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ABSTRACT The heterogeneous stock (HS) is an outbred rat population derived from eight inbred rat strains.
HS rats are ideally suited for genome wide association studies; however, only a few genotyping microarrays
have ever been designed for rats and none of them are currently in production. To address the need for an
efficient and cost effective method of genotyping HS rats, we have adapted genotype-by-sequencing (GBS)
to obtain genotype information at large numbers of single nucleotide polymorphisms (SNPs). In this paper,
we have outlined the laboratory and computational steps we took to optimize double digest genotype-by-
sequencing (ddGBS) for use in rats. We evaluated multiple existing computational tools and explain the
workflow we have used to call and impute over 3.7 million SNPs. We have also compared various rat genetic
maps, which are necessary for imputation, including a recently developed map specific to the HS. Using our
approach, we obtained concordance rates of 99% with data obtained using data from a genotyping array.
The principles and computational pipeline that we describe could easily be adapted for use in other species
for which reliable reference genome sets are available.

KEYWORDS

genotyping-by-
sequencing

heterogeneous
stock

rat
imputation

Advances in next-generation sequencing technology over the past
decade have enabled the discovery of high-density, genome-wide
single nucleotide polymorphisms (SNPs) in model systems. Com-
prehensive assays of the standing genetic variation in these organisms
has allowed for the identification of quantitative trait loci (QTL) and
the application of numerous population genetic and phylogenetic
methods. However, due to the high degree of linkage disequilibrium
(LD) in QTL mapping populations, sequencing whole genomes is
not necessary. Many populations are the result of numerous gen-
erations of interbreeding inbred strains, allowing for recombination

to produce an admixed population with known founder haplotypes.
Due to the relatively slow rate of accumulation of recombination
events, these populations contain large chunks of the genome
derived from the same founder haplotype. Nearby SNPs are there-
fore often in strong LD with physically adjacent loci, effectively
‘tagging’ nearby variation and thereby reducing the number of sites
that need to be directly genotyped. Several reduced-representation
sequencing approaches that take advantage of LD structure have
been previously described (Miller et al. 2007; van Orsouw et al.
2007; Van Tassell et al. 2008; Baird et al. 2008; Huang et al. 2009;
Andolfatto et al. 2011; Elshire et al. 2011; Davey et al. 2011; Poland
and Rife 2012; Peterson et al. 2012; Sun et al. 2013; Scheben et al.
2017). Using these methods, thousands of SNPs can be identified in
large numbers of samples for a fraction of the price of whole-
genome sequencing (Chen et al. 2013; He et al. 2014). The advan-
tages of these methods are especially attractive when applied to less
commonly utilized species or strains for which genotyping micro-
arrays are not available.

Of the existing reduced-representation protocols, the genotyping-
by-sequencing (GBS) approach developed by Elshire et al. (Elshire
et al. 2011) has been frequently modified to accommodate other
species: soybean (Sonah et al. 2013), rice (Furuta et al. 2017), oat
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(Fu and Yang 2017), chicken (Pértille et al. 2016; Wang et al. 2017),
mouse (Parker et al. 2016), fox (Johnson et al. 2015), and cattle (De
Donato et al. 2013), among others. The greatly varying genomic
composition among organisms necessitates a diverse and customized
set of approaches for obtaining high-quality genotypes. As such, both
the GBS protocol and computational pipeline require modifications
when applied to a new species. Recent work from our group showed
that GBS can be effectively applied to outbred mice (Parker et al.
2016; Zhou et al. 2018; Gonzales et al. 2018) and rats (Fitzpatrick et al.
2013). However, those publications used protocols that had not been
optimized, leaving significant room for improvement in genotype
quality and marker density. Additionally, although several tools and
workflows for the analysis of GBS data have been described, including
Stacks (Catchen et al. 2013), IGST-GBS (Sonah et al. 2013), TASSEL-
GBS (Glaubitz et al. 2014), Fast-GBS (Torkamaneh et al. 2017), and
GB-eaSy (Wickland et al. 2017), the majority were developed and
optimized for use in plant species. Given the lack of well-developed
genomic resources in these species, they do not leverage the wealth of
genomic data available for model organisms such as rats. Here we
describe the customized computational and laboratory protocols for
applying GBS to HS rats.

The HS is an outbred rat population created in 1984 using eight
inbred strains and has been maintained since then with the goal
of minimizing inbreeding and maximizing the genetic diversity of the
colony (Johannesson et al. 2008; Woods and Mott 2017). After more
than 80 generations of accumulated recombination events, their
genome has become a fine-scale mosaic of the inbred founders’
haplotypes. The breeding scheme and the number of accumulated
generations has made the HS colony attractive for genetic studies.
Additionally, extensive deep sequencing data exists for many
inbred rat strains, including the eight HS progenitor strains
(Rat Genome Sequencing and Mapping Consortium et al. 2013;
Hermsen et al. 2015; Ramdas et al. 2019), allowing for accurate
imputation to millions of additional SNPs following direct gen-
otyping of only a subset.

Detailed here are the steps we have taken to optimize a rat GBS
protocol and computational pipeline. Drawing on existing protocols
(Elshire et al. 2011; Poland et al. 2012; Peterson et al. 2012; Parker
et al. 2016) as templates, we redesigned our previous GBS approach
(Parker et al. 2016; Gonzales et al. 2018) and have developed a novel,
reference-based, high-throughput workflow to accurately and cost-
effectively call and impute variants from low-coverage double
digest GBS (ddGBS) data in HS rats. This publication is intended
as a resource for others who might wish to perform GBS in rats
and should provide a roadmap for adapting GBS for use in new
species. We demonstrate that with a suitable reference panel,
applying reduced representation approaches and imputation in
model systems can provide high-confidence genotypes on mil-
lions of genome-wide markers.

