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The Tumor Target Segmentation
of Nasopharyngeal Cancer in CT Images
Based on Deep Learning Methods
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Abstract
Radiotherapy is the main treatment strategy for nasopharyngeal carcinoma. A major factor affecting radiotherapy outcome is the
accuracy of target delineation. Target delineation is time-consuming, and the results can vary depending on the experience of the
oncologist. Using deep learning methods to automate target delineation may increase its efficiency. We used a modified deep learning
model called U-Net to automatically segment and delineate tumor targets in patients with nasopharyngeal carcinoma. Patients were
randomly divided into a training set (302 patients), validation set (100 patients), and test set (100 patients). The U-Net model was
trained using labeled computed tomography images from the training set. The U-Net was able to delineate nasopharyngeal carcinoma
tumors with an overall dice similarity coefficient of 65.86% for lymph nodes and 74.00% for primary tumor, with respective Hausdorff
distances of 32.10 and 12.85 mm. Delineation accuracy decreased with increasing cancer stage. Automatic delineation took
approximately 2.6 hours, compared to 3 hours, using an entirely manual procedure. Deep learning models can therefore improve
accuracy, consistency, and efficiency of target delineation in T stage, but additional physician input may be required for lymph nodes.
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Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common

cancers in the nasopharynx. In 2015, an estimated 833 019 new

cases of NPC and 468 745 deaths due to NPC were reported in

China alone.1 The main treatment strategy for NPC is radio-

therapy, which has a 5-year survival rate of about 80%, with or

without chemotherapy.2 The most important factor for precise

and effective radiotherapy in patients with NPC is accurate

target delineation. However, accurate target delineation is

time-consuming: Manual target delineation of a single head

and neck tumor typically requires 2.7 hours, while delineation

of tumor volume and adjacent normal tissues in NPC requires

more than 3 hours.3,4 In fact, delineation must be repeated
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many times when treating locally advanced NPC due to tumor

volume shrinkage and anatomical changes during treatment.

Target delineation accuracy is also strongly dependent on the

training and experience of the radiation oncologist and can

vary widely.5-7 Therefore, it would be useful to develop a

fully automatic delineation method to improve the consis-

tency and accuracy of delineation, as well as to relieve the

workload for doctors.

Deep learning is a method of machine learning based on

artificial neural networks. Deep learning methods have been

shown to perform better than traditional machine learning algo-

rithms in many computer vision tasks, especially object

detection in images, regression prediction, and semantic seg-

mentation.8-10 Convolutional neural network (CNN) is a deep

learning model with the ability to learn from labeled data, and it

has shown impressive accuracy in prediction and detection in

medical applications.11-15 For example, multiple-instance

learning using chest X-ray images can detect tuberculosis with

an area under the curve of 0.86.13 An alternating decision tree

model using data from structural imaging, age, and scores on

the Mini-Mental State Examination predicted treatment

response in patients with late-life depression with 89% accu-

racy.15 Convolutional neural networks have also been used to

segment organs and substructures during targeted treatments. A

deep learning model based on CNNs has been used to segment

liver images and optimize surface evolution, showing a dice

similarity coefficient (DSC) of nearly 97%.12 A modified

U-shaped CNN (U-Net) was used to segment retina thickness

and yielded a mean DSC of 95.4% + 4.6%.16 Segmentation

based on deep learning has also been used in treating pulmon-

ary nodules, liver metastases, and pancreatic cancer.17-19

Studies show that CNNs can be useful for delineating tumor

targets for radiotherapy in brain, rectal, and breast cancer.20-24

A deep learning model called DeepMedic was used to segment

brain tumors with a DSC of 91.4%.20 Another study using

U-Net to segment brain tumors achieved a DSC of 86%.21 Deep

learning models have also been used in rectal cancer to accu-

rately delineate the clinical target volume (CTV), organs at

risk, and the target tumor with a DSC of 78% to 87%.22,24 A

CNN model called DD-ResNet was developed to delineate

CTVs for breast cancer radiotherapy using big data and was

shown to perform better than other deep learning methods, with

a DSC of 91%.23 Given the above studies, we reasoned that

CNN may also be useful for delineating NPC targets for radio-

therapy. However, segmentation of NPC is more complex than

other tumor types because of ambiguous and blurred bound-

aries between the tumor and normal tissues.

