads to 
specific alternative genome sequences at an interim 
stage.

3.	 SNP calling, identifying SNPs in the regulatory regions 
(OTFRs) from the ChIP-Seq data. Obviously, the 
search and analysis of functional variants, especially 
non-coding ones is the major challenging task. In an 
effort to succeed, the first selection criteria was the 
location of the heterozygous SNPs within previously 
defined regulatory genome regions—Overlapping 
Transcriptional Factor binding Regions, here and 
further abbreviated to OTFRs [23]. After SNP calling, 
only polymorphic sites that survived further filtering 
were analyzed within OTFRs.

4.	 Identifying associated allele-specific binding events. 
At this step, we assessed the representation of differ-
ent alleles of the selected heterozygous SNPs in the 
ChIP DNA. The motivation was that the SNPs with 
a statistically significant allele-specific signal (asym-
metric SNPs) could influence the functional activity 
of the OTFRs in the human genome.

5.	 Identifying targeted genes. We assumed here that the 
asymmetric SNPs that fit the promotor, intronic and 
untranslated regions (UTRs) of human genome could 
directly contribute to the changes in the expression 
of their nearby genes. The available data on chroma-
tin interactions (ChIA-PET with an RNA pol II anti-
body) performed for HCT-116, K562 and MCF-7 
human cell lines were used in order to determine 
other possible gene targets that were located distantly 
from the asymmetric SNP position in the genome.

6.	 Identifying potentially regulatory variants (regula-
tory SNPs, abbreviated here and further to rSNPs). 
In this step, we selected the asymmetric SNPs that 
were associated with significant expression differ-
ences of their targeted genes through the analysis 
of several RNA-Seq datasets: the RNA-Seq data for 
HCT-116, K562 and MCF-7 cells from ENCODE and 

human RNA-Seq data from the International Can-
cer Genome Consortium, ICGC [24]. In the event 
the identified asymmetric SNPs are associated with 
significant expression differences of their targeted 
genes and are found in the population, these effects 
on the expression can continue in terms of pheno-
typic differences, including neuropsychiatric traits. 
To avoid a reference allele mapping bias [16, 25, 26], 
the RNA-Seq reads were realigned to specific alter-
native genome sequences. Then the heterozygous 
markers, namely the heterozygous SNPs mapped in 
the coding regions of the targeted genes were col-
lected through RNA-Seq data analysis. Next, the sig-
nificant (p < 0.05) allele-specific expression bias was 
assessed for the corresponding target genes using the 
selected markers. The resulting variants were further 
considered as rSNPs. If there was no SNP ID avail-
able for the resulting variant, we provided the des-
ignation like chr10:70716212, where chrN is human 
chromosome and the latter number—the rSNP posi-
tion on the chromosome, bp. The targeted genes for 
the selected rSNP panel (point 5 from the Algorithm 
list) were recognized as candidate genes that could 
contribute to phenotypic outcome.

7.	 Link the rSNPs to the risk of a spectrum of cognitive 
disorders. At this step, we collected GWAS-impli-
cated associations for a spectrum of traits related to 
cognition and cognitive disorders. Next, we cross-
referenced the list of associations from GWAS with 
the rSNP list. Particularly, we assessed the overlap 
between the list of rSNPs and the list of the loci from 
− 10,000 to + 10,000 bp around each GWAS- impli-
cated SNP index. Then we specified MAF (minor 
allele frequencies) values for GWAS indexes and for 
selected regulatory variants independently through 
the open-source (dbSNP). We continued with only 
those previously annotated rSNP variants that 
had MAF values close to those given by dbSNP for 
GWAS-implicated indexes. The latter argued the 
case that the selected rSNPs were closely linked to 
the GWAS-implicated loci and thus may have a role 
in cognitive functions and suggest a higher risk of 
cognitive disabilities or disorders.

8.	 Identifying asymmetry in the expression of the tar-
geted genes. To ensure the regulatory potential of the 
selected rSNPs we utilized the RNA-Seq datasets for 
two brain regions: the part of frontal cortex and the 
part of anterior cingulate from the patients that were 
diagnosed schizophrenia and bipolar affective dis-
order available by Xiao et al. [27]. Here we assessed 
the targeted genes that were differentially expressed 
between certain patient groups and controls depend-
ing on brain region.
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Fig. 1  The flowchart representing the graphical overview of bioinformatic pipeline. Light-grey rounded-rectangular shapes present the utilization 
of raw data. asSNP—SNP that is associated with significant allele-specific binding bias, rSNP—regulatory SNP, DE—differential expression, MAF—
minor allele frequency, ENCODE—encyclopedia of DNA elements, ICGC—international cancer genome consortium
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9.	 Define the potential biological role of the selected reg-
ulatory variants. Further, we assessed the composite 
functional gene–gene interactions between the tar-
geted genes and the genes most related to the origi-
nal targeted list by GeneMANIA [28]. We also con-
ducted the gene-annotation enrichment analysis and 
functional annotation clustering using The Database 
for Annotation, Visualization and Integrated Discov-
ery, DAVID tools [29, 30].