MATERIALS AND METHODS

Tissue samples and DNA extraction
Samples for this study originated from three sources: an in-house
advanced intercross line (AIL) derived from LG/J and SM/J mice
(Gonzales et al. 2018), Sprague Dawley (SD) rats from Charles River
Laboratories and Harlan Sprague Dawley, Inc. (Gileta et al. 2018),
and an HS rat colony (Woods and Mott 2017; Chitre et al. 2018).
Early stages of ddGBS optimization utilized AIL genomic DNA
extracted from spleen by a standard salting-out protocol. Later
optimization steps were performed using genomic DNA from SD

rats extracted from tail tissue using the PureLink Genomic DNAMini
Kit (Thermo Fisher Scientific, Waltham, MA). HS rat DNA was
extracted from spleen tissue using the Agencourt DNAdvance Kit
(Beckman Coulter Life Sciences, Indianapolis, IN). All genomic DNA
quality and purity was assessed by NanoDrop 8000 (Thermo Fisher
Scientific, Waltham, MA). Interestingly, we observed that rat geno-
mic DNA derived from either spleen or tail tissue appears to degrade
faster than mouse genomic DNA following extraction by either of the
above protocols; therefore, we recommend storing rat genomic DNA
at -20� and using it within weeks of extraction whenever possible.

In silico digest of rat genome
We used in silico digests to aid in the selection of restriction enzymes,
with the goal of maximizing the proportion of the genome captured at
sufficient depth to make confident genotype calls (Kent et al. 2002).
We used the restrict function in EMBOSS (version 6.6.0) (Rice et al.
2000) in conjunction with the REBASE database published by New
England BioLabs (NEB; version 808) (Roberts and Macelis 1999) to
perform in silico digest of the current release of the Norway brown rat
reference genome, designated rn6. For the primary restriction en-
zyme, we chose PstI, which had been successfully used in numerous
projects (Fitzpatrick et al. 2013; Parker et al. 2016; Gonzales et al.
2018). We performed the digest with PstI alone and then with PstI
paired with each of 7 secondary enzymes: AluI, BfaI, DpnI, HaeIII,
MluCI, MspI, and NlaIII. We only considered fragments with one
PstI cut site and one cut site from the secondary enzyme because the
adapter and primer sets are designed to only allow these fragments to
be amplified.

Restriction enzyme selection
Initial criteria for selecting a secondary restriction enzyme were a 4bp
recognition sequence, no ambiguity in the recognition sequence (i.e.,
N’s), compatibility with the NEB CutSmart Buffer, and an incubation
temperature of 37�. The list of enzymes meeting these criteria at the
time included AluI, BfaI, DpnI, HaeIII, MluCI, MspI, and NlaIII.
Using the in silico digest data, we looked to maximize the portion of
the genome contained within a fragment size range of 125-275bp
(250-400bp with annealed adapters and primers) (Figure 2; Table 1).
We excluded enzymes that produced blunt ends, both because it
would be more difficult to anneal adapters to blunt ended fragments
and because our adapters would then also anneal to blunt ends
produced by DNA shearing. We also excluded methylation-sensitive
enzymes, as we did not want to limit the breadth of our sequencing
efforts, accepting the possibility of read pileup in repetitive regions.
Based on these criteria, as well as maximizing the percent of the
genome captured, NlaIII, BfaI, and MluCI were selected for further
testing. The final choice of enzyme (NlaIII) was determined empir-
ically and is detailed in the Results.

ddGBS library preparation and sequencing
The full ddGBS protocol is available in File S1. In brief, approximately
1mg of DNA was used per sample. Sample DNA, PstI barcoded
adapters, and NlaIII Y-adapter were combined in a 96-well plate and
allowed to evaporate at 37� overnight. The PstI adapter barcode is “in-
line” such that each sequencing read from a given sample contains
both the PstI overhang sequence (4bps) and a unique adapter se-
quence (4-8bps) prior to the beginning of the insert sequence. Sample
DNA and adapters were re-eluted on day two with a PstI/NlaIII
digestion mix and incubated at 37� for two hours to allow for
complete digestion. Ligation reagents were then added and incubated
at 16� for one hour to anneal the adapters to the DNA fragments,
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followed by a 30-minute incubation at 80� to inactivate the enzymes.
Sample libraries were purified using a plate from a MinElute 96 UF
PCR Purification Kit (QIAGEN Inc., Hilden, Germany), vacuum
manifold, and ddH2O. Once re-eluted, libraries were quantified
in duplicate with Quant-IT PicoGreen (Thermo Fisher Scientific,
Waltham, MA) and pooled to the desired level of multiplexing (i.e.,
12, 24, or 48 samples per library). Each pooled library was then
concentrated by splitting the pooled volume across 2-3 wells of the
MinElute vacuum plate and resuspending the library at desired
volume for use in the Pippin Prep. The concentrated pool was
quantified to ensure the gel cassette was not overloaded with DNA
(.5mg). The pool was then loaded into the Pippin Prep for size
selection (300-450bps) using a 2% agarose gel cassette on a Pippin
Prep (Sage Science, Beverly, MA). Size-selected libraries were then
PCR amplified for 12 cycles to add the Illumina sequencing primers
and increase the quantity of DNA, concentrated again, and checked
for quality on an Agilent 2100 Bioanalyzer with a DNA 1000 Series II
chip (Agilent Technologies, Santa Clara, CA). Bioanalyzer results
were used to assure sufficient library concentration and to identify
excessive primer dimer peaks.

