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Abstract: Levothyroxine (LT4) is known for its use in various conditions including hypothyroidism.
LT4 interaction with serum albumin may be influenced by the presence of vitamins. For this reason,
we investigated the effect of vitamin C, vitamin B12, and folic acid on the complex of Bovine Serum
Albumin with LT4 (BSA-LT4). UV-Vis spectroscopy was used to monitor the influence of vitamins
on the BSA-LT4 complex. Fluorescence spectroscopy revealed a static quenching mechanism of
the fluorescence of BSA-LT4 complex by the vitamin C and folic acid and a combined mechanism
for vitamin B12. The interaction of vitamin C and folic acid with BSA-LT4 was moderate, while
the binding of vitamin B12 was much stronger, extending the storage time of LT4 in blood plasma.
Synchronous fluorescence found that the vitamins were closer to the vicinity of Trp than to Tyr
and the effect was more pronounced for the binding of vitamin B12. The thermal stability of the
BSA-LT4 complex was more evident, but no influence on the stability of BSA-LT4 complex was
obtained for vitamin C. Molecular docking studies showed that vitamin C and folic acid bound the
same site of the protein, while vitamin B12 bonded to a different site.

Keywords: vitamins; BSA-LT4 complex; spectroscopy; molecular docking

1. Introduction

Serum albumin is a model protein for ligand binding and transport studies. The
structure of serum albumin is influenced by physical and chemical factors such as pH and
temperature [1,2]. Serum albumin binds and transports, covalently or reversibly, various
ligands, many drugs such as tetracaine [3] and mitomycin C [4]; flavonoids [5] vitamins
such as folic acid [6,7], vitamin C [8], vitamin B12 [9]; dyes [10] or nanoparticles [11–13].
Also, many hormones are transported by serum albumin, such as steroid hormones [14] or
thyroid hormones T3 and T4 [15].

Levothyroxine (LT4) is the chemical equivalent of thyroid hormone T4. LT4 absorption
at the cellular level raises clinical issues with major implications for patients’ health. For
instance, patients with hypothyroidism experience problems absorbing LT4 due to changes
in the body’s internal parameters, such as pH or temperature. One way to improve or
correct LT4 absorption may be the intake of vitamins such as vitamin C, folic acid, or vitamin
B12. The pathology and diet of patients influences the bioavailability of administered drugs
that reach the systemic circulation. Many endogenous and exogenous drugs and dietary
supplements such as vitamins are transported by bovine serum albumin (BSA), and can
influence the BSA-LT4 interaction.

Vitamin C (ascorbic acid) is one of the essential vitamins due to its role as an anti-
aging agent, and because of its protective role against infections, autoimmune diseases,
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and the development of cancer [16]. There are indications that serum concentrations of
thyroid-stimulating hormone (TSH) and free thyroid hormones (T3 and T4) have improved
when patients have taken vitamin C [17]. It seems that vitamin C can reduce the adverse
effect of heat stress [18]. Also, replacing LT4 with vitamin C prevents oxidative stress in
hypothyroid patients [19].

Folic acid is a small water-soluble molecule that is present in artificially enriched foods
and pharmaceutical vitamins [20]. Among the benefits of folic acid is the prevention of the
development of cancer and the prevention of megaloblastic anemia during pregnancy [21].
Folic acid also plays an important role in DNA synthesis and cell division [22]. It was shown
that LT4 decreases serum homocysteine levels much more successfully in the presence
of folic acid [23], which means that this complex can decrease the risk of cardiovascular
disease by decreasing serum homocysteine levels in hypothyroidism.

Vitamin B12 (cobalamin) is a water-soluble molecule that is synthesized by bacteria
from the large intestine of humans [24]. Processes such as DNA synthesis, cellular energy
production, and the prevention of megaloblastic anemia [25] are influenced by the con-
centration of vitamin B12. Studies on patients with multiple sclerosis suggest that there is
a direct link between vitamin B12 levels and thyroid hormones, advancing the idea that
this complex could bring benefits to patients with multiple sclerosis [24]. Also, a certain
percentage of hypothyroid patients have low levels of vitamin B12 [26].