Identify SNPs that are associated with allele‑specific 
binding and their targeted genes
Chromatin immunoprecipitation sequencing (ChIP-seq) 
data of TFs, histone marks and other chromatin-associ-
ated factors often need to be interpreted in the context 
of gene regulation. In the present study, the task required 
first predicting the allele-specific binding from raw data 
as a straightforward way to home in on regulatory vari-
ation. According to this purpose, SRA ChIP-Seq data-
sets for 27 human cell lines and samples (Additional 
file 1) and ENCODE ChIP-Seq datasets for the HCT-116, 
K562 and MCF-7 cells were similarly analyzed result-
ing in the identification of 298367 unique heterozy-
gous SNPs within the OTFR regions. Then we selected 
14,436 SNPs that were defined as asymmetric—associ-
ated with a statistically significant allele-specific signal, 
and therefore could affect the functional activity of the 
regulatory regions in the human genome. Next step we 
analyzed the locations of the asymmetric variants in the 
human genomic regions and identified their nearby and, 
in possible cases, distant targeted genes—the genes with 
the expression that might be modified by the asymmet-
ric SNP variant (see “Methods” section for details). As 
a result, 12,109 from the totaled analyzed asymmetric 
SNPs were suggested to affect the expression of 9876 tar-
geted genes and entered further analyses.

Integrate with gene expression profiling (RNA‑Seq) data
We assumed that the allele-specific expression of the tar-
geted genes observed through the RNA-Seq data analy-
sis could be largely attributable to the regulatory impact 
of the associated polymorphic variants. At this stage, we 
employed three ENCODE RNA-Seq datasets for HCT-
116, K562 and MCF-7 cells. The asymmetric SNPs that 
were mapped within transcribed genomic regions were 
also analyzed using the ICGC human RNA-Seq dataset 
(Methods). Out of 12,109 asymmetric SNPs with allele-
specific expression analyzed using heterozygous SNP 
markers (Methods), 1633 variants (nearly 13%) had evi-
dence of allele-specific expression differences (p < 0.05 
by binomial test) of the corresponding targeted genes. 
These variants were considered rSNPs that were further 
analyzed as candidate susceptibility factors in cognitive 

disorders both with their targeted genes (Additional 
file 2: Table S1).

Integrate with genome‑wide association (GWAS) data
To assess the biological role of identified rSNPs, we 
examined their overlap with the loci that have been asso-
ciated with human cognitive disorders or disabilities 
through GWAS (Methods). For each of resulting 1174 
GWAS-implicated index SNPs we examined the presence 
of identified rSNPs within the − 10,000 to + 10,000  bp 
window. We assumed here that the certain rSNP is in one 
linkage group with the index SNP since 1 centimorgan 
is approximately equal to DNA region of 1 million base 
pairs [31]. We also examined if these rSNPs have MAF 
values close to those of GWAS-implicated index SNPs to 
ensure the linkage (see “Methods” section for details).

This identified fourteen unique rSNPs within GWAS-
implicated loci that were associated with risk of cognitive 
disorders and totalled twelve targeted genes (Additional 
file 2: Table S2). These regulatory variants were regarded 
the candidate disease drivers, including a potential 
impact on schizophrenia, depression and autism spec-
trum disorders developing by leading to changes in the 
expression of corresponding target genes. Figure  2 rep-
resents the locations of the selected rSNPs in the human 
genome.

Target gene annotation based on gene ontology 
and biological pathways
Figure  3 shows that physical interactions, co-expression 
and certain co-localization are apparent among poten-
tially affected genes, such as TOMM40, DDX21, NRAS 
and NUCKS1. Among the targeted genes, the protein 
products of NRAS and RAB25 have common structural 
domain and were identified as interacting partners by 
GeneMANIA [32]. The totaled list of query genes and the 
interaction gene–gene network details are given in Addi-
tional file 2: Tables S3 and S4, respectively.

The functions of the potentially affected proteins 
together with the other associated proteins (consider-
ing physical and genetic interactions by GeneMANIA) 
were analyzed using a DAVID software. Pathway analy-
ses revealed 15 nominally enriched gene-sets, which 
showed partial overlap in terms of the underlying genes. 
The enriched gene-sets included cell cycle, regulation of 
protein catabolic processes, innate immune response acti-
vating cell surface receptor signaling pathway and stimula-
tory C-type lectin receptor signaling pathway (Additional 
file 2: Table S5). The results show that these genes are also 
involved in the positive regulation of protein modification 
by small protein conjugation or removal; posttranscrip-
tional regulation of gene expression; neuron projection 
development; cell morphogenesis involved in neuron 
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differentiation and multiply signaling pathways. Thus, in 
determining the functions of the identified rSNPs in terms 
of biological behaviors of the potentially targeted genes, 
we can speculate that they are possibly important in pro-
tein metabolism (including catabolism, phosphorylation, 
transmembrane transport and import into mitochondrial 
matrix), regulation of cell cycle, regulation of gene expres-
sion, neuron differentiation and development. Accord-
ingly, the PSMA5 protein, PSMA4 and PSMA7 proteins 
that interact with the protein products of the targeted 