As a pilot, an initial 96 HS samples were sequenced, 12 samples
per library, at Beckman Coulter Genomics (now GENEWIZ) on an
Illumina HiSeq 2500 with v4 chemistry and 125bp single-end reads.
Subsequently, we began using a set of 48 unique barcoded adapters
(File S2) to multiplex 48 HS samples per ddGBS library. Each library
thereafter was run on a single flow cell lane on an Illumina HiSeq
4000 with 100bp single-end reads at the IGM Genomics Center
(University of California San Diego, La Jolla, CA). We also obtained
ddGBS data on the HiSeq 4000 for a select set of 96 samples that had
been previously genotyped on a custom Affymetrix Axiom MiRat
625k microarray (Part#: 550572), providing us with a “gold standard”
array-based dataset with which to compare to our ddGBS data.

Evaluation of ddGBS pipeline performance
The steps required to call and impute genotypes from raw ddGBS
sequencing data are presented in Figure 1. During optimization of the
pipeline, performance was assessed by two primary metrics: (1) the
number of variants called and (2) genotype concordance rates for
calls made in 96 HS rats that had both ddGBS genotypes and array
genotypes from a custom Affymetrix Axiom MiRat 625k microarray.
There were two checkpoints in the GBS pipeline where genotype
quality (measured by concordance rate) was assessed. The first was
after “internal” imputation with Beagle (Browning and Browning
2009, 2016), whereby we leverage information from samples that had
sufficient read depth to make a confident genotype call at a given

locus in order to impute the genotype of other samples that had lower
read depths at that locus. The second checkpoint was after “external”
imputation, meaning imputation to our reference panel with
IMPUTE2 to obtain genotype calls at loci we did not directly capture

n■ Table 1 Restriction enzyme options for double digest. The percent genome in region columns indicate the
percentage of the genome that falls within the provided fragment size ranges and can therefore be captured by GBS

Restriction
Enzyme(s)

Recognition
sequence

Length of Overhang
(bp)

% Genome in 250-400bp
Regiona

% Genome in 300-450bp
Regiona

PstI CTGCA^G 4 0.48% 0.56%
PstI + AluI AG^CT 0 3.06% 2.88%
PstI + BfaI C^TAG 2 3.10% 3.25%
PstI + DpnIb GA^TC 0 2.69% 3.00%
PstI + HaeIII GG^CC 0 2.71% 2.79%
PstI + MluCI ^AATT 4 3.32% 3.21%
PstI + MspI C^CGG 2 1.16% 1.24%
PstI + NlaIII CATG^ 4 3.45% 3.31%
a
Calculated using rn6 genome length of 2,870,182,909bps.

b
Restriction enzyme is methylation sensitive.

Figure 1 ddGBS sequencing data analysis workflow. Each step of the
workflow is described in the text.
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by our GBS method (Howie et al. 2009, 2012). A third, additional
metric we checked was the transition to transversion ratio (TSTV),
which is expected to be �2 for intergenic regions. The steps as
outlined in the following sections reflect the final version of the
pipeline. Variant calling and imputation steps utilized all available
samples run on the HiSeq 4000 (3,000+ rats), though genotype
concordance rates could only be calculated for the set of 96 HS
samples for which we had array genotype calls.

Demultiplexing
The PstI adapter barcodes were used to demultiplex FASTQ files
into individual sample files. Three demultiplexing software packages
were tested: FASTX Barcode Splitter v0.0.13 [RRID: SCR_005534]
(Hannon Lab 2010), GBSX v1.3 (Herten et al. 2015), and an in-house
Python script (Parker et al. 2016). Reads that could not be matched
with any barcode (maximum of 1 mismatch allowed), or that lacked
the appropriate enzyme cut site, were discarded. Samples with less
than two million reads after demultiplexing were discarded as these
appeared to be outliers (Figure S4) and were observed to have high
rates of missingness in their genotype calls. Data concerning demul-
tiplexing are shown in Table S1 and are from a single HS rat
sequenced in a 12-sample library on one lane after demultiplexing
and adapter/quality trimming.

Barcode, adapter, and quality trimming
Read quality was assessed using FastQC v0.11.6 (Andrews 2017). We
compared the efficacy of two rapid, lightweight software options for
trimming barcodes, adapters, and low-quality bases from the NGS
reads: Cutadapt v1.9.1 (Martin 2011) and the FASTX Clipper/Trim-
mer/Quality Trimmer tools v0.0.13 (Hannon Lab 2010) (Table S2). A
base quality threshold of 20 was used and reads shorter than 25bp
were discarded.

Read alignment and indel realignment
The Rattus norvegicus genome assembly rn6 was used as the reference
genome for read alignment with the Burrows-Wheeler Aligner
v0.7.5a (BWA) [RRID: SCR_010910] (Li and Durbin 2009) using
themem algorithm. We then used GATK IndelRealginer v3.5 [RRID:
SCR001876] (McKenna et al. 2010) to improve alignment quality by
locally realigning reads around a reference set of known indels in
42 whole-genome sequenced inbred rat strains, including the eight
HS progenitor strains (Hermsen et al. 2015).

Variant calling
Variants were called, and genotype likelihoods were computed at variant
sites using ANGSD v0.911, under the SAMtools model for genotype
likelihoods (ANGSD-SAMtools) (Korneliussen et al. 2014; Durvasula
et al. 2016). Further, using ANGSD-SAMtools, we inferred the major
and minor alleles (-domajorminor 1) from the genotype likelihoods,
retaining only high confidence polymorphic sites (-snp_pval 1e-6), and
estimated the allele frequencies based on the inferred alleles (-domaf 1).
We discarded sites missing read data in more than 4% of samples
(–minInd). Additionally, we tested multiple thresholds for minimum
base (-minQ) and mapping (-minMapQ) qualities.