The chemical structures of these vitamins are presented in Scheme 1.

Scheme 1. The chemical structures of the LT4, vitamin B12, vitamin C and folic acid molecules.

In this study, the effect of vitamin C, vitamin B12, and folic acid (FA) on the BSA-
LT4 complex were investigated using spectroscopic and molecular docking approaches.
The results could help to better understand the interactions that occur between transporter
protein BSA and LT4 and BSA-LT4 complex stability in pharmacological applications.
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2. Results and Discussions

The ability of serum albumin to carry LT4 in the blood plasma may be affected by
vitamins. Some vitamins may interfere with the binding of LT4 to BSA. Therefore, in this
study, the effects of vitamin C, folic acid, and vitamin B12 as three important vitamins on
the binding of LT4 to BSA were investigated.

2.1. Structural Changes Highlighted by UV-Absorption

Absorption and fluorescence spectroscopy are complementary methods, providing
quantitative information on different analytes when the wavelengths of absorption peaks
can be correlated with the changes occurring during an interaction (e.g., type of bonds) [27].
Previously, the BSA-LT4 complex formation was demonstrated [28], thus, in the present
work, UV-absorption measurements were used to monitor the influence of vitamins on the
BSA-LT4 complex.

Solutions of increasing concentrations of vitamin C ((0–70) µM), FA ((0–70) µM) and
B12 ((0–40) µM) were added to the BSA-LT4 complex (3 µM and 15 µM LT4). The con-
centration of LT4 was chosen to assure the saturation of the protein binding site with LT4.
Due to the Trp residue, the maximum of the absorbance of BSA is ~280 nm, while the
specific absorbance wavelength for LT4 is ~237 nm. The maximum of BSA absorption shifts
towards lower wavelengths (a hypsochromic effect) with increasing vitamin C concentra-
tion, while the maximum of LT4 absorption shifts less significantly and bathochromically
(∆λBSA ∼= 11.71 nm and ∆λLT4 ∼= 1.74 nm) (see Figure 1A). In the case of FA (see Figure 1B)
there is no shift for the BSA absorption maximum, while ∆λLT4 ∼= 1.61 nm. However, at
~300 nm, a shoulder appears on the BSA peak for a concentration higher than 20 µM FA,
suggesting the appearance of a conjugated system. Both FA and LT4 have an amino moiety.
It is known that the BSA-LT4 complex formation occurs via -NH2 groups [28]. Because the
structure of the BSA is already complexed with LT4, Figure 1 shows the binding that FA
will compete with LT4 in order to bind to the protein active site. A similar scenario occurs
in the presence of B12 (see Figure 1C). The BSA absorption peak remains unchanged while,
starting with the first concentration of B12, a shoulder at 287 nm appears. Furthermore,
the specific absorption peak of B12 (characteristic in water) is clearly visible at 362 nm.
In addition, for LT4 absorption, ∆λLT4 ∼= 2.80 nm, with a bathochromic shift, suggests a
stronger interaction of the BSA-LT4 complex with B12.

Figure 1. Cont.
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Figure 1. The effect of vitamin solutions on the UV absorption spectra of BSA-LT4 in the presence
of vitamin solutions in different concentrations: Vitamin concentrations are: Vitamin C ((0–70) µM)
(A), folic acid ((0–70) µM) (B) and vitamin B12 ((0–40) µM) (C). The significance of the colors is
explained by the arrow in the figure that indicates the direction of increase of the concentration of
each compound in the 3 situations.

2.2. The Quenching Mechanism of BSA Fluorescence by Vitamins

Albumin is one of the blood proteins that binds LT4 with moderate affinity [28,29] and
carries it in the body. The binding of vitamin C, folic acid, and vitamin B12 to the complex
formed between BSA and LT4 was also studied by fluorescence titration.

The fluorescence emission of BSA-LT4 complex monitored at 25 ◦C decreased with
the gradual addition of the vitamins (vitamin C, folic acid, and vitamin B12) in the BSA-
LT4 complex (see Figure 2A–C). A similar result was obtained at 35 ◦C, which suggested
that the Trp microenvironment in the LT4 complex protein may be influenced by the
addition of vitamins.

