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ABSTRACT The Collaborative Cross (CC) is a mouse genetic reference population whose range of
applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study
involves multiple decisions, including which and how many strains to use, and how many replicates per
strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these
decisions have been informed largely by early power analyses that were based on simulated, hypothetical
CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been
observed, it is possible to characterize power based on realized CC genomes. We report power analyses
from extensive simulations and examine several key considerations: 1) the number of strains and biological
replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of
functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates
to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC
(Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale
power analyses or those tailored to particular CC experiments.
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The Collaborative Cross (CC) is a multiparental population (MPP)
recombinant inbred (RI) strainpanel of laboratorymice derived from
eight inbred founder strains (letter abbreviation in parentheses): A/J
(A), C57BL/6J (B), 129S1/SvImJ (C), NOD/ShiLtJ (D), NZO/H1LtJ
(E), CAST/EiJ (F), PWK/PhJ (G), andWSB/EiJ (H) (Threadgill et al.
2002; Churchill et al. 2004; Chesler et al. 2008; Threadgill and
Churchill 2012). This set of founder strains represents three

subspecies of the house mouse Mus musculus (Yang et al. 2011)
and, in large part due to the inclusion of three wild-derived founders
(F-H), endows the CC panel with far greater genetic variation than
previous RI panels derived solely from pairs of classical inbred
strains. As an RI panel, the CC thus provides a diverse set of re-
producible genomes and represents a powerful tool for genetic anal-
ysis (Collaborative Cross Consortium 2012; Srivastava et al. 2017).
Indeed, although the CC RI panel has only become available in the
last six years (Welsh et al. 2012), it has already yielded new insights
into human disease and basic mouse biology (Shusterman et al.
2013; Rogala et al. 2014; Rasmussen et al. 2014; Lorè et al. 2015;
Levy et al. 2015; Gralinski et al. 2015; Venkatratnam et al. 2017;
Orgel et al. 2019; Molenhuis et al. 2018).

As originally envisaged, a key use of the CC was as a resource for
QTL mapping (Threadgill et al. 2002; Churchill et al. 2004). In
theory, its broad genetic diversity makes it ideal for this purpose,
and its replicability permits the mapping of phenotypes such as
drug-response that are otherwise hard to measure in organisms with
non-reproducible genomes (Mosedale et al. 2017). Its utility for QTL
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mapping in practice was also predicted by studies in the incipient CC lines
(pre-CC) (Aylor et al. 2011; Durrant et al. 2011; Philip et al. 2011; Mathes
et al. 2011; Kelada et al. 2012; Ferris et al. 2013; Ram et al. 2014; Rutledge
et al. 2014; Kelada 2016; Donoghue et al. 2017; Phillippi et al. 2014).

Nonetheless, QTLmapping power depends in part on the number
of strains available, and in the CC this number is, and will remain, far
less than the 1,000 proposed in Churchill et al. (2004): At the time
of this work, mice were available for 59 CC strains from the UNC
Systems Genetics Core, with a subset from these 59 and an additional
11 expected to be offered through The Jackson Laboratory (JAX),
representing a total of 70 CC strains potentially.

A reduction in strain numbers as a function of allelic incompat-
ibilities between subspecies (Shorter et al. 2017) was expected, and
this winnowed the number of resulting CC strains down to 50-70.
This population size, although smaller than originally intended,
reflects the biological and financial realities of maintaining a sus-
tainable mammalian genome reference population. [Whereas cost
grows proportional to the the number of strains, demand does not,
and a much larger number of strains would threaten the economic
viability of the operation (F. Pardo-Manuel de Villena, pers.
comm.).] Nonetheless, subsets of the available CC strains have al-
ready been used to map QTL, as evidenced by a growing list of
studies (Vered et al. 2014; Mosedale et al. 2017; Graham et al.
2017). Beyond these successes, however, it is unclear how much
the reduction in the number of strains has affected the ability to
map QTL in the CC in general.

The initially proposed figure of 1,000 CC strains in Churchill et al.
(2004) was more formally justified in Valdar et al. (2006a) as being
necessary to provide enough power both to map single QTL and for
robust, genome-wide detection of epistasis. That estimate was based
on simulations involving larger numbers (500-1,000) of hypotheti-
cal CC genomes. Those simulations, performed before any CC strains
existed and with the goal of guiding the CC’s design, had a broad scope,
exploring the effect of varying strain numbers, alternative mapping
approaches [association of single nucleotide polymorphisms (SNPs)
vs. association of inferred haplotypes], and alternative breeding strat-
egies. As such, the power estimates that were reported do not reflect
the number of CC strains now available, nor their actual, realized
founder mosaic genomes. An updated, more focused power analysis
that both exploits and works within the constraints of the realized
genomes is therefore timely.

Power analyses have been performed previously for a number of
RI panels. For biparental RIs, they have been performed analytically
in plants (e.g., Kaeppler 1997), animals [e.g., the BXD lines in mice
(Belknap et al. 1996; Peirce et al. 2004)], and in general (Cowen
1988; Soller and Beckmann 1990; Knapp and Bridges 1990), as well
as through simulation (Falke and Frisch 2011; Takuno et al. 2012).
For MPP RIs, they have most often been reported as those resources
were introduced to the community. This includes, in plants: Arabidopsis
(Kover et al. 2009; Klasen et al. 2012), nested association mapping
(NAM) populations (Li et al. 2011) in maize (Yu et al. 2008) and
sorghum (Bouchet et al. 2017), and multigenerational advanced
intercross (MAGIC) populations of rice (Yamamoto et al. 2014)
and maize (Dell’Acqua et al. 2015). In animals, other than afore-
mentioned prospective study of Valdar et al. (2006a): Noble et al.
(2017) assessed mapping power of SNP association while introduc-
ing a 507-strain nematode resource, the Caenorhabditis elegans
Multiparental Experimental Evolution (CeMEE) panel; and King
et al. (2012) estimated haplotype-based association power while
introducing the Drosophila Synthetic Population Resource (DSPR),
a fly panel with more than 1,600 lines. In a follow-up DSPR power

analysis, King and Long (2017) compared the DSPR with the related
Drosophila Genetic Reference Panel (DGRP) (Mackay et al. 2012).
They illustrated how QTL effect size differs between a population
whose allele frequencies are more balanced (DSPR) vs. one whose
allele frequencies are less balanced (DGRP). They also explored
implications for cross-population and compared mapping power
for bi-allelic QTL, based on single SNPs, and multi-allelic QTL
constructed from actual adjacent SNPs within genes.

Here we examine related topics on QTL mapping power in the
realized CC, including: 1) how power is affected by the number of
strains and replicates; 2) how it is affected by the number of func-
tional alleles and their distributions among the founders; and 3) how
the QTL effect size is specific to a particular population or sample
and how that influences a power estimate’s interpretation.

To allow researchers to repeat our power analysis framework, but
tailored to their own specific requirements or with updated CC
genome lists, we provide an R package SPARCC (Simulated Power
Analysis of the Realized Collaborative Cross), a tool that evaluates
the power to map QTL by performing efficient haplotype regression-
based association analysis of simulated QTL using the currently
available CC genomes. SPARCC is highly flexible, allowing QTL to
be simulated with any possible allele-to-founder pattern and scaled
with respect to different reference populations. As a re-usable
resource, researchers could estimate power calculations based on
the CC strains available to them and potentially incorporate prior
knowledge about the genetic architecture of the likely QTL or the
phenotype as whole.

METHODS
Our power calculations are based on three main processes:

1. Simulation of CC data, including selection of CC strains from a
fixed set of realized CC genomes, and QTL location, and simula-
tion of phenotypes.

2. QTL mapping, including determination of significance thresholds.
3. Evaluation of QTL detection accuracy, power, and false positive

rate (FPR).

These are described in detail below, after a description of the
genomic data that serves as the basis for the simulations.

Data on realized CC genomes

CC strains: Genome data on all 19 autosomes and the X chromosome
were obtained for a set of 72 CC strains (listed in Appendix C) avail-
able at the time of writing from http://csbio.unc.edu/CCstatus/
index.py?run=FounderProbs. Genome data were in the form of
founder haplotype mosaics (see below) for each strain, estimated with
genotype data from the MegaMUGA genotyping platform (Morgan
et al. 2016) applied to composites of multiple mice per strain. Since
genotyping, some of the 72 strains have become extinct, and more
may do so in the future (Darla Miller pers. comm.), although it is also
possible that more may be added. At the time of writing, however,
these were all genomes that had been observed at UNC.