Internal imputation
Beagle v4.1 (Browning and Browning 2009, 2016) was used to
improve the genotyping within the samples without the use of an
external reference panel. Missing and low quality genotypes were
imputed by borrowing information from other individuals in the

dataset with high quality information at these same variant sites.
Before settling on the combination of ANGSD-SAMtools and Beagle
for genotype calling and internal imputation, we also experimented
with GATK’s HaplotypeCaller (McKenna et al. 2010) with various
parameter settings, but with unsatisfactory results (Figure 3).

Quality control for genotypes before imputation using
an external reference panel
To verify the quality of the “internally” imputed genotypes prior to
imputing SNPs from the 42 inbred strain reference panel (Hermsen
et al. 2015), we checked concordance rates for the 96 HS animals with
array genotypes, examined the TSTV ratio, and assessed whether the
sex as recorded in the pedigree records agreed with the sex empirically
determined by the proportion of reads on the X-chromosome out of
the total number of reads (Figure S1). We also identified Mendelian
errors using the--mendel option in plink and known pedigree in-
formation for 1,136 trios from 214 families within the HS sample.
Using the fraction of the trios that were informative for a given SNP
and the equation 1-(1-2p(1-p))3, where p represents the minor allele
frequency of the allele, we formed curves for the distributions of the
expected number of Mendelian errors for both SNPs and samples and
chose the inflection points as thresholds for the number of Mendelian
errors allowed.

Data preparation for phasing with external
reference panel
First, in our study sample of 96 samples, we only retained variants
previously identified in the 8 HS founder strains because we expected
the polymorphisms in our samples to be limited to the variation
present in the founders (Hermsen et al. 2015; Ramdas et al. 2019).
Further, to improve imputation efficiency, we employed a pre-
phasing step with IMPUTE2 (prephase_g) (Howie et al. 2012) prior
to imputation. Pre-phasing only needs to be performed once, allow-
ing us to reuse the estimated haplotypes from our dataset for
imputation with multiple different reference panels. A flowchart
outlining the pre-phasing protocol is presented in Figure S2.

Genetic maps
Genetic maps are required for phasing and imputation with IM-
PUTE2. When we began this project, no strain-specific recombina-
tion map was available for HS rats. Thus, we considered a sparse
genetic map for SHRSPxBN (Steen et al. 1999). We also tested two
types of linearly interpolated genetic maps, with recombination rates
set at either 1cM/Mb or the chromosome specific averages for rats, as
reported by Jensen-Seaman et al. (Jensen-Seaman 2004). Lastly, late
in the course of this project, we experimented with an HS-specific
genetic map developed by Littrell et al. (Littrell et al. 2018).

Imputation to reference panel
We used a combination of existing sequencing and array genotyping
data from the HS rat founder and other inbred laboratory rat strains
(Hermsen et al. 2015) as reference panel for imputation. Genotype
data underwent QC and were phased by Beagle into single chromo-
some haplotype files. Haplotype files were then created using the
workflow detailed in Figure S2. Imputation by IMPUTE2 was per-
formed in 5Mb windows using the aforementioned reference panels
and genetic maps.

Data availability
The ddGBS protocol and adapter sequences used to generate the
data presented in this paper are available at https://doi.org/10.6084/
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m9.figshare.12284432.v1. All supplementary figures are available at
https://doi.org/10.6084/m9.figshare.12280814.v1. Supplementary tables
can be found at https://doi.org/10.6084/m9.figshare.12284444.v1.
Genotype data will be available at https://dx.doi.org/10.6084/
m9.figshare.8243222. The code necessary to run the steps of the
computational pipeline outlined in this publication is available at
https://dx.doi.org/10.6084/m9.figshare.8243156. Supplementary Files
are available at https://dx.doi.org/10.6084/m9.figshare.8243129.
Remaining files necessary for imputation (genetic maps, reference data,
etc.) can be found with the following links: https://dx.doi.org/10.6084/
m9.figshare.11919615, https://dx.doi.org/10.6084/m9.figshare.11919573,
https://dx.doi.org/10.6084/m9.figshare.11919597.

RESULTS

ddgbs optimization
Previous projects utilizing GBS in mice and rats (Fitzpatrick et al.
2013; Parker et al. 2016; Gonzales et al. 2018) often encountered an
issue where certain regions of the genome experienced high pileups of
reads per sample (.100x), while other regions were covered by just
1-2 reads. This read distribution imbalance can be caused in part by
PCR amplification bias, where a subset of fragments are preferentially
amplified until they dominate the final library (Kanagawa 2003;
Aird et al. 2011). These previous protocols utilized 18 cycles of
amplification. We tested reducing this to 8, 10, 12, or 14 cycles
and found that below 12 cycles, there was insufficient PCR product to
accurately quantify and pool for sequencing. The reduction in the
number of PCR cycles was expected to reduce PCR bias, though this
was not explicitly tested.

Another concern regarding previous sequencing results was an
excess of long fragments (.700bps as determined by in silico digest).
We observed that longer sequencing fragments often do not provide
sufficient reads to make confident genotype calls (, 5 reads per
sample), putatively due to inefficient bridge amplification and clus-
tering on Illumina flow cells. Sequencing these long fragments is
therefore wasteful. We tested three methods of combating this issue,
including increasing the digestion time or enzyme concentration,
performing size selection on the libraries, and using a two-enzyme
restriction digest.