There are two types of quenching mechanisms between two molecules in interactions:
the static mechanism, through the formation of a complex between the quencher molecule
and the fluorophore, and the dynamic mechanism, by a collision process [30]. In order to
elucidate the nature of the fluorescence quenching of the BSA-LT4 complex by vitamins,
the experimental data, collected at 25 ◦C and 35 ◦C, were analyzed according to the Stern-
Volmer Eq. (Equation (1)):

F0

F
= 1 + KSV [Q] (1)

where F0 and F are the fluorescence intensities of BSA-LT4 complex in the absence and
in the presence of the quencher; [Q] is the concentration of the quencher, and KSV is the
quenching constant (Stern-Volmer constant) of the process.

The Stern-Volmer representation was linear for the BSA-LT4/vitamin C and BSA-
LT4/folic acid complexes (see Figure 3A). The Stern-Volmer constants of these two com-
plexes were calculated and listed in Table 1. The quenching process was slowly temperature-
dependent, but the values of Ksv were lower at 35 ◦C than at 25 ◦C, thus the process was
not a dynamic one. The same mechanism has previously been found for the binding of
folic acid [7] and vitamin C [31] to BSA.
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Figure 2. Fluorescence emission spectra of BSA-LT4 in the absence and presence of vitamin C (A),
folic acid (B), and vitamin B12 (C) at 25 ◦C. All samples were prepared in 100 mM HEPES buffer,
at pH 7.4. The significance of the colors is explained by the arrow in the figure that indicates the
direction of increase of the concentration of each compound in the 3 situations.

Figure 3. The Stern-Volmer representation of F0/F vs. [vitamin] for BSA-LT4/vitamin C, and BSA-
LT4/folic acid complexes (A) and for the BSA-LT4/vitamin B12 (B) at 25 ◦C (empty circles) and 35 ◦C
(full circles).
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Table 1. The parameters of the interaction of vitamin C, folic acid and vitamin B12 with BSA-
LT4 complexes.

T
(◦C)

KSV × 104/
(M−1)

kq × 1014/
(M−1 s−1)

Kb/
(M−1) n ∆G/

(kJ mol−1)
∆H/

(kJ mol−1)
T∆S/

(kJ mol−1)

BSA-LT4/B12

25 8.37 12.10 2.45 × 107 1.49 −28.09
63.28

91.38

35 14.47 20.90 5.62 × 107 1.53 −30.44 93.73

BSA-LT4/VC

25 1.02 1.47 1.12 × 104 1.01 −23.11
−19.29

3.82

35 0.97 1.40 0.87 × 104 0.99 −23.23 3.94

BSA-LT4/FA

25 1.06 1.53 0.38 × 104 0.89 −20.43
19.41

39.84

35 0.84 1.21 0.49 × 104 0.94 −21.76 41.17

In the case of the complex BSA-LT4/B12 (see Figure 3B), the Stern-Volmer plot showed
a positive deviation which suggested that quenching was not only due to collision but may
be due to both static and dynamic processes [32,33]. The static quenching constant for the
interaction of B12 with BSA-LT4 was determined for the first experimental data that can be
fitted with a straight line (Table 1). The bimolecular constant kq was calculated and the
values are listed in Table 1. As one can see, the values for kq are larger than the diffusion
limit in aqueous solutions, which is 1 × 1010 M−1 s−1 [30]. This is an indication that the
interaction between BSA-LT4 and vitamin C, folic acid and vitamin B12 is initiated by a
complex formation and not by a collision process. The same mechanism has previously
been found for the binding of folic acid [7], vitamin C [31] and B12 [9] to BSA.

2.3. Binding Constant and Binding Sites

The strength of the interaction between the BSA-LT4 and the three vitamins can be
interpreted in terms of the binding (affinity) constant. Assuming that the static quenching
is the main mechanism for the binding of vitamins to BSA-LT4, the number of binding sites
and the binding constants were determined according to Eq. Scatchard (Equation (2)):

log(
F0

F
− 1) = log Kb + n log[Q] (2)

where Kb is the binding constant, n is the number of binding sites, and [Q] is the final
concentration of the quencher.