gene panel are associated with the hsa03050: Proteasome 
biological pathway by KEGG (Additional file 2: Table S5). 
The stimulatory C-type lectin receptor signaling pathway 
enriched in targeted genes is involved in regulating of 
immunopathogenesis [33] and guiding the dendritic cells 
in immunity [34].

Analysis of effects on human transcriptomes
We further screened a panel of human cases of schizo-
phrenia and bipolar disorder available by Chun Xu and 

Fig. 2  Circular visualization of the distribution of the identified rSNPs in the human genome from R. Grey lines with the numbers along the 
circumference: individual human chromosomes; the black asterisks: the locations of the centromeres. The IDs for the certain rSNPs are listed in the 
callouts. The chr(chromosome number):the number(rSNP position on the chromosome, bp) callouts are given for not-annotated variants (according 
to dbSNP)
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colleagues [27] for expression of rSNP targeted genes 
when depending on the tissue and the patient cohort.

As a result of analysis by DeSeq 2.0, NRAS and 
CDC25B targeted genes happened to be DE in the 
frontal cortex of schizophrenia-vs-controls and 

bipolar-disorder–vs-controls groups, respectively 
when considering a significance threshold of adjusted 
P value ≤ 0.1 after correcting for multiple testing. Both 
NRAS and CDC25B genes were higher expressed in 
the frontal cortex of the certain patient cohorts when 

Fig. 3  Function prediction of the targeted gene panel by GeneMANIA. The initial list of targeted genes and the type of connections between 
genes/proteins are illustrated in the functions and networks legends, respectively
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compared to controls (logFC of 0,2 and 0,3, respectively). 
Two other targeted genes happened to be DE in the ante-
rior cingulate of bipolar disorder patients vs controls: 
DDX21 (adjusted P-value < 0.00012; logFC = −0.7) and 
NUCKS1 (adjusted P-value < 0.1; logFC = −0.28). No tar-
geted gene was successful to survive the correction for 
multiple testing in the anterior cingulate of schizophre-
nia patients vs controls (when considering a significance 
threshold of adjusted P-value ≤ 0.1).

Discussion
The terms ‘neurodevelopmental and neuropsychiat-
ric  disorders’ can cover, to varying degrees, diverse dis-
ease classifications including autism, schizophrenia, 
bipolar disease, etc., that are leading causes of disability 
worldwide with environmental, genetic and epigenetic 
risk factors to produce a range of phenotypes in each 
complex case. Despite seemingly distinct primary diag-
noses, the considerable phenotypic heterogeneity, as well 
as a significant clinical overlap between the subtypes 
of the certain disease, has been reported [35] as well 
as an overlap between some genome-wide significant 
SNPs for different diseases has been observed [36]. The 
recent data, primarily genome-wide association studies 
(GWAS), provides the evidence for genetic risk factors. 
These include genome-wide association with (1) schizo-
phrenia (such as the major histocompatibility complex, 
MHC, region at 6p22-p21 [37]; (2) depression [38]; (3) 
bipolar disorder [39], including the variants within ANK3 
[40], NCAN [41], CACNA1C and ODZ4 [42] and (4) spe-
cific chromosomal regions: 2q, 5, 7q, 15q, 16p [43, 44] 
and risk genes [45, 46] for autism. Yet, the exact etiology 
of these disorders remains unknown. It is therefore plau-
sible to believe that different “biological” subgroups of 
the disease exist, with different underlying genetic etiolo-
gies mapping on specific pathways, which underlie spe-
cific dysfunctions. Moreover, GWAS often fail to identify 
replicable common variants [43, 47] or known candidate 
genes within the GWAS-implicated loci [48, 49]. Assum-
ing that functional alterations affect quantifiable pro-
cesses including regulatory processes, the comprehensive 
analysis of genome-wide data is poised to deliver crucial 
insights into the nature of cognition and the neurodevel-
opmental and neuropsychiatric disorders thereof.

In this study focusing on the identification of functional 
risk variants for major neurodevelopmental and neu-
ropsychiatric disorders, we chose to investigate regula-
tory variation including non-coding, that might strongly 
influence gene regulation and thus provide relevant 
information about underlying pathways and molecular 
mechanisms. Overall, our findings suggested that among 
the total of identified rSNPs, fourteen fall within the 
GWAS-implicated loci that are associated with the risk of 

cognitive disorders (Table 1). Moreover, we identified the 
corresponding targeted genes that are involved in several 
processes that seem to be critical for the neurodegenera-
tion and brain dysfunction (Additional file 2: Table S5).