Here, our study was novel with 4 main contributions. First,

few literature reported on delineation of primary tumor and

lymph nodes in planning computed tomography (CT) images

for radiotherapy with CNNs, especially considering the large

data set used. Thus, we used a modified version of U-Net to

segment CT images from 502 patients with NPC and delineate

radiotherapy targets.25 Second, the performance of deep learn-

ing model was observed from early stage to advanced stage.

Both DSC and Hausdorff distance (HD) value were shown in

different stage and demonstrated a downward trend from early

stage to advanced stage for both primary tumor and lymph

node. Third, normalization technique was used in preprocess

the input data for CT images. It could improve the accuracy of

target volume delineation on segmentation of NPC, using deep

learning methods. Finally, deep learning model can be used to

delineate the nasopharynx gross tumor volume (GTVnx) with

high accuracy. But in the delineation of the lymph node gross

tumor volume (GTVnd), it needs to be intervened by experts,

especially in N3 patients.

Materials and Methods

Data Sets

All experimental procedures involving human CT images were

approved by the West China Hospital Ethics Committee. CT

images were obtained from 502 patients with NPC admitted to

the hospital over a period of 5 years. The patients were ran-

domly divided into 3 groups: a training set (302 patients),

validation set (100 patients), and testing set (100 patients).

Tumor clinical stage was determined according to the Amer-

ican Joint Committee on Cancer (AJCC) staging system

(seventh edition). Demographic data are shown in Table 1.

There was no difference in the relative proportions of primary

tumors (T stage) or lymph node (N stage) among the training,

validation, and testing sets.

In total, 20 676 CT slices were collected from 502 CT scans.

The number of CT slices was 13 310 slices for training set,

3673 slices for validation set, and 3693 slices for testing set.

Table 1. Baseline Characteristics of the 502 NPC Patients.a

Characteristics

Training

Set (%)

Validation

Set (%)

Testing

Set (%)

n ¼ 302 n ¼ 100 n ¼ 100

Median age (range) 46.9 (18-73) 52.3 (12-67) 50.7 (25-72)

Sex

Male 195 (64.6%) 73 (73%) 69 (69%)

Female 107 (35.4%) 27 (27%) 31 (31%)

T classification

T1 73 (24.2%) 23 (23%) 18 (18%)

T2 76 (25.2%) 25 (25%) 32 (32%)

T3 100 (33.1%) 33 (33%) 20 (20%)

T4 53 (17.5%) 19 (19%) 40 (40%)

N classification

N0 39 (12.9%) 13 (13%) 15 (15%)

N1 98 (32.5%) 33 (33%) 29 (29%)

N2 155 (51.3%) 52 (52%) 43 (43%)

N3 10 (3.3%) 2 (2%) 13 (13%)

Overall stage

I 20 (6.6%) 6 (6%) 4 (4%)

II 36 (11.9%) 12 (12%) 15 (15%)

III 97 (32.1%) 34 (34%) 34 (34%)

IV 149 (49.3%) 48 (48%) 47 (47%)

Abbreviation: NPC, nasopharyngeal carcinoma.
aTumor and lymph node stage were judged by the seventh edition of the

American Joint Committee on Cancer (AJCC) stage criteria.
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Computed tomography slices were extracted from Digital Ima-

ging and Communications in Medicine (DICOM) files, with

the image resolution of 512� 512 and slice thickness of 3 mm.

The gray levels converted by HU value from the DICOM files

ranged from 0 to 3071. The target regions on CT slices were

independently determined by 2 senior radiation oncologists and

labeled nasopharyngeal primary tumor target or metastatic

lymph node target.