The double logarithmic representation of vitamins binding to BSA-LT4 complex was
given in Figure 4 by plotting log(F0/F − 1) vs. log([vitamin]). The logKb was obtained from
the intercept and n from the slope of the plot. The values of these parameters were listed in
Table 1.

In this study it was considered that one molecule of vitamin bound to the BSA-
LT4 complex. The results obtained demonstrate that the binding process was characterized
by a moderate interaction of folic acid and vitamin C binding and by a strong interaction
for the binding of B12. In a previous study [28], we showed that LT4 binds to BSA with a
constant of 5.12× 106 M−1 at 25 ◦C and 2.59× 106 M−1 at 35 ◦C. When vitamin B12 binds to
the BSA-LT4 complex, the binding constant was 2.45× 107 M−1 at 25 ◦C and 5.62× 107 M−1

at 35 ◦C. Thus, vitamin B12 may extend the storage time of bound LT4 in blood plasma.
Consequently, the amount of the drug in the target cells is reduced and the maximum
effects of LT4 are reduced [34].
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Figure 4. The Scatchard plot of log(F0/F − 1) against log[vitamin] at 25 ◦C (empty circles) and 35 ◦C
(full circles).

The stoichiometry of the binding of vitamin C and folic acid to BSA-LT4 was approx-
imately equal to 1. Therefore, there is one binding site to vitamin C and folic acid with
BSA. For the binding of B12 to BSA, the stoichiometry was approximately equal to 1.5. BSA
has two Trp residues, Trp134 and Trp212, that are involved in ligand binding. Trp212 is
deeply buried in the hydrophobic pocket and Trp134 is more exposed to a hydrophilic
environment [35]. Thus, vitamin B12 binds to the hydrophobic pocket located around Trp
212, and a second site may be around Trp 134, but it may be partially occupied.

2.4. Thermodynamic Parameters and the Nature of the Binding Forces

Thermodynamic parameters can help to confirm the non-covalent acting forces of an
interaction. These parameters can be determined using Equations (3) and (4):

ln
Kb2
Kb1

=
∆H0

R

(
1
T1
− 1

T2

)
(3)

∆G0 = −RT ln Kb = ∆H0 − T∆S0 (4)

where Kb is the association constant, T is the absolute temperature; R is the gas constant
(8.314 J K−1 mol−1).

The values of the thermodynamic parameters of interaction are an indication of the
forces that drive the interaction process. For the binding of vitamins to BSA-LT4 complex
(see Table 1 and Figure 5) the most enthalpic process is the binding of vitamin B12 to
BSA-LT4. Also, for BSA-LT4/vitaminB12 and BSA-LT4/folic acid, ∆H > 0 and ∆S > 0, thus
these processes are mainly driven by hydrophobic interaction. For BSA-LT4/vitamin C,
∆H < 0 and ∆S > 0, and this process is driven by electrostatic forces [36].

2.5. Conformation Investigation Monitored by Synchronous Fluorescence

Synchronous fluorescence spectroscopy gives specific information for the Tyr or Trp
residues when the ∆λ value between the excitation and emission wavelengths is stabilized
at either 15 nm (for Tyr) or 60 nm (for Trp) [37]. In order to explore the structural changes in
the vicinity of the functional groups of fluorophores in the BSA-LT4 complex by the addition
of vitamin C, folic acid, and vitamin B12, synchronous fluorescence spectra were recorded
in the presence of vitamins (Figure 6). Successive additions of vitamin C (Figure 6A,B) and
folic acid (Figure 6C,D) to the BSA solution led to an insignificant red shift of the maximum
emission wavelength of Tyr (∆λ = 15 nm), and for Trp (∆λ = 60 nm) (Figure 6A,B) as well.
This revealed that the polarity around the Tyr and Trp residues does not change in the
presence of vitamin C and folic acid. In the case of vitamin B12 titration in BSA-LT4 solution
(Figure 6E,F), a red shift on 1 nm was observed for the Tyr maximum emission wavelength
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along with a 3 nm blue shift for Trp. Thus, the microenvironment around Trp became
more polar.