We considered the possibility that the restriction enzyme digests
might not be running to completion. To address this possibility, we
increased the duration of the digestion from 2 hr to 3 or 4 hr. We also
tried increasing the number of units of PstI enzyme added, to ensure
complete digest. Neither of these modifications impacted the final
fragment length distribution of the library, indicating that the digest
was reaching completion after 2 hr using the original concentration of
PstI (File S3 – wells 1-6).

Our previous GBS protocol did not have an explicit library
fragment size selection step. The final library was purified using a
MinElute PCR Purification Kit (QIAGEN Inc., Hilden, Germany),
which isolates PCR products 70bp-4kb in length, leaving a wide range
of fragment sizes in the final library, under the assumption that only
shorter fragments would bridge amplify on the flow cell. This method
was imprecise and had low reproducibility, negatively impacting our
ability obtain reads at consistent sites across libraries. Rather than
attempt size selection by gel extraction, we chose to utilize a Pippin
Prep, which automates the elution of DNA libraries of desired
fragment size ranges. By using this automated size selection, we
reduced the proportion of the genome targeted for sequencing,
Additionally, since restriction enzymes make predominantly consis-
tent cuts across samples (barring the presence of polymorphisms in

RE recognition sites), it is ensured that highly similar sets of genomic
fragments will be sequenced across sample libraries. Since the clus-
tering process involves a bridge amplification step that preferentially
amplifies library fragments with shorter insert sizes (Illumina, Inc.
2014), we kept the size selection window narrow (250-400bps) to
avoid introducing a bias in which fragments were sequenced. A
comparison of the fragment size distributions for the protocols before
and after introduction of the Pippin Prep is shown in File S4.

To increase the proportion of the genome captured within the
fragment size window, we pursued a double digest of the genome
using a secondary enzyme with a more frequently occurring recog-
nition sequence. When used alone, in silico digest of the rn6 reference
genome by PstI (Figure 2; Table 1) showed that only �0.5% of the
genome would have fallen within a 150bp fragment size window
selected on the Pippin Prep. Previously, we performed GBS in CFW
mice using the single-enzyme approach and observed that large
regions of the genome that were not covered by sequencing reads
(Parker et al. 2016). Therefore, we sought to increase the fraction of
the genome that was accessible to GBS, so that there would be
sufficient SNPs to tag the majority of the variation in the rat genome.
Additionally, we were concerned about potential biases in coverage,
heterozygosity, and the minor allele frequency (MAF) spectrum that
may be introduced by a less complete capture of the genome.
Flanagan and Jones have performed an empirical study comparing
single- to double- digest RAD-seq and found that double-digest
RAD-seq had lower rates of allelic dropout, decreased variance in
between-sample per SNP coverage, less allele frequency inflation due
to PCR bias, and reduced batch effects (Flanagan and Jones 2018).

The number of fragments with one of each of the cut sites was
summed for all observed lengths and the results summarized in
Figure 2 and Table 1. BfaI, MluCI, and NlaIII were chosen for further
testing due to their compatibility with PstI digestion reagents and
temperatures, sticky ends, and the proportion of the genome falling in
the size selection window in the in silico analysis. We ruled out BfaI
because it only had a 2bp overhang after cleavage, which we empir-
ically showed leads to a high concentration of adapter dimer in the
sequencing libraries (S5 File). NlaIII was chosen over MluCI because
it contained the greatest portion of the genome in the desired size
selection window.

In our previous GBS protocol, all fragments were cut on both ends
by PstI. By using a substantially lower concentration of the barcoded
PstI adapter than the common PstI adapter, we ensured the barcoded
adapter would be the limiting reagent and the majority of fragments
with an annealed barcoded adapter would have a common adapter on
the other end. This is crucial, as having one of each of the adapters is
required for proper amplification of the fragments on the flow cell.
However, when using both PstI and NlaIII, the library is predom-
inantly composed of fragments cut on both sides by NlaIII (File S6),
which will amplify during PCR with a common adapter, but not on
the flow cell. Therefore, we employed a Y-adapter (Poland et al. 2012)
to control the direction of the first round of PCR and prevent two-
sided NlaIII fragments from dominating the final sequencing library
(File S2).

We tested numerous quantities of PstI and NlaIII adapters in an
attempt minimize the amount used and avoid adapter dimers in the
final libraries. For the barcoded PstI adapters, we tested 120pmol,
60pmol, 20pmol, 4.0pmol, 2.67pmol, 1.60pmol, 0.53pmol, and
0.20pmol; for the NlaIII Y-adapter, 30pmol, 10pmol, 5.0pmol,
4.0pmol, and 1.0pmol (Files S7 & S8). We found that 0.20pmol of
PstI adapter and 4pmol of NlaIII Y-adapter yielded sufficient library
and minimized the presence of adapter dimers.
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We sequenced a trial flow cell with 8 pooled ddGBS libraries of
12 SD rat samples each (96 total) on a HiSeq 2500 (Illumina, San
Diego, CA) with 125bp reads and v3 chemistry, obtaining an average
of 15.3 million reads per sample. Given the NlaIII in silico digest
results suggested we were capturing�3.4% of the genome and that we
were using 125bp reads, this corresponded to approximately 20x
coverage of captured sites. We subsequently increased the number of
samples to 48 per library for the HS rats because we hypothesized 5x
would be sufficient coverage per sample when utilizing imputation to
a reference panel. We also discovered that a portion of the reads

contained segments of the NlaIII adapter sequence, indicating there were
fragments with insert sizes smaller than 125bps in the final library. To
avoid this, we increased the fragment size range to 300-450bps (Table 1),
which corresponds to a 175-325bp insert size once the adapters and
primers are accounted for. We noted however that the library size
distribution obtained from the Pippin Prepwas uniformly shifted toward
higher fragment lengths (Figure S3). This is a result of the high
concentrations of our libraries after pooling and loading the gel cartridge
near the upper limit of the recommend number of micrograms of DNA,
which can cause slower migration of the DNA across the gel matrix.