Of the 72CCstrains used in the simulations, it is planned that 54will
be maintained and distributed by The UNC Systems Genetics Core,
along with another 5 whose genome data were not available in time for
this study (see Discussion) to give a UNC total of 59 strains (listed in
Appendix C). A subset of the UNC 59 will also eventually be main-
tained by The Jackson Laboratory, which will also potentially maintain
11 of the 72 not among the UNC 59.

The 72 strains used in the simulations included two that were
more closely related than others: CC051 and CC059. These strains,
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which are among the UNC 59, were derived from the same breeding
funnel (making the number of independent strains available from
UNC arguably 58). Their relatedness, though not explicitly modeled
in the simulations, is nonetheless marked in the figures, which include
an indicator denoting 58 as a currently realistic maximum for strain
number in CC studies.

Reduced dataset of haplotype mosaics: The genomes of the CC, as
with other MPPs, can be represented by inferred mosaics of the orig-
inal founder haplotypes (Mott et al. 2000). Founder haplotype mosaics
were inferred previously by the UNC Systems Genetics Core (http://
csbio.unc.edu/CCstatus/index.py?run=FounderProbs) using the hid-
den Markov model (HMM) of Fu et al. (2012) applied to genotype
calls from MegaMUGA, a genotyping platform providing data on
77,800 SNP markers (Morgan et al. 2016). The HMM inference pro-
vides a vector of 36 probabilities for each CC strain for each of 77,551
loci (each defined as the interval between adjacent SNPmarkers) across
the genome. Rather than using all of the available data for our simula-
tions, we used a reduced version: since adjacent loci often have almost
identical descent, mapping using all loci is both computationally ex-
pensive and—at least for the purposes of the power analysis—largely
redundant. Thus, prior to analysis, the original dataset was reduced
by averaging adjacent genomic intervals whose diplotype probabili-
ties were highly similar. Specifically, adjacent genomic intervals were
averaged if the maximum L2 norm between the probability vectors of
all individuals is less than 10% of the maximum possible L2 norm
(

ffiffiffi
2

p
); this reduced the file storage from 610 MB to 288 MB, and the

genome from 77,551 to 17,900 intervals (76.9% reduction in positions
to be evaluated in a scan).

Phenotype simulation
Phenotypes for CC strains were simulated based on effects from a
single QTL, plus effects of polygenic background (“strain effects”),
and noise. Within our simulation framework, we specified: 1) the
QTL location, which was randomly sampled from the genome; 2)
the sample size in terms of both strains and replicates; 3) how the
eight possible haplotypes at that location are grouped into eight or
fewer functional alleles (the “allelic series”; see below); and 4) how
those alleles, along with strain information, are used to generate
phenotype values (see below).

Underlying phenotype model: Simulated phenotypes were generated
according to the following linear model. For given QTL with m# 8
functional alleles, phenotype values y ¼ fyigNi¼1 for N individuals in
n#N strains were generated so that

y ¼ 1mþ ZXb|ffl{zffl}
QTL  effect

þ Zu|{z}
Strain  effect

þ e|{z}
Noise

; (1)

where 1 is anN-vector of 1’s, m is an intercept, Z is anN · n incidence
matrix mapping individuals to strains, X is an n ·m allele dosage
matrix mapping strains to their estimated dosage of each of the m
alleles, b is an m-vector of allele effects, u is an n-vector of strain
effects (representing polygenic background variation), and e is an
N-vector of unstructured, residual error. The parameter vectors b,
u, and e were each generated as being equivalent to independent
normal variates rescaled to have specific variances: the strain effects
u and residual ewere rescaled to have population (rather than sample)
variances h2strain and s2 respectively; the allele effects b were rescaled
so that the QTL contributes a variance h2QTL, with this latter rescaling
performed in one of three distinct ways (described later).

The relative contributions of the QTL, polygenic background,
and noise were thus controlled through three parameters: the QTL
effect size h2QTL, the strain effect size h2strain, and the residual var-
iance s2. By convention, these were specified as fractions summing to
exactly 1.

The allele dosage matrix X was generated by collapsing function-
ally equivalent haplotypes according to a specified allelic series. Let
D be an n · 36 incidence matrix describing the diplotype state of
each CC strain at the designated QTL, with columns correspond-
ing to AA,..., HH, AB,..., GH, such that, for example, fDg3;1 ¼ 1
implies CC strain 3 has diplotype AA. (Note that throughout, the
X-chromosome was treated identically to an autosome, most closely
reflecting a study using female mice.) Then

X ¼ DAM  ; (2)

where A is an 36 · 8 additive model matrix that maps diplotype state
to haplotype dosage (e.g., diplotype AA equals 2 doses of A), andM is
an 8 ·m “merge matrix” [after Yalcin et al. (2005)] that encodes the
allelic series, mapping the 8 haplotypes to m alleles, such that if
haplotypes A and B were both in the functional group “allele 1”, then
diplotype AB in D would correspond to 2 doses of allele 1 in X (see
examples in Appendix D).

QTL allelic series: The specification of an allelic series, rather than
assuming all haplotype effects are distinct, acknowledges that for
many QTL we would expect the same functional allele to be carried
by multiple founder haplotypes. For our main set of simulations, the
allelic series was randomly sampled from all possible configura-
tions (examples in Figure 1); in a smaller, more focused investi-
gation of the effects of allele frequency imbalance, we sampled
from all possible configurations of bi-alleles.

Alternative definitions of QTL effect size: B and DAMB: The QTL
effect size (h2QTL) is a critical determinant of mapping power; yet its
precise definition and corresponding interpretation often varies be-
tween studies and according to what question is being asked. We used
two alternative definitions, “B” and “DAMB”, described below. These
alternatives acknowledge that the proportion of variance explained by a

Figure 1 Example allelic series with differing numbers of functional
alleles. Each row is an allelic series, each column of the grid is a CC
founder, and colors correspond to functional allele. Two examples of
allelic series are provided for each number of functional alleles: a
balanced series and an imbalanced series. The entire space of allelic
series are not shown here; however, the full space of series with two
alleles is shown in Figure 9A.
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particular QTL, and thus the power to detect that QTL, is not deter-
mined solely by h2QTL, but rather depends on several additional factors,
namely: the variance of the finite sample of allele effects b; the allelic
series configuration M; and the particular set of CC strains and their
locus diplotypes D.

Definition B scales the allele effects so that h2QTL ¼ Vð2bÞ, where
VðÞ denotes the population variance (rather than the sample vari-
ance). The QTL effect size is interpretable as the variance that would
be explained by the QTL in a theoretical population that is bal-
anced with respect to the functional alleles. As such, the proportion
of variance explained by the QTL in the mapping population will
deviate from h2QTL due to imbalance in both M and D. Conversely,
for a given h2QTL, the allelic values at a QTL will be constant across
populations. (Note: the 2 multiplier ensures proper scaling since X
from Equation 2 includes dosages of founder haplotypes at the QTL,
ranging from 0 to 2.)

Definition DAMB scales the QTL effect so that h2QTL ¼ VðDAMbÞ.
The QTL effect size is exactly the variance explained by the QTL in the
mapping population, essentially the R2. As such, it depends on both
M and D. Correspondingly, for a given h2QTL, the allelic values will
adjust depending onwhich population they are in. [In the Supplement,
for completeness, we also describe a further, intermediate option, Def-
inition MB, where h2QTL ¼ Vð2MbÞ, corresponding to balanced foun-
der contributions.]

The earlier power study of Valdar et al. (2006a), which consid-
ered only bi-allelic QTL, defined effect size in a manner comparable
to Definition B.

Averaging over strains and causal loci: The previous subsections
described simulation of a single phenotype conditional on a set of strains
and a causal genomic locus. For each of S simulations, s ¼ 1; . . . ; S, we
averaged over these variables by uniformly sampling 1) the set of strains
included in the experiment (for a specified number of strains), 2) the
causal locus underlying the QTL, and 3) the allelic series (for a specified
number of functional alleles). This was intended to produce power
estimates that take into account many sources of uncertainty and are
thus broadly applicable.