Overall, recent studies have shown the histone modi-
fications such as phosphorylation, methylation, acet-
ylation, and ubiquitination, can recruit chromatin 
remodeling protein complexes or alter the structure of 
chromatin to impact gene expression [50, 51]. In particu-
lar, lysine methylation regulates the activation (H3K4, 
H3K36, and H3K79) as well as repression (H3K9, H3K27, 
and H4K20) of transcription (reviewed in [52]). The last 
decade has been marked by an increased interest in relat-
ing epigenetic mechanisms to gene transcription, protein 
synthesis, and synaptic plasticity and distally on learn-
ing, memory, complex human behaviors and other  cog-
nitive functions [53–57]. In the case of schizophrenia it 
was shown that a number of genes mapping to risk loci 
may regulate the gene expression through epigenetic 
mechanisms [58]. Thus, in terms of potential regulatory 
consequences, the most interesting result seems to be the 
identification of SETD1A and DDX21 genes that are tar-
geted by rs2303222 and chr10:70716212 variants in our 
study. These two rSNPs, rs2303222 and chr10:70716212, 
were found mapped within the loci from − 10,000 to 
+ 10,000 bp around rs11865038 (GWAS-implicated asso-
ciation for Parkinson’s disease) and rs2017305 (GWAS-
implicated association for depression), respectively 
(Additional file 2: Table S2).

The SET1 family of histone methyltransferases is 
responsible for depositing the H3K4 methylation mark 
on promoters of active genes [59, 60]. Particularly, the 
mutations that modify SETD1A function were docu-
mented to contribute to neurodevelopmental disorders, 
including autism and schizophrenia [61, 62] and also to 
gene silencing [63]. The DDX21 gene encodes a nucleo-
lar protein that is a putative RNA helicase characterized 
by the conserved DEAD box motif (Asp-Glu-Ala-Asp). 
This DDX21 helicase is believed to play important roles 
in coordinating ribosomal RNA transcription and pro-
cessing, in RNA editing and RNA transport [64, 65]. Data 
indicate that DDX21 was confirmed to associate with 
SET8 methyltransferase [66] and is implicated in a num-
ber of human diseases [67]. The SET8 interactor protein 
specifically catalyzes mono-methylation of K20 on his-
tone H4 (H4K20me1) and thus has been implicated in 
important processes including gene transcriptional regu-
lation, cell cycle control and maintenance of the genome 
integrity [68, 69]. Thus, our results make  a compel-
ling  contribution to the  case for the interfaces between 
regulatory variation and the epigenetic mechanisms to be 
involved in the pathogenesis of neurodevelopmental and 
neurodegenerative disorders.
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The DDX21, rs2303222 targeted gene for RNA helicase, 
was also shown to be involved in nuclear and mitochon-
drial splicing. It is worth to note that two other rSNPs—
chr19:45394278 and chr19:45394955 novel variants 
without available SNP ID showed an evidence to con-
tribute to the mitochondria function. These were both 
associated with cognitive decline according to GWAS 
and affect the expression of shared TOMM40 targeted 
gene, encoding the channel-forming subunit of the TOM 
translocase complex that is essential for import of protein 

precursors into mitochondria. Overall, this is in line with 
the hypothesis that there is an association of autism [70, 
71], bipolar disorder [72, 73], schizophrenia and other 
neuropsychiatric diseases [74–76] with impairments in 
multiply aspects of mitochondrial function including 
mitochondrial  trafficking that affect neuronal synaptic 
transmission, neuronal growth and consequently neu-
ronal plasticity and connectivity.

The rs2303222 variant targets one more gene, STX4, 
and our results suggest that this candidate contributes 

Table 1  The rSNPs selected for  the GWAS traits related to  human diseases and  cognitive disorders with  their targeted 
genes

The chromosome position in chr:number format is given in place of rSNP ID for six of the variants that are not reported in the Database of Single Nucleotide 
Polymorphisms (dbSNP, Build ID: {138}). Here chr is human chromosome and the number represents the rSNP position on the chromosome, bp; GWAS index—the ID 
for the GWAS-implicated SNP that is associated with the specific cognitive trait; combined: the GWAS-implicated associations for all from the list: autism spectrum 
disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia

rSNP ID Targeted gene GWAS index ID GWAS-impli‑
cated trait

chr10:70716212 DDX21 rs2017305 Depression 
(quantitative 
trait)