Figure 2 In silico digest fragment distributions for PstI and potential secondary restriction enzymes. Each panel represents an independent digest
of rn6 with the listed enzyme(s). Regions highlighted in blue are fragments that would be selected by the Pippin Prep (125-275bps) after annealing
adapters and primers (+125bps). These regions are quantified in Table 1 by multiplying the length of the fragments by the number of fragments to
estimate the portion of the genome captured.
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The final ddGBS protocol can be found in File S1 and the
necessary primer and adapter sequences in File S2. This protocol
was used for the sequencing of all HS rats included in subsequent
computational optimization steps.

Demultiplexing
The number of base pairs of sequencing data retained after
demultiplexing was fairly consistent across demultiplexing software
(Table S1). We ultimately decided to use FASTX Barcode Splitter
because it yielded the greatest number of reads after quality/adapter
trimming and had faster run times. An average of 330 million 100bp
reads were obtained per HS library, resulting in �7 million reads per
sample. Figure S4 shows the distribution of reads counts for all samples
after demultiplexing.

Adapter and quality trimming
Read quality was substantially improved after trimming the barcode
and adapter sequences and low-quality base pairs at the ends of reads
(Figure S5). Overall read counts were only marginally reduced by
quality trimming (Table S1). We observed that the number of called
variant sites and the genotyping rate were both greater when using
reads initially processed by cutadapt (Martin 2011) than reads
processed by the FASTX_Toolkit (Table S2). Importantly, a large
portion of the additional identified variants were known variant sites
from the 42 inbred strains reference set (Figure S6), indicating the
elevated call rate was at least in part due to capturing more true
variant sites. We viewed this as sufficient support for proceeding with
cutadapt for adapter removal and quality trimming.

Mapping quality
The number of called variants and genotype call rates were identical at
read mapping quality (mapQ) thresholds of either 20 or 30 (Table S3)
within ANGSD. As the ANGSD mapQ threshold was raised to 45,
there was a small reduction in the number of called variants, and then
much greater losses at thresholds of 60 or 90. Fortunately, discor-
dance rates between ddGBS and array genotypes were stable at both
low and high mapQ thresholds, despite the putatively higher quality
of the alignments (Figure S7). This permitted us to select a lower
mapQ threshold (mapQ = 20), maximizing the number of variants
called without sacrificing genotyping accuracy.

Variant calling
Figure 3 shows that across all thresholds of genotype discordance
(comparing ddGBS with the array genotyping data), the combination
of the ANGSD-SAMtools with BEAGLE produced more SNPs than
GATK’s HaplotypeCaller (McKenna et al. 2010; DePristo et al. 2011).
This observation held when variants were limited to biallelic sites
and SNPs with an MAF . 0.05 (Figure S8). We speculate that the
poorer performance of HaplotypeCaller may be due in part to the
sparsity and non-uniform distribution of GBS genotype data across
the genome and the high level of genotype call missingness across
samples prior to imputation.

ANGSD supports four different models for estimating genotype
likelihoods: SAMtools, GATK, SOAPsnp and SYK. We compared the
methods to determine which produced the most SNPs with the lowest
discordance rates. The SOAPsnp model demonstrated an advantage
in genotype accuracy and number of variants called post-imputation
with Beagle (Figure S9). However, SOAPsnp requires consider-
ably more time (1.7x for 96 samples) and memory and scales poorly
with sample size. With greater than 2,000 samples, we were unable to

allocate sufficient memory for the SOAPsnp model to successfully
run, even after dividing the chromosomes into several, smaller
chunks. The marginal benefits of SOAPsnp in accuracy and number
of variants were far outweighed by its limitations when applied to a
large sample set. The GATK model showed a greater number of
variants for more lenient genotype discordance rate threshold. This is
in contrast with what was observed in Figures 3 and Figure S8 because
ANGSD utilizes the direct genotype likelihood method from the first
implementation of GATK’s Unified Genotyper, whereas we had
previously tested GATK’s HaplotypeCaller. Interestingly though, as
the stringency for discordance rate increased, the number of variants
converged across the SAMtools, GATK, and SOAPsnp models.
We proceeded with the SAMtools model for genotype likelihood
estimation due to its previous support in the GBS literature
(Torkamaneh et al. 2017), accepting a nominal decrease in highly
concordant variants (Figure S9) for a large reduction in run time
and memory usage.

Imputation to reference panel
Imputation is used in two complimentary ways in our protocol. As
described earlier, after ddGBS, not all samples will have sufficient
sequencing coverage at captured polymorphic loci to make a confi-
dent genotype call. Therefore, we first use imputation from other
well-covered samples to “fill in the blanks” and assign genotypes to
SNP loci in the subset of individuals that lacked confident calls at
these sites. After these missing genotypes have been imputed in all
samples, we then use the genotype information we have for the SNPs
captured by ddGBS along with the reference panel data on the
original 8 HS founders (Hermsen et al. 2015; Ramdas et al. 2019)
to impute genotype calls at sites that were inaccessible to ddGBS
sequencing. Thus, our second application of imputation is similar to
the human genetics application in which imputation using 1000 Ge-
nomes (1000 Genomes Project Consortium et al. 2010) increases the
number of SNPs beyond those included on a given microarray
platform. IMPUTE2 was selected over Beagle for this application
because it has been shown to perform better with smaller reference
panels from populations with substantial LD (Frischknecht et al.
2014; Friedenberg and Meurs 2016)