QTL detection and power estimation

QTL mapping model: QTL mapping of the simulated data were
performed using a variant of Haley-Knott (HK) regression (Haley
and Knott 1992; Martínez and Curnow 1992) that is commonly
used in MPP studies (Mott et al. 2000; Liu et al. 2010; Fu et al.
2012; Gatti et al. 2014; Zheng et al. 2015) whereby association is
tested between the phenotype and the local haplotype state, the
latter having been inferred probabilistically from genotype (or se-
quence data) and represented as a set of diplotype probabilities or,
in the case of an additive model, a set of haplotype dosages then
used as predictors in a linear regression. Specifically, we used HK
regression on the strain means (Valdar et al. 2006a; Zou et al.
2006) via the linear model

�yðsÞ ¼ 1mþ PAbþ e; (3)

where �yðsÞ is the sth simulated n-vector of strain means, P is an n· 36
matrix of inferred diplotype probabilities for the sampled CC ge-
nomes at the QTL [i.e., P ¼ pðDjgenotype dataÞ; see Zhang et al.
(2014)], and e is the n-vector of residual error on the means, distrib-
uted as e � Nð0; Iðh2strain þ s2=rÞÞ. The above implies an eight-allele
model (cf Equation 1 with M ¼ I). Although this assumption could
lead to reduced power when there are fewer functional alleles,

particularly at loci in which the functional alleles are not well repre-
sented, it is commonly used in practice, in accordance with the fact
that the allelic series of an unmapped QTL would typically be un-
known in advance [e.g., Mott et al. (2000); Valdar et al. (2006a,b);
Svenson et al. (2012); Gatti et al. (2014)]. Additional factors that
might contribute to variation in an experiment, such as covariates
or batch effects, are neither simulated nor modeled; it is assumed that
such factors would be adequately accounted for by, for instance, ad-
dition of suitable covariates, pre-processing (e.g., residualizing) of
phenotype values, and ultimately lead to a more-or-less equivalent
analysis to that described here. The fit of Equation 3 was compared
with that of an intercept-only null model via an F-test, and produced a
p-value, reported as its negative base 10 logarithm, the logP. This
procedure was performed for all loci across the genome, resulting
in a genome scan for yðsÞ.

Genome-wide significance thresholds and QTL detection: Genome-
wide significance thresholds were determined empirically by permuta-
tion. The CC panel is a balanced population with respect to founder
genomic contributions and, by design, has minimal population
structure. These features support the assumption of exchangeabil-
ity among strain genomes: that under a null model in which the
genetic contribution to the phenotype is entirely driven by in-
finitesimal (polygenic) effects, all permutations of the strain labels
(or equivalently, of the strain means vector yðsÞ) are equally likely to
produce a given configuration of yðsÞ. Permutation of the strain
means, yðsÞ, was therefore used to find the logP critical value con-
trolling genome-wide type I error rate (GWER) (Doerge and
Churchill 1996). Briefly, we sampled 100 permutations and per-
form genome scans for each; this was done efficiently using a
standard matrix decomposition approach (Appendix A). The
maximum logPs per genome scan and simulation s were then
recorded, and these are fitted to a generalized extreme value dis-
tribution (GEV) (Dudbridge and Koeleman 2004; Valdar et al.
2006a) using the R package evir (Pfaff and McNeil 2018). The
upper a ¼ 0:05 quantile of this fitted GEV was then taken as the
a-level significance threshold, TðsÞ

a . If the maximum observed logP
for yðsÞ in the region of the simulated QTL exceeded TðsÞ

a , then the
corresponding locus was considered to be a (positively) detected
QTL (see immediately below).

Performance evaluation: For a given simulation, we declared a true
positive if the detected QTL was within 65Mb of the true (simulated)
QTL. The 5Mb window size was used to approximate a QTL support
interval, which is partly a function of linkage disequilibrium (LD) in the
CC. (LD has been characterized in the CC previously but not summa-
rized with a single point estimate (Collaborative Cross Consortium
2012); our choice of 5Mb is therefore an approximation, but we find
that it only marginally increased mapping power relative to using
smaller windows.) A false positive was declared if one or more QTL
were detected on chromosomes other than the chromosome harbor-
ing the simulated QTL. Simulations in which a QTL was detected on
the correct chromosome but outside the 5Mb window were disre-
garded; although this was potentially wasteful of data and biased FPR
slightly downward due to loss of false positives on the chromosome
with the simulated QTL, it avoided the need for arbitrary rules to
handle edge cases in which it was ambiguous whether the simulated
signal had been detected or not. Power for a given simulation setting
was then defined as the proportion of true positives among all sim-
ulations at that setting, and the FPR was defined as the proportion of
false positives.
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As a measurement of mapping resolution, for true positive de-
tection, we recorded the mean and the 95% quantile of the genomic
distance from the true QTL. Given our criterion for calling true
positives, the maximum distance was necessarily 5Mb, and exper-
imental settings that correspond to low power would be expected to
have fewer data points, yielding estimates that are unstable. In order
to obtain more stable estimates, we used a regularization procedure,
estimating themean distance and 95%quantiles asweighted averages
of the observed values and prior pseudo-observations. Specifically,
for an arbitrarily small but detected true positiveQTL, it is reasonable
to expect the peak signal to be distributed uniformly within the
6 5Mb window. This implies a mean location error of 2.5Mb and a
95% quantile of 4.75Mb. Thus, when calculating the regularized
mean location error we assumed 10 prior pseudo-observations of
2.5Mb, and when calculating the regularized 95% quantile we as-
sume 10 prior pseudo-observations of 4.75Mb. This number of
pseudo-observations represents 1% of the maximum number of
possible data points.

Overview of the simulations

Simulation settings: Simulations for all combinations of the following
parameter settings:

• Number of strains: [(10-70 by 5), 72]
• QTL effect size (%): [1, (5-95 by 5)]
• Number of functional alleles: [2, 3, 8]

The number of observations per strain were fixed at r ¼ 1 and the
background strain effect size was fixed at h2strain ¼ 0% with the under-
standing that results from these simulations provide information on
other numbers of replicates and strain effect sizes implicitly. Specifi-
cally, a simulated mapping experiment on strain means that assumes
r replicates, strain effect h2strain, and QTL effect size h

2
QTL is equivalent to

a single-observation mapping experiment with no strain effect and
QTL effect size �h

2
QTL, where

�h
2
QTL ¼ h2QTL

h2QTL þ h2strain þ s2=r
(4)

[Valdar et al. (2006a), after Soller and Beckmann (1990); Knapp and
Bridges (1990); Belknap (1998)]. For example, a mapping experi-
ment on strain means with QTL effect size h2QTL ¼ 0:3, h2strain ¼ 0:4,
s2 ¼ 0:3, and r ¼ 10, is equivalent to our simulation of a single-
observation with no strain effect but QTL effect size �h

2
QTL≃0:41

(Supplement).
We conducted s ¼ 1; 000 simulation trials per setting. CC strains

and the position of the QTL were sampled for each simulation, pro-
viding estimates of power that are effectively averaged over the CC
population. We ran these settings for QTL effect sizes specified with
respect to the observed mapping population (Definition DAMB) and a
theoretical population that is balanced in terms of the functional alleles
(Definition B). Confidence intervals for power were calculated based on
Jeffreys interval (Brown et al. 2001) for a binomial proportion. A de-
scription of the computing environment and run-times are provided in
Appendix B.

Examining FPR when accounting for non-
exchangeability of CC strain genomes
In the simulations and mapping procedures described above, strain
effects aremodeled under the assumption that all CC strains are (at least
approximately) equally related. That is, the effects u ¼ u1; . . . ; u72 in

Equation 1 are simulated as u � Nð0; Ih2strainÞ such that any permu-
tation of the values is equally likely (the effects are exchangeable),
and this same assumption is made in both the mapping model of
Equation 3 and the permutation-based estimation of significance
thresholds.

An assumption of equal relatedness among CC strains is common-
place: it is suggested by the exchangeable random funnel design used in
the CC, is supported by the results of Valdar et al. (2006a), and has been
made in every CC or pre-CC mapping analysis to our knowledge.
Making this assumption simplifies QTL mapping analysis by obviating
the need for an explicit modeling of genomic similarity [as in, e.g., Kang
et al. (2008)], since, when those similarities are approximately equal
and the analysis is performed on strain means, the strain effects are
absorbed into the residual error.

Nonetheless, CC strains are equally related only in expectation.
Much like the “equal” relatedness of siblings, realized relatedness
will depart from expectation due to chance at the point of mixing,
and, in the case of the CC, due to selection [e.g., arising from male
sterility (Shorter et al. 2017)] and genetic drift during inbreeding
[as reflected in unequal founder contributions by Srivastava et al.
(2017)]. This combination of stochastic forces can produce unequal
relatedness, correlated effects among strains, and population struc-
ture, at least at some level.