rs200167248 PSMA5 rs12049330 Major depressive 
disorder

chr11:125462855 STT3A rs548181 Combined

chr11:125462855 STT3A rs548181 Schizophrenia

rs79148226 STT3A rs548181 Schizophrenia

rs79148226 STT3A rs548181 Combined

chr1:115054172 CSDE1 rs3827735 Autism

chr1:115054172 CSDE1 rs11102807 Autism

chr1:115259341 CSDE1 rs10489525 Autism

chr1:115259341 NRAS rs10489525 Autism

chr1:115259341 CSDE1 rs8453 Autism

chr1:115259341 NRAS rs8453 Autism

rs4951261 NUCKS1 rs823114 Parkinson’s 
disease

rs823114 NUCKS1 rs823114 Parkinson’s 
disease

rs7536483 NUCKS1 rs823128 Parkinson’s 
disease

rs2303222 SETD1A rs11865038 Parkinson’s 
disease

rs2303222 AC135050.2 rs11865038 Parkinson’s 
disease

rs2303222 STX4 rs11865038 Parkinson’s 
disease

chr19:45394278 TOMM40 rs115881343 Cognitive decline 
(age-related)

chr19:45394278 TOMM40 rs2075650 Cognitive decline

chr19:45394955 TOMM40 rs115881343 Cognitive decline 
(age-related)

chr19:45394955 TOMM40 rs2075650 Cognitive decline

rs6116042 CDC25B rs3761218 Bipolar disorder

chr3:183874023 EIF2B5 rs1969253 Major depressive 
disorder
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exclusively to Parkinson’s disease. The corresponding 
protein, syntaxin 4, is involved in synaptic plasticity in 
hippocampal neurons [77] but has not been previously 
documented to be associated with Parkinson’s disease, 
although the synaptic plasticity in the motor cortex was 
linked to skill learning in mice [78].

Another interesting result regarding all three 
rs4951261, rs823114 and rs7536483 as rSNPs (regulatory 
variants) is the shared NUCKS1 targeted gene encod-
ing a protein that links energy homeostasis, glucose 
metabolism and transcription. There is an evidence that 
NUCKS1 can regulate the recruitment of the RNA poly-
merase II enzyme and the chromatin accessibility in the 
specific promoter regions [79].

We also recognized shared targeted STT3A gene for 
chr11:125462855 and rs79148226 regulatory variants 
associated with GWAS-implicated loci for schizophrenia 
and schizophrenia combined with autism. The signifi-
cant associations of the variants in STT3A locus with the 
schizophrenia as well as the potential role in pathogenic 
mechanisms were previously documented [80]. Further, 
the mutations in STT3A are being considered in the dif-
ferential diagnosis for congenital disorders of N-linked 
glycosylation (CDG-N-linked) pathway. So it was shown 
by Freeze and colleagues [81] that the STT3A muta-
tion significantly impairs glycosylation of the biomarker 
transferrin in a previously unreported case of inherited 
glycosylation disorder characterized with broad clinical 
features including microcephaly, cerebellar atrophy, intel-
lectual disability and seizures. The available literature can 
be used to argue that STT3A functions is important for 
efficient protein folding and anterograde trafficking [82]. 
It’s important that the alterations in the proteostasis net-
work including protein folding contribute to abnormal 
protein aggregation in the pathology of various neu-
rodegenerative diseases [83–85], however the STT3A 
mutations may directly affect or may not directly affect 
neurodevelopment and cognitive function.

Summing the evidence, human studies revealed that 
the brain is particularly sensitive to changes in dosage 
of various proteins including from regulators to synaptic 
proteins to the coordinators of the transport and metabo-
lism of brain mRNAs [86, 87]. Dynamic changes that are 
required for synaptic plasticity, a cellular correlate for 
learning and memory, rely on protein synthesis and pro-
tein degradation. Thus, either of these cellular processes 
must be finely balanced as significant impairments could 
result in pathologies.

In our study, novel chr3:183874023 variant within 
the locus for major depressive disorder was matched to 
EIF2B5 gene. This gene encodes a subunit of eukaryotic 
translation initiation factor 2B (EIF2B), which has a role 
in protein synthesis as an essential regulator [88]. To give 

another example, among the nominally enriched targeted 
gene-sets, the regulation of protein catabolic processes 
was identified in the present study, in particular through 
the effects of rs200167248 on PSMA5 target. This gene 
was associated with major depressive disorder in the 
study (Table 1) and encodes a member of the peptidase 
T1A family, that is a 20S core alpha proteasome subunit 
[89].