Before starting this imputation step, we observed an inflated
transition/transversion ratio (Table S4) in our ANGSD-SAMtools/
Beagle SNPs. This issue was ameliorated when the SNP set was
filtered for only “known” variants that were previously identified in
either the 42 inbred strains (Hermsen et al. 2015) or the 8 deep-
sequenced HS founders (Ramdas et al. 2019). For imputation, we
therefore only provided IMPUTE2 with previously identified variant
sites from our ANGSD-SAMtools/Beagle output. Prior to running
IMPUTE2, we also filtered the variants for biallelic sites with a
genotype call in at least two individuals. Using pedigree data for
the HS rats, we further removed samples showing an order of
magnitude higher level of Mendelian error than the sample mean.
We further removed SNPs that had an error rate surpassing a
threshold of �0.005 (Figure S10; inflection point). There were
4 samples and 4,179 SNPs removed from subsequent analyses. Lastly,
we removed any samples where the X chromosome read ratio (reads
mapped to the X chromosome divided by total reads) was incom-
patible with their reported sex. We used hard threshold of 3% of total
reads (empirically determined), where individuals with more than 3%
X-mapped reads were determined to be female and below 3%, male
(Figure S1).

There were three major genomic reference datasets available
for the HS rats. The first reference set was obtained from Baud
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et al. (Rat Genome Sequencing and Mapping Consortium et al. 2013)
and contained sequence data and genotype calls for the 8 founders of
the HS. The second came from Hermsen et al. (Hermsen et al. 2015)
which contains sequence and genotype data on 42 distinct laboratory
rats strains and substrains, 8 of which were the founders of the HS
from Baud et al., but analyzed alongside a new set of strains. The third
reference set came from Ramdas et al. (Ramdas et al. 2019), who
independently performed whole-genome sequencing and made ge-
notype calls on the 8 HS founder strains. It was unclear which set of

genotypes would provide the best reference for imputation from our
ddGBS data, so we tested five different possible subsets of available
data (Table 2). From Hermsen et al., we used (1) all 42 inbred strains,
(2) only the 34 strains that were not the HS founders, and (3) only the
8 HS founder strains. Then from Baud et al. and Ramdas et al., we
tested the 8 HS founders only from each study. The most accurate
imputation was observed for the reference set containing only the
8 deep-sequenced HS founder strains (Ramdas et al. 2019); however,
imputation to this set had the lowest genotyping rate of all panels.

Figure 3 Genotype discordance
rates between array data and vari-
ants called by GATK/Beagle or
ANGSD-SAMtools/Beagle. The fig-
ure compares the number of variants
called by combination of ANGSD-
SAMtools and Beagle or GATK
HaplotypeCaller and Beagle at var-
ious thresholds of genotype discor-
dance with array data. Calls were
made using the 96 HS rats with
array data. The x-axis represents the
genotype discordance rate thresh-
olds and the y-axis is the number of
variants that surpass that threshold for
each genotype calling method.

n■ Table 2 Imputation accuracy based on different variant reference panels for IMPUTE2. The table includes five
different possible reference panels for imputation. The 42 inbred strains, 34 non-founder inbred strains, and 8 HS
founders from the 42 inbred strains all were derived from Hermsen et al. 2015 (Hermsen et al. 2015). The UMich 8 HS
founderswere obtained fromRamdas et al. 2019 (Ramdas et al. 2019). The final set of 8HS founderwas taken fromBaud
et al. 2013 (Rat Genome Sequencing and Mapping Consortium et al. 2013)

Chr1 Chr2

42 inbred strains Discordance rate 0.011 0.010
# Variants 790,659 882,993
Genotyping Rate 0.85 0.81

All 34 non-founder inbred strains Discordance rate 0.035 0.030
# Variants 812,550 912,749
Genotyping Rate 0.84 0.80

8 HS founders only from the 42 inbred strains Discordance rate 0.012 0.011
# Variants 805,424 902,061
Genotyping Rate 0.57 0.53

UMich 8 HS founders only Discordance rate 0.0059 0.008
# Variants 865,514 898,621
Genotyping Rate 0.42 0.41

Baud et al. 2013 8 HS founders only Discordance rate 0.0095 0.0096
# Variants 507,909 540,844
Genotyping Rate 0.43 0.40
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In contrast, using the 42 rat inbred strains displayed a balance of high
accuracy and low missingness, leading us to choose this as our
reference set. To better understand the role of the 8 founder strains,
which were part of the 42 strain reference panel, we created a
reference panel that included only the 34 non-HS founder strains.
As expected, discordance rates were much higher when only con-
sidering non-founders. However, the genotype missingness was lower
for the 34 than the 8 founders alone, suggesting a combination of the
two was the optimal set.

IMPUTE2 requires a genetic map. As described in the methods
section, we considered four different genetic maps, two that were
empirically derived and two that were linear extrapolations based on
the physical map (Figure S11). All genetic maps performed similarly
(Table S5). Surprisingly, the linear genetic maps performed just as
well as the HS-specific map (Littrell et al. 2018). Thus, for simplicity,
we chose to use the chromosome-specific values initially published by
Jensen-Seaman (Jensen-Seaman 2004).

To obtain our final set of �3.7 million variants, a final round of
variant filtering was performed after imputation to the 42 strain
reference panel. We removed SNPs with MAF , 0.005, a post-
imputation genotyping rate , 90%, and SNPs that violated HWE
with P , 1x10210.