To quantify population structure in the realized CC, we compared
the eigenvalues of the realized genetic relationship matrix K, calcu-
lated from the founder mosaic probabilities [after Gatti et al. (2014)],
with those from an idealized K that reflects equal relatedness of the
CC strains, whose off-diagonal elements were set to the mean value
observed for the off-diagonal elements in the realized K. We ob-
served that slightly fewer principal components are required to ex-
plain 95% of the variation in the realized K than are required for
the balanced K (64 vs. 68 components, respectively; Figure S5A).
This reduction was attenuated with the omission of CC059, one of
the two cousin strains, but not completely (64 vs. 67 components;
Figure S5B). This suggested that the realized CC strains have mild
population structure.

To evaluate towhat degree the population structure in the realized
CC genomes could inflate FPR when mapping using an analytic
model and threshold procedure that ignores it (i.e., that assumes
exchangeability), we performed an additional set of null simulations
in which strain effects were generated according to additive infinites-
imal model (Lynch and Walsh 1998) based on the actual genomic
similarities. Specifically, we set h2QTL ¼ 0 and u � Nð0;Kh2strainÞ but
left our mapping protocol unchanged.We conducted 10,000 such null
simulations with r = 1 for each setting of strain effect size (%): [0-100
by 20]. These simulations were performed using either all 72 founder
strains or 71 strains with the omission of CC059, one of the two
highly-related cousin strains. A false positive was declared if any
QTL were detected based on the permutation-based significance
threshold.

Measuring the Beavis effect
The “Beavis effect” (Beavis 1994) refers to an upward bias in estimated
effect sizes for detected QTL. This phenomenon, also known as the
“winner’s curse” (Zöllner and Pritchard 2007), arises because the data
used for effect estimation are substantially selected during QTL dis-
covery; the resulting (post-selection) estimates are thus inflated due to
ascertainment bias. The Beavis effect was evaluated theoretically in Xu
(2003) and found to be most pronounced in studies of smaller sam-
ple size (n, 100), suggesting that it could be a significant feature of
CC mapping studies.
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To assess the extent of the Beavis effect in CCmapping experiments,
we performed simulations (s ¼ 1; 000) mapping a bi-allelic QTL, with
one replicate (r ¼ 1) and zero background strain effect (h2strain ¼ 0) for
all combinations of simulated QTL effect size under Definition
DAMB h2QTL 2 f0:2; 0:3; 0:4; 0:5; 0:6; 0:7g and numbers of strains
n 2 f40; 50; 60; 72g. If an association was detected within the
10Mb window (using permutation-based thresholds as above), then
we recorded the QTL effect size as the R2 of the model fit at the peak
locus (which may or may not be the locus at which the QTL was
simulated).

Availability of data and software

R package: All analyses were conducted in the statistical program-
ming language R (R Core Team 2018). SPARCC is available as an
R package on GitHub at https://github.com/gkeele/sparcc. Spe-
cific arguments that control the phenotype simulations, the strains
used, genomic position of simulated QTL, and allelic series, are
listed in the Supplement. A static version of SPARCC is also pro-
vided there (File S2).

Also included within the SPARCC R package are several results
datasets. These include data tables of power summaries from our
simulations, as well as table summaries from simulations of a
bi-allelic QTL that is balanced in the founders, maximally unbal-
anced in the founders, and the distance between detected and
simulated QTL. Further details are provided in File S1 of the Sup-
plement, an account of all the supplemental files. These files are
available at figshare, including data, and scripts to run the analysis
and produce the figures. File S3 contains the founder haplotype
mosaics required for the SPARCC package. Files S4, S5, and S6
can be used to perform the large-scale power analysis. File S7 de-
scribes options in the SPARCC package, and also provides two
simple tutorials, the first of which generates Figure 2. File S8 pro-
duces the figures in this paper and Supplement. File S9 is the sup-
plemental tables and figures. Supplemental material is available at
https://doi.org/10.25387/g3.7409405.

CC strains: The 72 CC strains with available data that were included in
the simulations are described inAppendix C. Founder diplotype prob-
abilities for each CC strain are available on the CC resource website
(http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs). We
used probabilities corresponding to build 37 (mm9) of the mouse
genome, though build 38 (mm10) is also available at the same
website.

We store the founder haplotype data in a directory structure that
SPARCC is designed to use, and was initially established by the HAPPY
software package (Mott et al. 2000). The reduced data are available on
GitHub at https://github.com/gkeele/sparcc_cache.

RESULTS
Power simulations were performed for varying numbers of strains,
replicates, functional alleles, and for a ladder of QTL effect sizes. QTL
effect size was defined in two ways: as the variance explained in a
hypothetical population that is balanced with respect to the alleles
(Definition B; seeMethods), or as the variance explained in the realized
population (Definition DAMB). In this section we focus on results
using the first of these, Definition B, owing to its more consistent
theoretical interpretation. Under that definition, plots of power against
numbers of strains are shown in Figure 3, and power across a repre-
sentative selection of conditions is shown in Table 1. For comparison,
these numbers are also provided for simulations under Definition

DAMB in Table S1. Throughout these simulations the false positive
rate was controlled at the target 0.05 level (Figure S2).

Large effect QTL usually detected by 50 or more strains
As a baseline for describing mapping power in the CC, an experiment
using one replicate (r ¼ 1) of all 72 strains is well-powered to detect
QTL explaining .40% of phenotypic variance but moderately or
low powered for QTL explaining 30% or less (Table 1). Specifically,
assuming eight functional alleles, there is 96.4% power to detect a
50% QTL, 79.2% for a 40% QTL, 44.1% for a 30% QTL, and 12.4%
for a 20% QTL.

More broadly, simulations across different allele effect types and
numbers of strains showed that studieswithout replicates andwith large
numbers of strains (.50) were found to be well-powered to detect large
effect QTL (.40%) (Figure 3 [top]).

Identifying smaller effect QTL should be feasible, however, using
replicates. Replicates improve power by reducing the individual
noise variance; as such the extent of the power improvement
diminishes as more variance is attributable to background strain
effects than noise. Assuming no background strain effect, and using
50 strains, we determined the power to detect a 20% effect-size QTL
with a single replicate was near zero; with 5 replicates it approached
80%. Detecting QTL with effect sizes # 10%, however, was chal-
lenging. For example, achieving 80% power to detect an effect size
of 10% when all 72 CC strains were used required more than
5 replicates per strain (Figure 3 [middle right]). Moreover, assum-
ing a background strain effect, as would be expected with a com-
plex trait, can reduce the QTL mapping power of small effect QTL
substantially (Figure 3 [bottom]).

Additional strains improve power more than
additional replicates
We investigated the relationship between power and the total num-
ber of mice, evaluating whether power gains were greater with
additional CC strains or additional replicate observations. Power
was interpolated over a grid of values for number of replicates and
total number of mice from simulations based on a single observa-
tion per strain (Figure 5). This showed that additional CC strains
improved mapping power more than additional replicates; this is
indicated by higher power values for lower numbers of replicates
while holding number of mice constant (see Figure 5, bordered ver-
tical section at 250 mice).

Location error of detected QTL
To obtain an approximation of mapping resolution, for all true
positive detections we recorded the location error, or the genomic
distance between simulated and detected QTL. The mean and the
95% quantile of the location error are reported as stabilized estimates
for different numbers of strains and QTL effect sizes, but averaged
over all other conditions, in Figure 4. (The stabilization procedure is
described in Methods; raw, unstabilized estimates provided Figure
S3.) The location error statistics require careful interpretation: for a
detection to be classed as a true positive it had to be within 5Mb of
the simulated QTL; therefore, location error was artificially capped
at 5Mb. Poor performance thus corresponds to when that loca-
tion seems uniformly (and therefore arbitrarily) distributed over
the 65Mb interval, that is, having a mean of 2.5Mb and a 95%
quantile of 4.8Mb.

Location error was improved (reduced) by increasing the number
of strains, increasing the QTL effect size, or both. In particular, as
with power, location errorwas improved by increasing the number of
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strains even when while holding the total number of mice constant
(Figure S4), consistent with mapping resolution being improved by
an increased number of recombination events in the QTL region.
Distributions of raw location error, stratified by levels of the number
of strains, the number of functional alleles, and the QTL effect size
can be found in Figure S6.

False positive rate
The FPR for the QTL power simulations was estimated as the
percentage of scans (per setting) that produced a statistically signif-
icant signal on a chromosomewithout a QTL, shown in Figure S2. As
expected, FPR was not elevated from 5%when the strain effects were
simulated independently, as the effects were exchangeable by con-
struction. The FPR did not vary with the number of strains or the
number of alleles.