Figure 5. The thermodynamic parameters for the binding of the vitamin B12, vitamin C and folic
acid with BSA.

Figure 6. Cont.
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Figure 6. Synchronous fluorescence spectra of BSA-LT4 in the presence of different concentrations of
vitamin C, folic acid, and vitamin B12 (∆λ = 60 nm and ∆λ = 15 nm) The significance of the colors is
explained by the arrow in the figure that indicates the direction of increase of the concentration of each
compound in the 3 situations (A–F). Quenching of BSA-LT4 synchronous fluorescence by vitamins
plotted as the quenching of BSA synchronous fluorescence (F/F0) by vitamin concentrations (G):
empty symbols correspond to ∆λ = 15 nm and full symbols correspond to ∆λ = 60. The name of the
compound is next to the corresponding lines.

By the graphical representation of the F/F0 ratio (see Figure 6G), the curve of ∆λ = 60 nm
is lower than the curve of ∆λ = 15 nm, suggesting that Trp is involved in the fluorescent
quenching of BSA-LT4 by vitamins. All three vitamins are closer to the vicinity of Trp than
to that of Tyr. This effect is more pronounced in the case of vitamin B12 than for vitamin C
and folic acid.

2.6. The Effect of Vitamins on the Thermal Stability of BSA-LT4 Complex

To investigate the effect of vitamin C, folic acid, and vitamin B12 on the BSA-LT4 com-
plex, fluorescent spectra of the BSA-LT4 complex, in the absence and in the presence of
vitamins, were recorded at different temperature values, between 25 ◦C and 80 ◦C. The max-
ima of the fluorescence intensities were represented in Figure 7A. The fraction of the BSA
that is thermally denatured was determined according to Equation (5) and is represented
in Figure 7B:

P =
F(T)− FN
FD − FN

× 100% (5)

where P is the fraction of the denatured protein, FN and FD are the fluorescence intensities
of the native and denatured states of the protein, and F(T) is the fluorescence intensity at
temperature, T.
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Figure 7. (A) The fluorescence maxima during the thermal denaturation processes of BSA (3 µM),
BSA-LT4 ([LT4] = 3 µM), and BSA-LT4/vitamins ([vitamin] = 10 µM). (B). The percentage (P) of BSA
denaturation as a function of temperature. (C) Graphical representation of lnKeq vs. temperature.

Considering that the process of thermal denaturation of BSA-LT4 assumes the existence
of the model in two states, N—native (folded) and D—denatured (unfolded), the balance
of this process will be established according to the relation (6):

Keq =
[D]

[N]
(6)

The plot of lnKeq vs. 1/T (the van’t Hoff plot) is represented in Figure 7C. The
denaturation of the BSA-LT4 complex in the presence of the vitamins is an endothermic
process. The slope of the straight line gives the −∆Hunf/R value and the Y-intercept gives
the ∆Sunf/R value. The thermodynamic fingerprint of protein stability is given in Table 2.

Table 2. The thermodynamic fingerprint of BSA-LT4 denaturation in the presence of vitamins.

Sample ∆H
(kJ mol−1)

∆S
(J mol−1K−1)

Tm
(◦C)

BSA 83.703 259.47 50.44

BSA-LT4 86.363 271.53 45.91

BSA-LT4/Vitamin C 76.641 240.19 46.93

BSA-LT4/Vitamin B12 73.895 229.30 50.11

BSA-LT4/folic acid 77.932 241.60 50.41
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The values obtained for Tm indicate that the apo-protein denatures faster, and the
presence of vitamins induces BSA denaturation at a higher temperature, especially in the
presence of vitamin B12 and folic acid. These results suggest that vitamins may induce
some stability in the structure of the BSA-LT4 complex.

2.7. Molecular Docking Analysis

Molecular docking was used to estimate the best orientation of vitamin C, folic acid,
and vitamin B12 at the BSA protein site (see Figure 8). The results obtained suggested that
vitamin B12 has the best binding affinity to BSA (Table 3). It also appears to bind to the
same site as LT4 as opposed to the other two vitamins.