DISCUSSION
The use of microarrays and WGS for genotyping large samples in
model organisms remains cost-prohibitive. There is therefore an
urgent and wide-spread need for high-performance and economical
methods of obtaining genome-wide genotype data. While re-
duced-representation approaches have been utilized in numerous
species of plants and animals, including rodents (Peterson et al.
2012; Fitzpatrick et al. 2013; Parker et al. 2016; Zhou et al. 2018;
Gonzales et al. 2018), there has yet to be a published protocol
optimized specifically for rats. Prior to sequencing thousands of
HS samples with GBS for our mapping efforts, we wanted to
ensure we were capturing the greatest possible number of high-
quality variants at the lowest possible cost. The protocol we
present here is the culmination of careful testing and optimization
of each step of the GBS protocol for rats. We have now applied the
approach to 4,973 HS rats, as well as 4,608 Sprague Dawley rats
(Gileta et al. 2018).

Our previous GBS protocol (Parker et al. 2016), which was
designed for use with CFW mice, was unsuitable for our current
genotyping efforts in HS rats, due to the much higher levels of genetic
diversity in the HS population. There are multiple reasons we chose to
develop our own computational pipeline for GBS rather than using
existing workflows. Foremost, the prominent GBS analysis pipelines
were developed and optimized for use in crop species (Sonah et al.
2013; Catchen et al. 2013; Glaubitz et al. 2014; Torkamaneh et al.
2017; Wickland et al. 2017), some of which are polyploid and have
differing levels of variation and LD than outbred rodent populations.
Additionally, there were elements of each pipeline that did not meet
our needs or lacked customizability. For instance, TASSEL-GBS
v2 (Glaubitz et al. 2014) trims all reads to 92 base pairs; however,
other projects underway in our lab utilized up to 125bp reads, leading
to a �20% reduction in data. TASSEL-GBS also ignores read base
quality scores, which are informative in probabilistic frameworks
for estimating uncertainty in alignments and variant calls (Li et al.
2008; DePristo et al. 2011; Nielsen et al. 2011), and uses a naïve
binomial likelihood ratio method for calling SNPs. Stacks has pre-
viously shown poor performance in demultiplexing (Herten et al.
2015; Torkamaneh et al. 2017) and does not make use of the reference

genome for priors when calling SNPs (Catchen et al. 2013). Fast-GBS
relies on Platypus (Rimmer et al. 2014) for variant calling (WGS500
Consortium et al. 2014; Torkamaneh et al. 2017), which employs a
Bayesian method of constructing candidate haplotypes that works
poorly with low-pass sequencing data and does not scale well to large
sample sizes (Li et al. 2018). Lastly, none of these pipelines included
an imputation step, which is crucial for filling in missing genotypes in
GBS data and can provide millions of additional SNPs given an
appropriate composite reference panel (Howie et al. 2011; Huang and
Tseng 2014).

Though we have not explicitly tested each alternate GBS
pipeline for the purposes of this publication, this has been recently
done by Wickland et al. (Wickland et al. 2017). Their pipeline
GB-eaSy, which ours most closely resembles, was found to be
superior by a number of metrics to Stacks, TASSEL-GBS, IGST,
and Fast-GBS. Similar to GB-eaSy, our pipeline utilizes a double-
digest GBS protocol, aligns reads to the reference genome with
bwa mem, and uses the SAMtools genotype likelihood model for
calling SNPs (Li 2011). The combination of bwa mem and
SAMtools algorithm was independently shown to have the best
performance for calling SNPs from Illumina data (Hwang et al.
2015), further supporting our choice of these programs for read
alignment and variant calling. Additionally, using the ANGSD
wrapper provided us with the ability to convert the posterior
genotype probabilities into genotype dosages for mapping studies
(Korneliussen et al. 2014).

A minor difference between GB-eaSy and our pipeline is the use of
cutadapt (Martin 2011) rather than GBSX (Herten et al. 2015) for
demultiplexing, though both performed equally well (Table S1). The
primary improvement is our extension of the pipeline with the
implementation of effective internal and reference-based imputation
steps using the 42 inbred rat genomes (Hermsen et al. 2015) and
8 deep-sequenced HS founders from UMich (Ramdas et al. 2019).
There are two stages of imputation in our pipeline. The first one is
accomplished by Beagle and aims to fill in missing genotypes at called
variants using information from other samples. This raises the ge-
notype call rate to 100%, but it may also introduce errors due to
insufficient information, emphasizing the need for careful filtering
steps. The second stage of imputation made use of IMPUTE2 and an
external reference panel of variants called from WGS data on the
8 inbred HS founders, as well as 34 additional inbred rat strains. We
decided to include the 34 additional strains because of the elevated
genotyping rate we observed upon their inclusion in the IMPUTE2
reference panel. We attribute this to the presence of haplotypes that
exist in both the 8 the HS founder strains and a subset of the
34 additional strains in this panel. The benefits of using a composite
reference panel have been previously noted (Zhang et al. 2013; Huang
and Tseng 2014); there is increased accuracy and decreased miss-
ingness in the imputed genotype data.

In summary, we have adapted a GBS protocol and genotyping and
imputation pipeline to obtain dense genotypes on genome-wide
markers in highly-multiplexed HS rats. After quality filtering on
the level of SNP and sample, over 3.7 million SNPs were called with a
concordance rate of 99%. The ddGBS protocol and bioinformatic
methods used to produce this data are publicly available, easy to
handle, and cost-effective. The presented workflow could be feasibly
followed with marginal modifications for application in other species.
The steps taken toward optimizing the wet lab protocols are easily
applied to novel organisms, as is the computational pipeline so long as
there are reliable reference genome sets available for use in alignment
and imputation.
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