In additional null simulations that included strain effects that were
correlated due to realized genomic similarity, QTL scans assuming
independent strain effects (and thus, exchangeability) had elevated
FPR (Figure 6 and Table S2). Using all 72 CC strains, the FPR varied

from a maximum of 14:5% when strain effects explain all variability to
the well controlled FPR of 5:5% when the strain effects were relatively
small. OmittingCC059, one of the highly-related cousin strains (CC053
and CC059), because of its obvious violation of equal relatedness, re-
duced the FPR, although it was still elevated (12:9% for maximum
strain effect). This demonstrates that, when strain effects are large
relative to individual error (i.e., highly heritable trait, or the use ofmany
replicates), failure to account for population structure due to realized
imbalance in founder contributions can increase the risk of false
positives.

Beavis effect
It is an expected feature of QTLmapping studies that estimates of QTL
effect size, when calculated for detected QTL only, will be biased
upwards. This phenomenon, known as the Beavis effect, is a form
of selection bias and as such is expected to bemost extremewhen the
selection involved is most severe, that is, under low power condi-
tions, e.g., when detection rates are low and/or estimates have high
variance.

Figure 2 Simulated CC data and resulting genome scans.
Five simulated genome scans are generated by the code
provided in a simple example using the R package SPARCC.
Red dashed lines represent 95% significance thresholds
based on 100 permutation scans. A blue tick represents the
simulated position for a QTL that was successfully de-
tected, whereas a red tick marks a QTL that was missed.
These simulations were based on a specified set of 65 CC
strains, five replicates of each strain, two functional alleles,
10% QTL effect size, and no background strain effect. The
QTL is not mapped in the fourth simulation, ranked top to
bottom, resulting in a power of 80%. Actual power
calculations are based on a greater number of simulations.
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We explored the Beavis effect in our simulations. Assuming a one-
replicate (r ¼ 1) experiment, we found that, for example, the esti-
mated effect size of a simulated 20% QTL was inflated by threefold
when mapping in 40 CC strains, and by twofold when mapped in
72 CC strains. More generally, and as expected, the Beavis effect was
reduced with larger numbers of strains and larger QTL effect sizes
(Figure 7).

These results also imply that the Beavis effect would be reduced
by use of replicates, at least to the extent that replicates boost effective
QTL effect size. For example, consider again themapping of a 20%QTL
effect in 40 strains, which with r ¼ 1 replicates implies threefold effect
size inflation. Although this inflation could be reduced to twofold
by increasing the number of strains to 72, the same reduction could
be achieved using replicates: assuming no background strain effect,
increasing replicates to a theoretical r ¼ 1:8 (so as to give a total
sample size of N ¼ 40 · 1:8 ¼ 72) would boost the QTL effect size

to an effective �31% (according to Equation 4) and, as shown in
Figure 7, have approximately the same result. The ability of rep-
licates to reduce the Beavis effect, however, will diminish to the
extent that there is a significant background strain effect, following
the general relationship of replicates to QTL effect size described
in Equation 4.

Allele frequency imbalance reduces power
ForafixedsetofQTLallele effects, it is expected thatpowerwill alwaysbe
greatest when allele frequencies are balanced. Accordingly, when QTL
effect size was defined in terms of the variance that would be explained
in a theoretical population with balanced allele frequencies (Defini-
tion B), deviations from balance in the mapping population—either
from imbalance in functional alleles among the founders or imbal-
ance of the founders among the CC strains—inevitably reduce
power (Figure 8A). This reduction in power under Definition B is

Figure 3 Power curves by number of CC strains. Results are stratified by a number of replicates, background strain effect size, and the number of
functional alleles. The [top] row is based on a single observation per strain and no background strain effect. The [middle] row corresponds to five
replicates per strain and no background strain effect. For the [bottom row], five replicates are observed and the QTL effect size and background
strain effect size sum to 50%, thus penalizing smaller QTL more harshly. The horizontal red dotted line marks 80% power. The vertical black
dashed line marks 58 strains, which is currently the number of unrelated strains available from UNC. The columns, left to right, correspond to two,
three, and eight functional alleles. Closed circles represent power estimates that were directly assessed, whereas open circles were interpolated.
Simulations define allele effect size according to Definition B (see Methods).
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most evident for bi-allelic QTL (pink), in which the potential im-
balance in allelic series is most extreme, namely when a single foun-
der carries one functional allele and the other seven possess the
alternative allele (7v1).

Conversely, when the QTL effect size is defined in terms of variance
explained in the mapping population (Definition DAMB, which is
similar to an R2 measure), power remains constant across different
allelic series and degrees of balance. Although note that this definition
carries with it the (possibly unrealistic) implication that allele effects
vary depending what population they are in.

When averaged over many allelic series, QTLmapping power based
onDefinitionB is reducedrelative toDefinitionDAMB,with thegreatest
reduction occurring for bi-allelic QTL (Figure 8 B). Though thismodest
reduction in power may seem to suggest that simulating with respect to
a balanced population (Definition B) vs. the mapping population (Def-
inition DAMB) is unimportant in terms of designing a robust mapping
experiment in the CC, we reiterate the value of using Definition B.
Specifically, simulating with respect to Definiton DAMB is overly op-
timistic regarding mapping power for QTL with imbalanced allelic
series.

We performed additional simulations to evaluate bi-allelic QTL in
more detail, these being more prone to drastic imbalance under Def-
initionB.All 127possible bi-allelic series are visualizedas a grid inFigure
9A, ordered from balance and high power to imbalance and low power.
The corresponding power estimates are shown in Figure 9B. Power was
maximized when the bi-allelic series is balanced (4v4; 35/127 possible
allelic series) and minimized when imbalanced (7v1; 8/127 possible
allelic series). Uniform sampling of bi-allelic series, the approach in
the more general simulations described earlier, slightly reduced power
relative to balanced 4v4 allelic series due to averaging over many
cases of balance and some cases of extreme imbalance. These
latter, more focused simulations highlight the extent that the re-
duction in QTL effect size, and thus mapping power, when sim-
ulating based on Definition B, is highly dependent on the allelic

series. This could be of particular importance when considering
QTL that result from a causal variant inherited from a wild-de-
rived founder, such as CAST, which will present as both imbal-
anced and bi-allelic.

DISCUSSION
Now that the CC strains have been largely finalized, it is possible to
investigate more deeply how, in potential mapping experiments,
power is affected by factors such as the number of strains, the
number of replicates, and the allelic series at the QTL. We find that
the CC can powerfully map large effect QTL ($ 50%) with single
observations of 60 or more strains. Through the use of replicates,
the power to map QTL can be greatly improved, potentially map-
ping QTL $ 20% in 60 strains with 5 replicates per strain with no
background strain effect. To guide the design of new CC experi-
ments, we provide broad power curves and tables in Figure 3 and
Tables 1 and S1.

The power calculations described here take advantage of realized
CC genomes, allowing the power estimates to be highly specific to the
available strains but also necessarily restricting the number that can
be used. This differs from the simulations of Valdar et al. (2006a),
which primarily focused on comparing potential breeding designs
with numbers of strains that far exceed (500-1,000) the population
now realized (50-70). As such, directly comparing these studies is
challenging. The closest comparison case is for a 5% QTL with 45%
background strain effect in 100 simulated strains with 10 replicates,
for which Valdar et al. (2006a) estimates 4% power. Matching those
settings with the exception of 72 strains instead of 100, and using the
DAMB definition of QTL effect size, we find 0.4% power. The relatively
lower power with the realized data likely reflects both reduction in the
number of strains by 28% (72 to 100) and the deviations from an
ideally-randomized population, such as the observed reduction in con-
tributions from the CAST and PWK founders (Srivastava et al. 2017).
This emphasizes the challenge in projecting the results from Valdar

n Table 1 QTL mapping power in the Collaborative Cross based on QTL effect sizes in a balanced population (Definition B)

QTL

Power

30 strains 50 strains 72 strains

1 obsa 3 repb 5 repb 2 alleles 3 alleles 8 alleles 2 alleles 3 alleles 8 alleles 2 alleles 3 alleles 8 alleles