Figure 8. Virtual screening and docking results for the best binding of vitamin C, folic acid, and
vitamin B12 to BSA conformation. The driving forces contacts of the interaction are represented by
colored symbols as follows: van der Waals (•), conventional hydrogen bonds (•), and hydrophobic
(•) forces.

Table 3. Molecular docking parameters for the best orientation of LT4 and vitamins at the binding
site of BSA.

BSA

Vitamin
Binding
Affinity

(kcal/mol)

Ka
(M−1)

LT4 [28] −6.4 4.97 × 104

Vitamin B12 −8.0 74.00 × 104

Vitamin C −5.4 0.90 × 104

Folic acid −5.9 2.34 × 104

These results for the BSA-vitamin complexes are correlated with the results obtained in
fluorescence, where the binding constant for vitamin B12 appears to increase in the presence
of LT4. For the vitamin C and folic acid, other binding sites were obtained compared to
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LT4, and this is also in accord with the fluorescence results, which showed that the binding
constants were not influenced by LT4 very significantly (see Tables 1 and 3). Figure 8
shows the binding sites for each ligand as well as the amino acids around them positioned
at distances of (5.7–15) Å. The main amino acids present near Vitamin B12 are: Asp111,
Arg144, Arg196, Arg 458, Arg427, Ala193, Gln403, Glu399, Glu186, Glu519, His145, Lys114,
Lys431, Lys523, Pro110, Ser109, Ser192, Ser428, Thr190, Thr518. Around vitamin C are
found: Ala290, Arg217, Arg194, Gln195, Glu152, Glu291, His 287, Tyr156, Tyr149, Ser191.
Folic acid is surrounded by: Ala193, Arg458, Arg144, Arg435, Asp108, Glu424, Ile455,
His145, Lys431, Leu189, Pro110, Ser109, Ser428, Ser 192, Thr190, Tyr451, and Val432.

The driving forces of protein-ligand are hydrophobic, van der Waals or stacking
interactions between aromatic amino acids, hydrogen bonds and electrostatic forces [38].
Molecular docking showed that the main forces influencing the binding of vitamin B12 and
folic acid to the BSA site were van der Waals forces, conventional hydrogen bonds and
hydrophobic forces. In the case of vitamin C, it was observed that the main driving forces
were van der Waals and conventional hydrogen bonds. The different results obtained in
molecular docking and fluorescence can be explained by the influence that the solvent has
on the fluorescence experiments and the condition used in molecular docking. The results
obtained in molecular docking show a similar process for the biding of vitamin B12 and
folic acid at the BSA biding site, behavior obtained also in fluorescence for BSA-LT4/folic
acid and BSA-LT4/vitamin B12. In fluorescence and molecular docking experiments, it was
found that the binding of vitamin C to the protein site is done in a different way than the
other two vitamins.

3. Materials and Methods
3.1. Materials

Bovine serum albumin (BSA) (purity over 98%) was purchased from Merk com-
pany (Merk KGAA, Darmstadt, Germany), and its concentration was determined spec-
troscopically, using the standard molar absorption coefficient for Trp and Tyr at 280 nm
(ε = 44,000 M−1 cm−1). Levothyroxine sodium pentahydrate (LT4), with 888.93 g/mol, was
purchased from Merk Company (Merk KGAA, Darmstadt, Germany). LT4 was solubi-
lized in dimethyl sulfoxide (DMSO, from Alfa Aesar, Ward Hill, Massachusetts, Statele
Unite) to a stock solution of 2.8 mM. Vitamin B12, with 1355.38 g/mol was purchased
from ROHT (Karlsruhe, Germany). Vitamin C, with 176.12 g/mol was purchased from
Merk Company (Merk KGAA, Darmstadt, Germany), and folic acid with a molecular
weight of 441.4 g/mol was purchased from Fluka AG (Buchs, Switzerland). We used N-(2-
Hydroxyethyl)piperazine-N′-(2-ethane sulfonic acid) (HEPES ≥ 99.5 %) buffer purchased
from the Merck Company (Merk KGAA, Darmstadt, Germany) to prepare the samples. The
pH of the samples was established at 7.4 with a saturated NaOH (Merk KGAA, Darmstadt,
Germany) solution.