Preprocessing

To make the image more suitable for segmentation, it needs to

be preprocessed with the following steps:

(1) The determination of region of interest (ROI): An orig-

inal DICOM image has the data size of 512 � 512. In

the training phase, the original CT image can cause

heavy computing workload, due to large useless

regions. The subregion has included the target and

main anatomical structure in CT image. Therefore, a

224� 224 region was cropped from original CT image

as the ROI. The cropping operation is shown in

Figure 1.

(2) Computed tomography image normalization: In deep

learning experiment, different CT scans equipment

may have different configuration. According to elim-

inate differences, normalizing operations were

deployed in these CT images and the formula was

as follows:

Pixelnorm ¼
Pixel� Pixelmin

Pixelmax � Pixelmin
; ð1Þ

where Pixel is the source pixel data in CT images; Pixelnorm

is normalized CT images pixel data; and Pixelmin and Pixelmax

are the minimum and maximum gray value of source CT

images, respectively.

Deep Learning Model for Delineation

In the field of image segmentation, CNNs showed researchers

excellent performance on image segmentation tasks. Fully con-

volutional neural network (FCN) is the first CNN algorithm

model in image segmentation using deconvolution layers.8 The

CT image was decoded to an input patch of 224 � 224 matrix.

The FCN architecture can predict an output with an interesting

region image. A more elegant FCN model was named U-Net,

which extract a large number of feature channels in the upsam-

pling part.

However, in the segmentation of nasopharyngeal CT image,

FCN and U-Net only predict a lower spatial resolution than

source CT image. The resolution of output images cannot be

used here because of unsuitable output size. Therefore, a mod-

ified version of the U-Net model was proposed, in which down-

sampling layers and upsampling layers have similar learning

ability. Each convolution layer is a convolution operation with

padding followed by a batch normalization and Rectified

Linear Unit activation function.26 The output feature maps of

each convolution layer are the same input feature maps in the

whole of this model. In downsampling path, the input CT

image with the size of 224 � 224 was downsampled the spatial

dimension to 14 � 14. Conversely, the upsampling path

upsampled the feature maps from 14 � 14 to 224 � 224. The

upsampling layers concatenated output feature maps with fea-

ture maps of downsampling layers. The network diagram is

shown in Figure 2. The number of kernels about this model

has shown in each output of convolutional layer.

U-Net model is implemented by Google TensorFlow frame-

work, which is a famous machine learning library, and then

accelerated by NVIDIA@ Compute Unified Device Architec-

ture.27,28 The CT image data set was divided into training set,

validation set, and testing set. The training set (302 patients)

was used to optimize the parameters of the U-Net. The original

2-dimensional CT images were the inputs and the correspond-

ing segmentation probability maps about the GTVnx and

GTVnd were the outputs. The validation set was used to tune

the deep learning model in training phase. The testing set was

divided into T1, T2, T3, T4, N1, N2, and N3, according to

seventh edition of AJCC for NPC.29

After data preprocessing, the U-Net architecture was

defined in TensorFlow Machine Learning Library using Python

Application Programmable Interface. Because of overfitting,

the Dropout was set in every convolution layer.30 The initiali-

zation of parameters was configured by Xavier function and

truncated normal distribution whose standard deviation is

0.1.31 In the phase of model training, the learning rate was set

to 0.01 in Adam optimizer.32 The number of iterations was 40

with cross-entropy descent of the whole validation set.

Evaluation of Deep Learning Model

The CT images from the test set were used to evaluate the

predictive performance of the U-Net model. The loss values

were recorded for each patient in the validation set. The loss

value illustrates how the model was trained in the training

phase. U-Net performance was evaluated using the DSC

value and HD, which quantify the results of GTVnx and

GTVnd.