0.01 0.003 0.002 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000
0.05 0.017 0.010 0.001 0.001 0.002 0.004 0.000 0.001 0.007 0.000 0.003
0.1 0.036 0.022 0.001 0.001 0.001 0.006 0.003 0.004 0.013 0.013 0.014
0.15 0.056 0.034 0.001 0.003 0.002 0.009 0.011 0.014 0.035 0.054 0.041
0.2 0.077 0.048 0.006 0.009 0.003 0.032 0.026 0.030 0.077 0.110 0.124
0.25 0.100 0.062 0.002 0.011 0.015 0.076 0.061 0.066 0.207 0.231 0.252
0.3 0.125 0.079 0.011 0.014 0.010 0.105 0.118 0.116 0.357 0.377 0.441
0.35 0.152 0.097 0.018 0.024 0.034 0.194 0.207 0.261 0.553 0.564 0.633
0.4 0.182 0.118 0.035 0.038 0.056 0.298 0.335 0.383 0.711 0.717 0.792
0.45 0.214 0.141 0.048 0.063 0.078 0.456 0.467 0.539 0.858 0.857 0.905
0.5 0.250 0.167 0.098 0.102 0.114 0.620 0.630 0.712 0.964 0.924 0.964
0.55 0.289 0.196 0.156 0.180 0.208 0.789 0.784 0.860 0.977 0.961 0.993
0.6 0.333 0.231 0.272 0.251 0.304 0.914 0.896 0.935 0.990 0.984 0.998
0.65 0.382 0.271 0.387 0.412 0.486 0.953 0.934 0.985 0.993 0.992 0.999
0.7 0.438 0.318 0.603 0.582 0.635 0.983 0.965 0.994 0.998 0.993 1.000
0.75 0.500 0.375 0.780 0.746 0.818 0.990 0.986 0.999 0.998 0.999 1.000
0.8 0.571 0.444 0.890 0.851 0.923 0.995 0.991 1.000 0.999 1.000 1.000
0.85 0.654 0.531 0.932 0.927 0.983 0.997 0.995 0.999 1.000 1.000 1.000
0.9 0.750 0.643 0.970 0.955 0.994 0.999 0.999 1.000 1.000 0.999 1.000
0.95 0.864 0.792 0.976 0.966 1.000 0.999 0.998 1.000 1.000 1.000 1.000
a
Convert QTL effect sizes from experiments with replicates to mean scale with Equation 4.

b
Based on no background strain effect.
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et al. (2006a) into the realized population for the purpose of designing
an experiment.

We did not attempt power simulations with epistatic QTL or
phenotypes with large background strain effect. From the results of
Valdar et al. (2006a), it was clear that mapping studies in the realized

CC, even with replicates, would not be well-powered in those contexts.
Nonetheless, despite the reduced number of strains, we found that
successful mapping experiments can be designed in the realized
CC, particularly by harnessing the ability of genetic replicates to
reduce random noise, as well as within the context of molecular

Figure 4 The mean (A) and 95% quantile (B) of location error, the distance in Mb between the detected and simulated QTL, by effect size and
number of strains for 1,000 simulations of each setting. The simulations define QTL effect size based on Definition B with an eight allele QTL, and
only a single observation per strain. Cells are colored red to white with decreasing mean and blue to white with decreasing 95% quantile.
Regularization of the means and 95% quantile was accomplished through averaging the observed results with pseudo-counts; see Figure S3 for
the raw measurements. Increasing the number of strains reduces the location error, both in terms of the mean and 95% quantile, more so than
QTL effect size, also shown in Figure S6. The maximum possible location error was 5Mb due to the 10Mb window centered around the true QTL
position used for detecting QTL.
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phenotypes such as gene expression for which the genetic architecture
is relatively simple.

Interpreting QTL effect sizes
Our simulations suggest that QTL mapping experiments in the CC
are well-powered for large-effect QTL, in the neighborhood of
20–40%, depending on the number of strains and replicates, and
the presence of a background strain effect. As such, it is useful to
provide some context for what traits might plausibly yield QTL of
this size. That said, we note that comparisons of reported estimates
of QTL effect size should be interpreted with caution since they
vary across different traits and model systems, are calculated un-
der different experimental protocols that may vary in levels of
noise, numbers of strains and/or replicates, and may be estimated
by different analysis conditions (statistical methods, data trans-
formations, etc.). And ultimately, these estimates are subject to
overestimation due to both the aforementioned Beavis effect and
reporting bias.

Multiple studies in the pre-CC, which had more strains than the
realizedCCpopulation, have reportedQTL effect sizes for a variety of
traits. Philip et al. (2011) report effect sizes for 17 QTL for 102 mor-
phological and behavioral traits in 235 incipient CC strains, ranging
from 5.3% (tail-clip latency) to 26% (red cell distribution width).
Durrant et al. (2011) mapped seven QTL for susceptibility to As-
pergillus fumigatus infection in 371 mice from 66 strains, with ef-
fects ranging from 12.2–16.2%. Gralinski et al. (2015) identified four
SARS susceptibility QTL in 140 strains with effect sizes between
21–26% (vascular cuffing, 21% and 26%; viral titer, 22%; eosino-
philia, 26%).

More closely mirroring the number of strains considered here,
Levy et al. (2015) detected six strong QTL for traits related to tra-
becular bone microstructure using 160 mice from 31 strains, which
ranged from 61–86%. In an ongoing project involving the mapping
of expression QTL (eQTL) from RNA-seq data collected from three

tissues of single individuals from 47 strains, 478-739 eQTL were
detected at genome-wide significance, ranging in effect size from
60–90%. These results reiterate that QTL mapping studies in the CC
are best suited for detection of large effect QTL, as are more com-
mon in molecular traits.

In considering the above, it is useful to understandhow this relates to
effect sizes seen in humans, for which the CC is often used as a model
system [eg, Rogala et al. (2014); Orgel et al. (2019)]. In particular,

Figure 5 Heatmap of QTL mapping power by number
of replicates and total number of mice in the experi-
ment. Power is based on a QTL effect size of 20%, no
background strain effect, and two functional alleles,
though varying these parameters does not affect the
dynamic between number of strains and replicates.
The gray diagonal lines represent fixed values of the
number of CC strains, ranging from 10 to 70 in intervals
of five. Holding the total number of mice fixed, power is
reduced as the percentage of the sample that are
replicates is increased. This is illustrated with a cutout
band centered on 250 mice, where power is lower at
the top of the band when replicate mice are a relatively
higher proportion of the total number of mice.

Figure 6 The FPR increases due to population structure among the
realized genomes of the CC strains in the presence of a back-
ground strain effect and no QTL. Curves are based on 10,000
simulations for each setting of strain effect and strain sample,
based on a single observation per strain. The inflation in FPR is
greater for all 72 CC strains, which includes two closely related
cousin strains (CC051 and CC059). Removing CC059 reduces the
inflation in FPR (gray line). The dashed red line marks the specified
type I error rate of 0.05, which is approximately met as expected
when no strain effect is simulated, as in Figure S2. Table S2 reports
the specific FPR values.
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human genome-wide association studies (GWASs), which often use
much larger sample sizes, routinely report QTL with estimated effect
sizes far smaller than is detectable in the CC. Nonetheless, there are
reasons to expect effect sizes in the CC to be larger than in humans.
Human GWASs are observational, and as such include many

additional sources of noise, reducing QTL effect sizes relative to
what would be possible in more tightly-controlled experimental
designs. Experimental populations will also have larger QTL ef-
fect sizes because: 1) they typically have more balanced allele fre-
quencies; 2) in the case of panels of RILs, such as the CC, they are
homozygous across the genome, which increases the contrast in ad-
ditive allele effects and thus boosts additive QTL effect size; and 3),
again for RILs, they furnish biological replicates, which, as illustrated
in Equation 4, can increase effect size by reducing individual error.

Strains vs. replicates
When holding the total number of mice fixed, we found that adding
more strains improves power and reduces location error to a greater
degree than adding more replicates. Moreover, this inference was
made in the absence of a background strain effect—given that
replicates reduce individual-level variance but not strain-level var-
iance, the presence of background effects would reduce the relative
value of replicates yet further. These observations are consis-
tent with the results of Valdar et al. (2006a) and established theo-
retical arguments (Soller and Beckmann 1990; Knapp and Bridges
1990).

Nonetheless, for many CC mapping experiments we predict that
adding replicates will provide considerable value. First, for all but the
most highly polygenic traits, mapping on the means of replicates, a
strategy originally termed “replicated progeny” (Cowen 1988) or
“progeny testing” (Lander and Botstein 1989), will always provide
additional power. Indeed, with a limited number of strains available,
and the possibility that all available strains are used, replicates may
sometimes be the only way power can be further increased (Belknap
1998).