Interestingly, a partial overlap in Gene Ontology terms 
for the underlying PSMA5 gene was found here between 
the ‘protein catabolic processes’ and the ‘innate immune 
response’ gene-sets. Another targeted gene that was 
associated with innate immune response is NRAS target 
for chr1:115259341 novel regulatory variant for autism. 
The protein product for NRAS shuttles between the Golgi 
apparatus and the plasma membrane [90]. This finding 
may be in correspondence to the evidence that altera-
tions in immune response were recognized among indi-
viduals diagnosed with autism spectrum disorders [91, 
92]. The chr1:115259341 variant in NRAS falls also to the 
promotor region of CDSE1 (cold shock domain contain-
ing E1) gene. Interestingly, CDSE1 is a distant target for 
the chr1:115054172 variant in 5′UTR of TRIM33. Both 
chr1:115259341 and chr1:115054172 rSNPs are located 
within GWAS-implicated locus for autism (Additional 
file  2: Table  S2). Here our findings are in accordance 
with the published findings that suggest NRAS-CSDE1 
as candidate genes mapping the previously reported link-
age region (1p13.2) for autism [93]. CSDE1, also known 
as UNR (upstream of N-ras), is an RNA-binding protein 
that may contribute to post-transcriptional control of 
gene expression in several ways: acting as an activator or 
inhibitor of translation initiation, stabilizing mRNA or 
promoting mRNA turnover [94–97]. Thus, the novel reg-
ulatory variants of chr1:115259341 and chr1:115054172 
are likely to play an important role in the proper control 
of brain gene expression and, consequently in cognitive 
functions.

Finally, our findings demonstrate that changes in the 
expression of a number of candidate genes identified 
in the study may contribute to the etiopathogenesis of 
schizophrenia and bipolar disorder. This could be due to 
the effects of the related rSNPs, regardless of whether the 
GWAS associations with the certain trait was significant. 
(In this regard, testing differential expression of the tar-
geted genes between the patients with distinct genotypes 
appears to provide interesting data. The available data-
sets have unfortunately not allowed us to conduct the 
analysis.)

Our data proposed, as mentioned in the “Results” sec-
tion, that the physical interactions and co-expression do 
exist among rSNP-targeted genes, including DDX21 and 
NUCKS1. Interestingly, both these genes were found 
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lower expressed in the anterior cingulate [98] of patients 
with bipolar disorder when compared to controls. This 
finding may represent a role of DDX21 in gene tran-
scriptional regulation [64] and of NUCKS1 in the DNA 
damage response [99] as candidate pathways in disease 
etiopathogenesis. It is worth to note, that the associ-
ated rSNPs (Table  1) do not fall in GWAS-implicated 
loci directly for bipolar disorder. We also could find no 
evidence of DDX21 and NUCKS1 expression changes to 
bipolar disorder or depression in papers. This is possible 
because the heterogeneities of disease phenotypes [100, 
101].

Further schizophrenia and bipolar disorder patients 
have shown higher expression of two different targeted 
genes: NRAS and CDC25B, respectively, in the fron-
tal cortex than controls. NRAS- encoded protein, an 
intrinsic GTPase of Ras superfamily, is generally asso-
ciated with cancer advance and progression [102, 103] 
but is also important in neurodevelopmental disorders 
for the role to transduce signal from activated receptors 
further to MAPK cascade [104]. As a proof of concept 
of candidate pathways, deregulation of CDC25 phos-
phatase proteins also has an essential role in cell-cycle-
driven neuronal death [104]. Moreover, the members of 
CDC25 family were documented as possible targets that 
have therapeutic potential in disease [105, 106]. Thus, 
our findings relating DE targeted genes might lead to 
new insights to explore the possible links for regulatory 
variants in different brain regions of schizophrenia and 
bipolar disorder. However, a role for identified regulatory 
variants and their gene targets in cognition and disorders 
thereof is yet to be seen in details.

Conclusions
Much attention has focused on unravelling the mecha-
nisms by which genetic variation can determine diver-
gence in gene expression levels and, consequently, the 
phenotypic outcome, yet we are still far from an inte-
grated, evidence-based understanding of the etiopatho-
genesis of cognitive disorders. Summing up, in the 
current study, we present novel findings that expand the 
repertoire of functional variation in human genome, rec-
ognize the targeted genes and provide an evidence rele-
vant to disease-associated effects of the identified rSNPs 
on cognition including on bipolar affective disorder, 
major depressive disorder and schizophrenia.

Methods
Data collection
To investigate the potentially functional SNPs in human 
genome and further interpret the underlying mecha-
nisms we collected the chromatin immunoprecipitation 

sequencing (ChIP-Seq, ChIA-PET) and transcriptional 
profiling (RNA-Seq) data available within the framework 
of international validated projects such as the Encyclo-
pedia of DNA Elements Project, ENCODE [14] and the 
International Cancer Genome Consortium, ICGC [24]. In 
total, we reprocessed 617 ChIP-seq for 29 unique samples 
and human RNA-seq data sets from two different studies. 
The samples were from Illumina HiSeq platform. SRA files 
were converted to fastq format by the fastq-dump tool.

ChIP-seq datasets were performed using antibodies 
towards histone epigenetic markers (anti-H3K27ac, anti-
H3K4 me1, anti-H3K4 me2, anti-H3K4 me3, anti-H3K27 
me3), transcriptional factors and a few other chromatin-
associated proteins (Additional file 1) and obtained from 
the following: ENCODE and SRA [107]. ChIA-PET and 
RNA-Seq datasets for HCT-116, MCF-7 and K562 cells 
were obtained from ENCODE.