Figure 1. Cropping the region of interest.
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The values of DSC were defined in Equation 2 as follows:

DSCðP; LÞ ¼ 2jP \ Lj
jPj þ jLj ; ð2Þ

where P denotes the segmented area for prediction, L denotes

the segmented area for reference, and P \ L is the intersection

of the 2 areas. DSC value is defined between 0 and 1, with 0

representing predicting miss and 1 shows that the predicting

result is perfect.

Hausdorff distance (HD) was defined in Equation 3 as

follows:

HðP; LÞ ¼ maxðhðP; LÞ; hðL;PÞÞ; ð3Þ

where P ¼ fp1; . . . ; pmg and L ¼ fl1; . . . ; lng are 2 finite

point sets, and

hðP; LÞ ¼ max
p 2 P;l 2 L

ðminjjp� ljjÞ ð4Þ

where jjp� ljj is the normal form on the points of P and L (ie,

the L2 or Euclidean norm). hðP; LÞ describes the point p 2 P
that is farthest from any point of L and calculates the distance

from p to its nearest neighbor in L. The HD is the maximum of

hðP; LÞ and hðL;PÞ and expresses the largest degree of mis-

match between P and L. The overlap between P and L increases

with smaller HðP; LÞ.

Results

U-Net Model Training

The cross-entropy loss function is used to observe U-Net in the

training situations. The loss value decreased with epoch number.

After 20 epochs, the decrease in loss value slowed and the U-Net

model stabilized. This was observed in both the training and

validation set. Experiments were carried out on dual Intel Xeon

E5-2643 v4 (3.4 GHz) and dual NVIDIA tesla K40m graphics

card. The validation set, 100 of 502 patients, was deployed to

evaluate the predicting performance of U-Net model. The refer-

ence segmentation maps labeled by the experienced radiation

oncologists were used to calculate loss value of target function.

Delineation Results by U-Net Model in Testing Set

After training our model, we used CT images from the test set to

perform target delineation. The DSC and HD results for GTVnx

and GTVnd in the test set are summarized in Figure 3 and Table 2.

The average normalized U-Net DSC values by T stage were

77.24% (T1), 75.38% (T2), 74.13% (T3), and 71.42% (T4), with

an overall DSC of 74.00%. The average normalized HD values

were 10.36 mm (T1), 11.37 mm (T2), 11.90 mm (T3), and 15.72

mm (T4), with an overall HD of 12.85 mm (Figure 3 and Table 2).

The DSC and HD values were higher for T stage than N stage. The

average normalized DSC values for N stage were 69.07% (N1),

65.32% (N2), and 64.03% (N3), with an overall DSC of 65.86%
(Figure 4 and Table 2). The average normalized HD values for N

stage were 31.08 mm (N1), 32.12 mm (N2), and 34.99 mm (N3),

with an overall HD of 32.10 mm.

There was good overlap in DSC and HD values for GTVnx

between autosegmented contours and manual contours

obtained by physicians. However, autosegmented contours did

not show a good match in the lymph nodes, especially in

patients with N3 lymph nodes. We also performed U-Net deli-

neation without normalization to test the impact of normaliza-

tion. The DSC and HD values without normalization were

lower than those after normalization (Table 2).

Figure 2. U-Net architecture.
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Time Cost

The time needed to train the U-Net model was about 18 hours

using a DELL R730 server with dual Intel Xeon E5-2643 v4

(3.4 GHz) and dual NVIDIA tesla K40m graphics cards. The

average time for automatic delineation of GTVnx and GTVnd

with U-Net was about 40 seconds per patient. U-Net-assisted

delineation required an average of 2.6 hours per patient, in

contrast to manual delineation which required an average of

3 hours per patient. The comparison of 10 physicians was

shown in Figure 5 between U-Net-assisted delineation and

manual delineation.

Discussion

Accurate target delineation is the most important step for pre-

cise and effective radiotherapy in patients with NPC, but is

time-consuming and varies with the experience of the

Table 2. The DSC and HD Values for GTVnx and GTVnd Segmentation.