Second, replicates provide not only an insurance policy against
phenotyping errors, but also a way to average over batches and similar
nuisance parameters (Cowen 1988), thus protecting against the

Figure 7 The Beavis effect (inflation of QTL effect size estimates) is
more pronounced with smaller simulated QTL effect sizes and
reduced numbers of strains. For different settings of numbers of
strains (40, 50, 60, 72) and simulated QTL effect sizes (20%, 30%,
40%, 50%, 60%, 70%), black dots plot the ratio of the estimated
effect size at a detected QTL peak to the effect size that was
simulated at the true QTL locus. Out of 1,000 simulations under each
setting, only successful detections are shown. Black diamonds
represents the mean ratio for a category; horizontal red dashed line
marks a ratio of 1, when QTL effect size estimates are unbiased (i.e.,
no Beavis effect).

Figure 8 QTL effect sizes are in reference to a population, though effect size in the specific mapping population will determine the mapping
power. Consider two populations as examples: the mapping population (definition DAMB) and a population balanced in the functional alleles
(definition B). (A) QTL effect size distributions based on 10,000 simulations of the QTL for 72 strains. Using definition B, the effect sizes for the
mapping population for two alleles is pink and eight alleles is red. Using definition DAMB, the effect sizes in the balanced population for two
alleles is light blue and eight alleles is dark blue. Horizontal lines within the violin plots represent the 25th, 50th, and 75th quantiles from the
estimated densities. Gray dots represent actual data points. (B) Power curves corresponding to the previously described settings of alleles and
QTL effect size definitions. Power curves are estimated from 1,000 simulations per number of strains for a 50% QTL, no background strain effect,
and a single observation per strain. The horizontal red dotted line marks 80% power. The vertical black dashed line marks 58 strains, which is
currently the number of unrelated strains available from UNC.
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negative consequences of gene by environment interactions while
providing the opportunity for such interactions to be detected [e.g.,
Kafkafi et al. (2005, 2018)].

Third, replicates enable deeper phenotypic characterization and
in particular measurement of strain-level phenotypes that are nec-
essarily a function of multiple individuals. For example, treatment
response phenotypes (e.g., response to drug) are ideally defined in
terms of counterfactual-like observations of drug-treated and ve-
hicle-treated strain replicates [e.g., Festing (2010); Crowley et al.
(2014)] and recombinant inbred lines such as the CC are uniquely
able to combine such definitions with QTL mapping [e.g., Mosedale
et al. (2017) and also, in flies, Kislukhin et al. (2013); Najarro et al.
(2015)]. Similarly, strain-specific phenotypic variance ideally requires
replicates (Rönnegård and Valdar 2011; Ayroles et al. 2015). We did
not consider such elaborations here, but we expect the trade-off be-
tween number of strains vs. replicates will be more nuanced in such
cases.

Population structure in the CC
Our simulations indicate that deviations from equal relatedness in
the realized CC strains have introduced a degree of population
structure that potentially increases the risk of false positives if not
addressed, albeit to a far lesser extent than has been observed in
traditional inbred strain association (Kang et al. 2008). In particu-
lar, null simulations that assumed correlated strain effects due to
genetic relatedness increased FPR for our mapping approach when
the strain effect was large relative to individual error, as would be
the case for a highly heritable polygenic trait or when using many
replicates. This elevated FPR supports the use of QTL mapping
approaches that account for the effect of genetic similarity on phe-
notypes, such as a linear mixed effect model (LMM) (Kang et al.
2008, 2010; Lippert et al. 2011; Zhou and Stephens 2012), especially
in the context of marginally significant QTL, which may not remain
significant given a higher threshold that controls FPR more appro-
priately. Software packages that can fit the LMM specifically with
CC data include our miQTL package (available on GitHub at https://
github.com/gkeele/miqtl) and R/qtl2 (Broman et al. 2019).

For the analyses reported here, a mixed effect model approach
was not feasible owing to its increased computational burden (and
in particular, its incompatibility with the computational shortcut in
Appendix A). Instead, we simulated independent strain effects
and employed a fixed effect mapping procedure due to its compu-
tational efficiency, especially when computing permutation-based
significance thresholds. Nonetheless, the conclusions drawn in this
study should be largely consistent with the use of a mixed effect
model that correctly controls for correlated strain effects due to
genetic relatedness.

Allelic series, and use of an eight allele mapping model
We found that the allelic series can strongly affect power through its
influence on observed allele frequencies. Specifically, imbalanced
bi-allelic QTL have significantly reduced mapping power when the
sole alternative allele is rarely observed, whereas highly multi-allelic
QTL are more easily detected because they will have multiple alleles
observed within a given sample of strains.

Regardless of the true allelic series at a QTL, which is unknown in
practice, our statistical procedure assumed an eight allele model. For
QTL with fewer functional alleles than founder strains, this assumption
could reduce power due to the estimation of redundant allele effect
parameters. Indeed, QTL consistent with a bi-allelic series have been
more powerfully detected in some MPP studies using SNP association
(Baud et al. 2013; Keele et al. 2018).

Nonetheless, multi-allelic QTL (with more than two alleles) do
occur. This has been seen, for example, in cis-regulation of gene
expression that largely corresponds to the three subspecies line-
ages of Mus musculus, present in the CC (Crowley et al. 2015).
Moreover, multi-allelic QTL will not be as powerfully detected
through SNP association, as seen, for example, in Aylor et al. (2011).
SNP (or more generally, variant) association also poses additional
challenges, such as how to handle regions of the genome (and
variants) that are difficult to genotype, as well as the requirement
of extensive quality control filtering to remove markers with low
minor allele frequencies. These challenges are implicitly reduced
in haplotype analysis.

Figure 9 The balance of the allelic
series for QTL with two functional
alleles, and its effect on QTL map-
ping power. (A) The 127 possible
allelic series for a bi-allelic QTL,
categorized by the balance in the
distribution of alleles among the
CC founder strains, and ordered
with balanced allelic series at the
top and imbalanced at the bottom.
(B) Power curves comparing three
different sampling approaches for
the allelic series with two functional
alleles, for populations simulated
to have a QTL effect size of 50% in
a balanced theoretical population,
with a single observation per CC
strain. The horizontal red dotted
line marks 80% power. The vertical
black dashed line marks 58 strains,
which is currently the number of
unrelated strains available from
UNC.
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An ideal statistical procedure would formally model the un-
known allelic series and their corresponding uncertainty. Though
challenging, the development of alternative mapping strategies that
specifically account for the allelic series is clearly an imperative
methodological advance that would greatly benefit QTL analyses in
MPPs with diverse founder alleles. That said, allelic series-aware
approaches would likely be computationally expensive and poorly
suited to simulation-based power analyses. Meanwhile, in the ab-
sence of more sophisticated approaches, the eight allele model,
though potentially redundant, has several advantages over SNP
association that suggest it will remain a useful (and maybe the
default) tool for CC mapping, namely: it encompasses all possible
simpler allelic series, implicitly models local epistasis, and, in
reflecting the LD decay around detected QTL, more clearly delineates
the limits of mapping resolution.

Inclusion of extinct CC strains in simulations
Our simulations included genomes from CC strains that are now
extinct, and also did not include all the CC strains that are currently
available. This discrepancy reflects the inherent challenge of main-
taining a stable genetic population resource. RI panels such as the
CC are an approximation to an ideal: they attempt to provide
reproducible genomes that can be observed multiple times as well
as across multiple studies; yet, as a biological population, those
genomes are mutable, and through time will accumulate mutations
and drift, and even potentially go extinct.

Although the inclusion of genomes of extinct strains, or those that
have drifted since the strains were genotyped, result in power calcula-
tions that donotperfectly correspondto the currentCCpopulation, they
are preferable to simulated genomes, since they represent genomes that
were viable at some point.

Future use and directions
Any analysis of power is subject to the assumptions underlying that
analysis. One of the advantages of simulation is the ability to evalu-
ate the impact of many of these assumptions, as well as the consid-
eration of new scenarios by re-running the simulation under different
settings, or by elaborating the simulation itself. We have attempted to
make re-running the simulations under different settings straightfor-
ward for other researchers by developing a software package for this
purpose. This package could be used to investigate highly-specialized
questions, such as the power for specific combinations of CC strains or
assessing how the power to detect QTL varies depending on genomic
position. In future work, the simulation code itself could be expanded
to investigate additional topics of interest, such as how power is
influenced by variance heterogeneity or model mis-specification.