The human RNA-Seq datasets were obtained from 
the International Cancer Genome Consortium (ICGC) 
Controlled Data (EGAD00001000215) by Seshagiri et al. 
[108] and from the NIH Short Read Archive (SRP035524) 
by Xiao et al. [27].

Trimming low quality positions
The Trimmomatic-3.2.2 program [109] was applied 
for the data pre-processing and removing the adapter 
sequences. To reduce false positives, only the genomic 
regions that were covered by at least 10 high-quality 
reads were further analyzed. We also excluded bases with 
Phred ≤ 20.

Human reference sequences
We used the human genome build 37 (GRCh37) assem-
bly based on the Genome Reference Consortium Human 
genome build 37. The genome sequence was downloaded 
from the UCSC Genome Center [110].

It was shown, that mapping the reads to a single ref-
erence genome can significantly affect the outcome of 
analyses of allele-specificity, both for RNA-seq and ChIP-
seq experiments [22, 25]. This will cause the reads repre-
senting the reference allele to be preferentially mapped. 
Thus, in order to avoid mapping bias towards reference 
alleles we constructed the specific alternative genome 
sequences by replacing the reference bases at the poly-
morphic sites with the bases representing the alternate 
alleles from the collection of all heterozygous SNPs iden-
tified directly from ChIP-Seq data. The alternate refer-
ence genomes were built independently for the HCT-116, 
K562 and MCF-7 cell lines. To realign the reads before 
the search for allele-specific events each specific alterna-
tive reference was used independently to utilize the raw 
data from the corresponding human cell line.
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Data alignment to reference genome sequences
Bowtie2 [111] or TopHAT2 [112] software was applied 
to map raw paired-end reads to reference genome. Then 
SAMtools 1.2 [113] and Picard tools were used to dis-
card the duplicated reads and PCR/optical artifacts. We 
continued with uniquely mapped reads at QMAP > 25 
threshold (SAMtools) to reduce the share of sequencing 
and alignment errors.

Determination of genomic regions
Our previous analysis of the ChIP-Seq data for multi-
ply original human cell lines resulted in defining a cer-
tain set of potentially regulatory regions in the human 
genome specified as OTFRs [23]. Each of OTFRs 
(Overlapping Transcriptional Factor binding Regions) 
showed the associations with specific phenotypic out-
come and contained binding sites for two or more tran-
scriptional factors. Thus, to identify functional SNP 
variants we analyzed only the reads that mapped to 
OTFRs after realignment of the available raw ChIP-Seq 
data.

Categories of gene elements, such as intronic regions 
and 3′\5′ UTRs as well as the transcription start sites for 
annotated genes (TSSs) were obtained from the GRCh37 
annotation data [114]. Promoter regions were set as from 
1,8 kbp upstream to 1,8 kbp downstream of all annotated 
TSSs.

SNPs calling
After preprocessing and alignment, all the ChIP-Seq 
reads that mapped within the OTFRs were filtered 
with the depth of 10 and a mapping quality of 25 set as 
threshold and then processed using SAMtools pileup, 
PerlScript and R [115]. As a result, we discovered 
298,367 heterozygous SNPs directly from ChIP-Seq 
data.

Quality‑control metrics for SNPs
To ensure accurate identification of the allele-specific 
events, all discovered SNPs were subjected to primary 
filtering. The SNPs in the following categories were 
eliminated: SNPs within sex chromosomes, mitochon-
drial DNA and repeat regions [116], SNPs within 5 bp of 
the regions that map to insertions/deletions, clustered 
SNPs (that is, those within 10 bp of two other SNPs) and 
SNPs with significantly different coverage of the refer-
ence and alternative alleles (p < 0.05 by binomial test). 
After this initial quality control, only the reads mapped 
to the heterozygous sites with at least three alleles that 
were identified from at least at two samples and two ref-
erence genome sequences were further analysed to avoid 
somatic mutations.

Analysis of the allele‑specific binding events
After an alignment to the alternative genomes described 
above by Bowtie2 [111], ChIP-Seq reads that were specif-
ically mapped to the specific allele of each heterozygous 
SNP were counted using SAMtools Perl library. The sig-
nificant (p < 0.01) differences for read counts between the 
reference and the alternative alleles were assessed using a 
two-sided binomial test (implemented in R). The result-
ing p-values were adjusted for multiple testing by Benja-
mini–Hochberg adjustment.

Determination of the targeted genes
To predict the potential targeted (affected) genes nearby 
the rSNP position we considered that the rSNPs that fall 
into the intronic, 3′\5′ UTRs and promoter regions may 
affect the expression specifically of these genes.