Evaluation Metrics

Primary Tumor Stage Lymph Nodes Stage

T1 T2 T3 T4 Overall N1 N2 N3 Overall

DSC-norm (%) 77.24 75.38 74.13 71.42 74.00 69.07 65.32 64.03 65.86

DSC (%) 76.58 73.18 71.49 68.80 71.78 65.64 59.87 59.42 61.05

HD-norm (mm) 10.36 11.37 11.90 15.72 12.85 31.08 32.12 34.99 32.10

HD (mm) 10.43 14.10 12.37 17.02 14.24 34.37 33.33 42.98 36.15

Abbreviations: DSC, dice similarity coefficient; DSC-norm, dice similarity coefficient with normalization; GTVnd, lymph node gross tumor volume; GTVnx,

nasopharynx gross tumor volume; HD, Hausdorff distance; HD-norm, Hausdorff distance with normalization.

Figure 4. Target delineation in N stage. A, Representative computed tomography scans showing the results of manual delineation and automated

delineation using U-Net. The target region is shown in cyan. B, Normalized U-Net dice similarity coefficients by N stage.

Figure 3. Target delineation in T stage of NPC by U-Net model. A. Representative pictures from manual delineation and U-Net. The target

region is shown in orange. B.DSC value in different T stage.
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oncologist. In recent years, automatic target delineation using

deep learning algorithms has been increasingly used by radia-

tion oncologists. In this study, we used a modified version of a

deep learning algorithm called U-net to automate segmentation

and delineation of NPC tumors for radiotherapy. We show that

U-Net is able to delineate NPC tumors with high accuracy and

reduces the delineation time requirement for physicians.

Many studies reported that deep learning model can seg-

ment those obvious and clear tumors, such as lung cancer,

hepatoma, and so on. But the contour and anatomical structure

of NPC is more complex than other types of tumors. In this

article, a modified deep learning model for automatic tumor

target segment of nasopharyngeal cancer is carried out. On the

one hand, our data showed that deep learning model had a

better delineation accuracy in early stage, compared with

advanced stage. Moreover, our deep learning model demon-

strated lower DSC value and HD value in GTVnd, compared

with GTVnx. Therefore, professional intervention is required

because of unsatisfied delineation accuracy. On the other hand,

considering impact of normalization technique, another U-Net

without normalization was trained by same data set in order to

compare with current results. The experimental results indi-

cated that normalization technique could improve the delinea-

tion accuracy of deep learning model. The main reason is that

original gray level values bring larger errors than normalized

data after the model calculation in single precision floating

point representation.

Consistency of target delineation is a key factor affecting

clinical outcomes in patients with NPC. A study in which sev-

eral oncologists manually delineated identical GTV contours of

supraglottic carcinoma reported an interobserver overlap of

only 53%.33 A comparison of CTV delineation among different

radiation oncologists reported a DSC value of only 75%.34

Deep learning methods have been reported to perform better

than other methods in many automatic delineation applications.

Previous studies using nondeep learning methods reported

mean DSC values of 60% to 80% for CTV delineation, whereas

automatic delineation based on deep learning gave a mean DSC

value of 82.6%.35-40 However, few studies have investigated

their use in delineating complex targets such as NPC. Previous

studies using nondeep learning methods reported DSC values

of 69% and 75% for head and neck cancer, respectively.41,42

Delineation of lymph node is especially difficult: Studies show

that the DSC value of lymph node delineation using atlas-based

methods was only 46% in unilateral tonsil cancers.43 In com-

parison, we found that U-Net produced DSC values of 65.86%
for overall N stage and 74.00% for overall T stage in patients

with NPC. Previous studies did not differentiate delineation

of primary tumor stage or lymph nodes stage. We found that

U-Net produced higher DSC values in T stage than N stage and

that the DSC value decreased in more advanced cancer. More-

over, we respectively analyzed the performance of U-Net

model in different primary tumor stage (T1-T4) and lymph

nodes stage (N1-N3), which helped us to find weakness of

U-Net model in different stages.