Conclusion
We used a focused simulation approach that incorporates realized
CC genomes to provide more accurate estimates of QTL mapping
power than were previously possible. As such, the results of our
simulations provide tailored power calculations to aide the design
of future QTL mapping experiments in the CC. Additionally, we
evaluate how the balance of alleles at the QTL can strongly influ-
ence power to map QTL in the CC. We make available the R
package SPARCC that we developed for running these simulations
and analyses. It leverages an efficient model fitting approach in
order to explore power in a level of detail that has previously been
impractical, it is replicable, and it can be extended to user-specified
questions of interest.
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APPENDIX A

QR decomposition for fast regression
To maximize power to detect QTL while controlling the FPR, permutations to determine significance thresholds are needed, which is

computationally expensive and thus the underlying regression functionality must be highly optimized. We accomplish this through the QRmatrix
decomposition, which we will describe briefly (Venables and Ripley 2002).

Let X ¼ PA be the n·m design matrix included in Eq 3, with m ¼ 8. The solution for b from the least squares normal equations is
b̂ ¼ ðXTXÞ21XTy. Through the QR decomposition, X ¼ QR, for which Q is an n· p orthonormal matrix ðQTQ ¼ IÞ and R is a m ·m upper
triangular matrix.Withmatrix algebra, it is fairly straightforward to show that b̂ ¼ R21QTy, which is alsomore numerically stable than calculating
b̂ through ðXTXÞ21. After solving for b̂, the residual sums of squares, and ultimately logP, can be rapidly calculated. Because our simulation
approach involves regressing many permuted outcomesUpyðsÞ, whereUp is a permutation matrix that re-orders yðsÞ randomly, on the same design
matrices, computational efficiency can be vastly increased by pre-computing and saving the QR decompositions for all X.

Once the QR decomposition has been stored for a design matrix Xj, where j indexes locus, it is highly computationally efficient to conduct
additional tests for any y, which encompasses all permuted outcomes Upy. If Xj is the same across S simulations, the boost in computation can
extend beyond permutations to samples of yðsÞ, as is the case when the set of CC strains is fixed. Thus, our R package SPARCC handles two cases:
when the set of CC strains is fixed, and when the set varies.

• Fixed set of CC strains
1. Store QR decompositions of Xj for j ¼ 1; 2; . . . ; J
2. Run genome scans for yðsÞ and UpyðsÞ for s ¼ 1; 2; . . . ; S · p ¼ 1; 2; . . . ; P

• Varied set of CC strains
1. Store QR decompositions of Xjs for j ¼ 1; 2; . . . ; J
2. Run genome scans for yðsÞ and UpyðsÞ for p ¼ 1; 2; . . . ; P
3. Repeat steps 1 and 2 for s ¼ 1; 2; . . . ; S

Varying the set of CC strains increases computation time linearly with respect to S. If the investigators do not have a predefined set of strains, it is
appropriate that this source of variability be incorporated into the power calculation.

APPENDIX B

Computing environment and performance
We performed 1,000 simulations (in batches of 100) for each combination of the parameters, resulting in 8,400 individual jobs. These jobs were

submitted in parallel to a distributed computing cluster (http://its.unc.edu/rc-services/killdevil-cluster/). Runtime varied depending on parameter
settings and the hardware used, with the longest jobs taking approximately seven hours to complete.

APPENDIX C

CC strains
This study used haplotype mosiac data available from http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs for the following 72 CC

strains: CC001, CC002, CC003, CC004, CC005, CC006, CC007, CC008, CC009, CC010, CC011, CC012, CC013, CC014, CC015, CC016, CC017,
CC018, CC019, CC020, CC021, CC022, CC023, CC024, CC025, CC026, CC027, CC028, CC029, CC030, CC031, CC032, CC033, CC034, CC035,
CC036, CC037, CC038, CC039, CC040, CC041, CC042, CC043, CC044, CC045, CC046, CC047, CC048, CC049, CC050, CC051, CC052, CC053,
CC054, CC055, CC056, CC057, CC058, CC059, CC060, CC061, CC062, CC063, CC065, CC068, CC070, CC071, CC072, CC073, CC074, CC075,
CC076. This includes two strains CC051 andCC059 that are derived from the same breeding funnel and thusmore closely related than typical pairs
of CC strains.

Of the the 72CCstrainsusedhere, 54are amonga larger set of 59 that are currentlymaintained anddistributedbyUNC(personal correspondence
with Darla Miller, UNC). These 54/59 strains are CC001, CC002, CC003, CC004, CC005, CC006, CC007, CC008, CC009, CC010, CC011, CC012,
CC013, CC015, CC016, CC017, CC019, CC021, CC023, CC024, CC025, CC026, CC027, CC029, CC030, CC031, CC032, CC033, CC035, CC036,
CC037, CC038, CC039, CC040, CC041, CC042, CC043, CC044, CC045, CC046, CC049, CC051, CC053, CC055, CC057, CC058, CC059, CC060,
CC061,CC062,CC065,CC068,CC071,CC072.The remaining5/59strains (CC078,CC079,CC080,CC081,CC083) lackedhaplotypemosaicdata at
the time of simulation and so were not included (although note that their mosaics have since been added to the website).
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APPENDIX D

Additive model and allelic series matrices

Additive matrix

                                                           A B C D E F G H

A ¼

AA
BB
CC
DD
EE
FF
GG
HH
AB
AC
AD
AE
AF
AG
AH
BC
BD
BE
BF
BG
BH
CD
CE
CF
CG
CH
DE
DF
DG
DH
EF
EG
EH
FG
FH
GH

2
6666666666666666666666666666666666666666666666666666666666666666664

 

2  0  0 0  0  0  0  0 
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
1
1
0
0
0

1
0
0
1
1
0

0
1
0
1
0
1

0
0
1
0
1
1

   

3
7777777777777777777777777777777777777777777777777777777777777777775

Wecanusematrices to specify simplifying linear combinations of the 36diplotypes. The additivemodelmatrixA is commonly used, andweuse it
here. Post-multiplication of the diplotype design matrix D with the A rotates the diplotypes at the locus to dosages of the founder haplotypes. If
there is no uncertainty on the diplotype identities, DA will be the matrix of founder haplotype counts at the locus.

Allelic series matrices
We explore the influence of the allelic series on QTL mapping power via the simulation procedure. The QTL mapping procedure estimates

separate parameters for each founder, though in reality there are likely fewer functional alleles. We denote the qth functional allele as kq. The allelic
series can be sampled and encoded in the M.ID argument within the sim.CC.data() function of SPARCC. Below are examples of allelic series,
including balanced (4v4) and unbalanced (7v1) bi-allelic series, as well as allelic series with multiple alleles.
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Allelic series with eight alleles (maximum)
M.ID = “0,1,2,3,4,5,6,7”

                                                  ko k1   k2   k3 k4   k5   k6 k7

M ¼ I ¼

A
B
C
D
E
F
G
H

2
66666666664

1    0    0    0    0    0    0    0   
0    1    0    0    0    0    0    0   
0    0    1    0    0    0    0    0   
0    0    0    1    0    0    0    0   
0    0    0    0    1    0    0    0   
0    0    0    0    0    1    0    0   
0    0    0    0    0    0    1    0   
0    0    0    0    0    0    0    1   

3
77777777775

Example balanced (4v4) bi-allelic series
M.ID = “0,1,0,0,1,0,1,1”

                                          ko k1

M ¼

A
B
C
D
E
F
G
H

2
66666666664

   

1 0
0 1
1 0
1 0
0 1
1 0
0 1
0 1

   

3
77777777775

M.ID = “0,1,1,1,0,0,1,0”

                                        ko k1

M ¼

A
B
C
D
E
F
G
H

2
66666666664

   

1 0
0 1
0 1
0 1
1 0
1 0
0 1
1 0

   

3
77777777775

Example unbalanced (7v1) bi-allelic series
M.ID = “0,0,0,0,0,1,0,0”

                                        ko k1

M ¼

A
B
C
D
E
F
G
H

2
66666666664

1  0   
1  0   
1  0   
1  0   
1  0   
0  1   
1  0   
1  0   

3
77777777775

M.ID = “0,1,0,0,0,0,0,0”

                                      ko k1

M ¼

A
B
C
D
E
F
G
H

2
66666666664

1    0   
0    1   
1    0   
1    0   
1    0   
1    0   
1    0   
1    0   

3
77777777775
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Example tri-allelic series
M.ID = “0,0,1,2,2,0,2,0”

                                                   ko k1 k2

M ¼

A
B
C
D
E
F
G
H

2
66666666664

1    0    0     
1    0    0     
0    1    0     
0    0    1     
0    0    1     
1    0    0     
0    0    1     
1    0    0   

3
77777777775

M.ID = “0,1,0,0,0,0,2,2”

                                      k0 k1 k2

M ¼

A
B
C
D
E
F
G
H

2
66666666664

 

1 0 0
0 1 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 0 1

 

3
77777777775
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