We also considered the possibility that each rSNP may 
affect a promotor of a distant gene, may be outside the 
associated risk region. To identify such distantly affected 
genes, we took advantage of an analysis of the recently 
available ChIA-PET data (“Data collection” section). A 
minimum of 20 paired ChIA-PET mapped reads that 
mapped to the certain genomic region was required. 
The filtering by at least 10 ChIA-PET reads mapped to 
the genomic regions in both directions was applied to 
minimize the mapping errors. Next, the average com-
bined area of ChIP-Seq RNA Pol II peaks was calculated 
in order to determine the effective size of the human 
genome. Then we built the contact matrix for the regions 
of ± 1000  bp from the positions of the SNPs associated 
with allele-specific binding bias and promoter regions 
of known human genes. The contacts that fit the inter-
secting and genomic regions and the interchromosomal 
contacts were excluded from the analysis. Pearson’s 
agreement criterion (p < 0.001) was applied to assess the 
reliable contacts.

Definition of heterozygous SNP markers through RNA‑Seq 
data analysis
RNA sequencing enables defining the allele-specific 
expression by measuring the sequence reads that are 
unambiguously mapped to each of the two gene alleles 
and, accordingly, assessing the preferential expression of 
the certain allele in a diploid genome. In this case, at least 
one exonic heterozygous SNP must fit the usable RNA-
Seq reads. The asymmetric SNPs that fell in the gene 
promotors and UTRs and were discovered from RNA-
Seq data were directly used for allele-specific expression 
analysis. Alternatively, we discovered the heterozygous 
SNP markers within the coding regions of the analyzed 
targeted genes through the analysis of the ICGC human 
RNA-Seq dataset (EGAD00001000215).
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Analysis of the allele‑specific expression events
RNA reads were realigned to each of the used human ref-
erence genomes using TopHAT2 [112]. From the mRNA 
sequence reads and the location of each assymetric 
SNPs, the appropriate base read at the location of each 
polymorphic site was extracted. Then both SAMtools 
pileup and custom-made R scripts were used to extract 
allele counts for each SNP. A minimum of 10 RNA reads 
crossing the heterozygous SNP position was required. 
An exon was considered to have allele-specific expres-
sion if the proportion of the expression between two 
alleles was significantly greater than 1.5 or less than 1/1.5 
(P-value ≤ 0.05). The Fisher exact test was used to exam-
ine the significance. The resulting p-values were adjusted 
for multiple testing by Benjamini-Hochberg adjustment.

Collecting the GWAS‑implicated associations
We used the ‘Alzheimer’s disease’, ‘autism’, ‘autism spec-
trum disorder’, ‘antipsychotic’, ‘anxiety’, ‘bipolar disorder’, 
‘cognitive’, ‘depression’, ‘depressive disorder’, ‘Parkinson’s 
disease’, ‘posttraumatic’ and ‘schizophrenia’ signatures 
for the GWAS Catalog query to define GWAS-implicated 
loci that could be related to cognitive disorders.

Determination of closely linked SNPs
The threshold for difference in the minor allele frequencies 
(MAF) was set ≤ 15% for considering that two analyzed 
SNPs fall within one linkage group. These served to choose 
the linked GWAS-implicated variants for the identified 
rSNPs when integrating with genome-wide association 
(GWAS) data. Here the variants, that were reported by 
the Database of Single Nucleotide Polymorphisms, dbSNP 
[117] were subjected to a direct allele frequency analysis.

Functional annotation of targeted genes
The tools of the DAVID Bioinformatics Resources (the 
Database for Annotation, Visualization and Integrated 
Discovery, DAVID) [29] were used to provide functional 
interpretation of targeted gene list derived from the 
study. All remaining parameters were kept at their default 
values. The results of functional enrichment analysis are 
given in the Additional file 2: Table S5.

GeneMANIA [32] web interface was also used to iden-
tify direct (physical binding) and indirect (functional) 
interacting partners of targeted genes based on genomic 
and co-expression data as well as published experimen-
tal data. The input was a list of twelve targeted genes 
(Table  1) which was then extended by GeneMANIA. 
Data sets were collected from publicly available databases 
according to the pipeline described in detail in [118]. A 
resulting functional association network illustrating the 
relationships among the genes is presented on the Fig. 3 
(see Additional file 2: Tables S3, S4 for details).

Differential gene expression (DEG) analysis
Once the target genes are predicted, investigating gene 
expression levels in the case of disease is useful as well 
to assess the effects of multiple genetic variants on gene 
function. The RNA-Seq data for the patients from the 
analyzed cohorts (see “Data collection” section) were 
realigned to the human reference genomes at an inter-
mediate stage. Then the DeSeq2 Bioconductor package 
[119] was applied to the data on certain tissues from the 
patient groups and controls. The resulting p-values were 
adjusted for multiple testing by Benjamini–Hochberg 
adjustment. Genes with Benjamini–Hochberg adjusted 
p-value < 0.01 were considered as significant.

R code
All statistics and circos imaging was done in R, version 
3.1.0 [115]. The custom-made scripts that were applied to 
perform the analyses and generate the plots are available 
upon request.
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