Our study has several advantages compared to previous

work. First, Sun et al investigated that the performance of deep

learning models can be improved by increases of the data.44

The size of database used by most previous studies was smaller

than ours. Not only that, but to ensure data set quality, manual

target delineation was drawn by 2 radiation oncologists sepa-

rately, who were trained according to the same professional

guideline.45 Both of them have more than 15 years of experi-

ence in caring for patients with NPC. After that, 2 radiation

radiologists were required to approve the contour drawn by

each other. If inconsistent samples were identified, the third

radiologist specializing in NPC imaging would consult in cases

of disagreement. During the consultation, the third radiologist

was required to discuss and reach an agreement with the 2

radiologists. To a limited extent, the inter-/intraoperator varia-

bility is addressed in our study. Second, we chose not to use

data augmentation in our study, although this can enhance the

performance of deep learning models, because we wished to

investigate the performance of a deep learning model trained

by a large, manually labeled data set curated by experienced

radiation oncologists. As a result, we found clear evidence that

deep learning methods show different accuracy of target deli-

neation depending on cancer stage. Future work should exam-

ine the impact of including data augmentation on automatic

delineation. Third, low-contrast visibility and high noise levels

usually lead to ambiguous and blurred boundaries between

GTVnx, GTVnd, and normal tissues in CT images. Variation

in contrast among different slices may affect the robustness of

the model. By comparing delineation with or without normal-

ization, we clearly show that normalization improved U-Net

performance.

Conclusion

We show that a modified U-Net model can delineate NPC

tumor targets with higher consistency and efficiency than man-

ual delineation, as well as reduce the amount of time required

per patient. Delineation accuracy was better in early stage than

advanced stage and better in primary tumor than in lymph

Figure 5. Comparison of total delineation time per patient for 10

physicians using manual delineation and U-Net-assisted delineation.
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nodes. The U-Net may be a useful tool for relieving physician

workload and improving treatment outcomes in NPC.
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ical Image Understanding and Analysis. MIUA 2017. Communi-

cations in Computer and Information Science, vol 723. Cham:

Springer; 2017:506-517.

22. Men K, Dai J, Li Y. Automatic segmentation of the clinical target

volume and organs at risk in the planning CT for rectal cancer

Li et al 7

https://orcid.org/0000-0002-6418-7818
https://orcid.org/0000-0002-6418-7818
https://orcid.org/0000-0002-6418-7818
https://orcid.org/0000-0003-0240-2831
https://orcid.org/0000-0003-0240-2831
https://orcid.org/0000-0003-0240-2831


using deep dilated convolutional neural networks. Med Phys.

2017;44(12):6377-6389.

23. Men K, Zhang T, Chen X, et al. Fully automatic and robust

segmentation of the clinical target volume for radiotherapy of

breast cancer using big data and deep learning. Phys Med.

2018;50:13-19.

24. Men K, Boimel P, Janopaul-Naylor J, et al. Cascaded atrous con-

volution and spatial pyramid pooling for more accurate tumor

target segmentation for rectal cancer radiotherapy. Phys Med

Biol. 2018;63(18):185016.

25. Ronneberger O, Fischer P, Brox T. U-Net: convolutional net-

works for biomedical image segmentation. In Navab N, Horneg-

ger J, Wells W, Frangi A, eds. Medical Image Computing and

Computer-Assisted Intervention - MICCAI 2015. Lecture Notes in

Computer Science, vol 9351. Cham: Springer; 2015:234-241.

26. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural net-

works. In Proceedings of the Fourteenth International Confer-

ence on Artifical Intelligence and Statistics; April 11-13, 2011,

Fort Lauderdale, Florida, USA; pp. 315-323.

27. Abadi M, Barham P, Chen J, et al. TensorFlow: A system for Large-

Scale Machine Learning. In Proceedings of the 12th USENIX

conference on Operating Systems Design and Implementation

(OSDI’16). USENIX Association, 2016, Berkeley, CA; pp. 265-283.