3.2. UV-Vis Spectroscopy Measurements

UV spectra were recorded with a UV-Vis FLAME-S spectrometer, Ocean Optics Inc.,
Largo, FL, USA preconfigured for 200–1050 nm, in a 1 cm × 1 cm quartz cuvette. All
measurements were carried out at 24 ± 1 ◦C.

3.3. Fluorescence Measurements

Fluorescence spectra were recorded on a Perkin Elmer MS 55 spectrofluorometer
equipped with a 1.0 cm quartz cell. The excitation wavelength for BSA-LT4 complex
was 295 nm. The excitation and emission slit widths were fixed at 5.0 nm and 6.0 nm,
respectively. The BSA-LT4 complex fluorescence was quenched at 25 ◦C and 35 ◦C by
successive additions of vitamins: (0–70) µM for vitamin C, (0–70) µM for folic acid, and
(0–40) µM for vitamin B12 in the BSA-LT4 complex solution. All spectra were corrected by
the inner filter effect.
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3.4. Synchronous Fluorescence Measurements

Synchronous fluorescence spectra of the BSA-LT4 complex were recorded in the
absence and presence of vitamins. The synchronous fluorescence spectra were scanned
from 270 nm to 320 nm (∆λ = 15 nm) and from 240 nm to 320 nm (∆λ = 60 nm), respectively.

3.5. Molecular Docking

Crystal structures of the BSA (PDB ID: 3V03, [39]) and vitamin B12 [40] were retrieved
from RCSB Protein Data Bank [41]. The other structures of ligands were downloaded from
the PubChem database, the database of the National Center for Biotechnology Informa-
tion [42], as follows: LT4 CID = 5819 [43], vitamin C CID = 54,670,067 [44] and folic acid
CID = 135,398,658 [45]. For the molecular docking between ligands and BSA, PyRx [46]
and UCSF Chimera [47] software were used. The best energetic scoring functions were
generated by the AutoDock Vina [48] algorithm. The dimensions of the box were set to
(25 × 25 × 25) Å3. The diagram of ligand-protein interaction was done using Discovery
Studio [49].

4. Conclusions

In this study, the binding between the BSA-LT4 complex and three vitamins: vitamin C,
folic acid, and vitamin B12, was studied by spectroscopic and molecular docking methods.

Vitamin C and folic acid quenched the fluorescence of the BSA-LT4 complex by a static
mechanism, while vitamin B12 interacted with BSA through a combined mechanism that
was both static and dynamic. The formed BSA-LT4/vitamin complexes were stabilized by
hydrophobic interaction for BSA-LT4/vitamin B12 and BSA-LT4/vitamin C and by electro-
static forces for BSA-LT4/folic acid complex. The highest affinity to the BSA-LT4 complex
was found for vitamin B12. In this way, vitamin B12 stabilizes the BSA-LT4 complex, and
the immediate effect will be to decrease the concentration of free LT4, (the active form in
the cell).

The thermal denaturation study shows that folic acid and vitamin B12 increase the
stability of the BSA-LT4 structure more than vitamin C does, the results of which are in
accordance with those obtained in UV-Vis spectroscopy.

Molecular docking showed two different binding sites for vitamin C and folic acid
and vitamin B12, respectively. In this way, the result obtained in fluorescence which shows
that vitamin B12 is closer to the BSA-LT4 site than vitamin C and folic acid is confirmed.

The results of this study, together with further research, should elucidate the physio-
logical importance of vitamins and their influence on LT4 transport and regulation at the
molecular level. The results provide important information about the complex behavior of
BSA-LT4 in a biological environment. These results could accelerate the implementation of
BSA-LT4 as drug delivery systems. Also, these studies are helpful to follow the metabolic,
pharmacodynamic, and pharmacokinetic aspects of LT4.
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