28. Nvidia C. Compute Unified Device Architecture Programming

Guide. 2007.

29. Cuccurullo V, Mansi L. AJCC Cancer Staging Handbook: from

the AJCC Cancer Staging Manual (7th edition). Eur J Nucl Med

Mol Imaging. 2011;38:408-408. doi:10.1007/s00259-010-1693-9

30. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R. Dropout: a simple way to prevent neural networks from

overfitting. J Mach Learn Res. 2014;15(2):1929-1958.

31. Glorot X, Bengio Y. Understanding the difficulty of training deep

feedforward neural networks. Journal of Machine Learning

Research - Proceedings Track. 2010;9:249-256.

32. Kingma DP, Ba J. Adam: a method for stochastic optimization.

arXiv Preprint arXiv. 2014: doi:10.1177/14126980.

33. Cooper JS, Mukherji SK, Toledano AY, et al. An evaluation of the

variability of tumor-shape definition derived by experienced

observers from CT images of supraglottic carcinomas (ACRIN

protocol 6658). Int J Radiat Oncol Biol Phys. 2007;67(4):

972-975.

34. Caravatta L, Macchia G, Mattiucci GC, et al. Inter-observer varia-

bility of clinical target volume delineation in radiotherapy treat-

ment of pancreatic cancer: a multi-institutional contouring

experience. Radiat Oncol. 2014;9:198. doi:10.1186/1748-717X-

9-198.

35. Iglesias JE, Sabuncu MR. Multi-atlas segmentation of biome-

dical images: a survey. Med Imaging Anal. 2015;24(1):

205-219.

36. Teguh DN, Levendag PC, Voet PW, et al. Clinical validation of

atlas-based auto-segmentation of multiple target volumes and

normal tissue (swallowing/mastication) structures in the head and

neck. Int J Radiat Oncol Biol Phys. 2011;81:950-957.

37. Qazi AA, Pekar V, Kim J, Xie J, Breen SL, Jaffray DA. Auto-

segmentation of normal and target structures in head and neck CT

images: a feature-driven model-based approach. Med Phys. 2011;

38(11):6160-6170.

38. Stapleford LJ, Lawson JD, Perkins C, et al. Evaluation of

automatic atlas-based lymph node segmentation for head-

and-neck cancer. Int J Radiat Oncol Biol Phys. 2010;77(3):

959-966.

39. Gorthi S, Duay V, Houhou N, et al. Segmentation of head and

neck lymph node regions for radiotherapy planning using active

contour-based atlas registration. IEEE J Selec Top Sig Pro. 2009;

3(1):135-147.

40. Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural

network for target segmentation of nasopharyngeal cancer in

planning computed tomography images. Front Oncol. 2017;7:

315.

41. Tsuji SY, Hwang A, Weinberg V, Yom SS, Quivey JM, Xia P.

Dosimetric evaluation of automatic segmentation for adaptive

IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys.

2010;77(3):707-714.

42. Yang J, Beadle BM, Garden AS, Schwartz DL, Aristophanous M.

A multimodality segmentation framework for automatic target

delineation in head and neck radiotherapy. Med Phys. 2015;

42(9):5310-5320.

43. Yang J, Beadle BM, Garden AS, et al. Auto-segmentation of low-

risk clinical target volume for head and neck radiation therapy.

Pract Radiat Oncol. 2014;4(6):e31-e37.

44. Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable

effectiveness of data in deep learning era. In 2017 IEEE Interna-

tional Conference on Computer Vision. New York, NY: IEEE;

2017:843-852.

45. Lee N, Harris J, Garden AS, et al. Intensity-modulated radiation

therapy with or without chemotherapy for nasopharyngeal carci-

noma: radiation therapy oncology group phase II trial 0225. J Clin

Oncol. 2009;27(22):3684.

8 Technology in Cancer Research & Treatment



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


