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Beige adipocytes play key roles in organismal energy andmetabolic balance. In this

study, we assessed whether the supplementation of human white adipocytes,

differentiated from human adipose tissue-derived stem cells, with nicotinamide

riboside (NR), a potentNAD+precursor, can shift differentiation to beige adipocytes

(beiging). NR inducedmitochondrial biogenesis and the expressionof beigemarkers

(TBX1 and UCP1) in white adipocytes demonstrating that NR can declutch beiging.

NR did not induce PARP activity but supported SIRT1 induction, which plays a key

role in beiging. NR induced etomoxir-resistant respiration, suggesting increases in

the oxidation of carbohydrates, carbohydrate breakdown products, or amino acids.

Furthermore, NR boosted oligomycin-resistant respiration corresponding to

uncoupled respiration. Enhanced etomoxir and oligomycin-resistant respiration

were dependent on mitochondrial reactive-species production. Taken together,

NR supplementation can induce beiging and uncoupled respiration, which are

beneficial for combatting metabolic diseases.
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1 Introduction

Altered organismal energy homeostasis contributes to the

induction of metabolic diseases, such as obesity (Hall et al., 2022).

Adipocytes play a major role in organismal energy homeostasis

by storing or oxidizing fatty acids (Giordano et al., 2014; Cohen

and Spiegelman, 2016). Both brown and beige adipocytes have

considerable oxidative phosphorylation (OXPHOS) capacity

(Wu et al., 2012). White adipocytes are responsible for lipid

storage and lipid clearance from the circulation. Uncoupling

between the OXPHOS and ATP production yields heat in brown

and beige cells due to the overexpression of uncoupling protein-1

(UCP1). Brown cells have multiple lipid droplets in the

cytoplasm and are often called multilocular adipocytes. Brown

cells enshroud major arteries in adults, and newborns have extra

brown cell-rich adipose tissue localized in the interscapular

region (Lidell et al., 2013; Nedergaard and Cannon, 2018).

Unstimulated, resting beige adipocytes can be found in regular

adipose tissues and have similar unilocular morphology as white

adipocytes (Altshuler-Keylin et al., 2016). Without stimulation

the expression of thermogenic genes is low in beige cells (Petrovic

et al., 2010; Waldén et al., 2012; Shabalina et al., 2013). Beige cells

induce mitochondrial biogenesis in response to adrenergic

stimulus and are very efficient in fatty acid oxidation (Wu

et al., 2012; Harms and Seale, 2013). Beige adipocyte

dysfunction is a serious risk factor for developing obesity and

type II diabetes (Claussnitzer et al., 2015; Alcala et al., 2019;

Scherer, 2019).

NAD+ is a central molecule in biochemistry that is often

referred to as the NAD + -node. NAD + has a redox cycle (NAD+

↔NADH) and a non-redox cycle in which NAD+ is cleaved into

nicotinamide (NA) and ADP-ribose (ADPR) and then

resynthesized (NAD+ ↔ NA + ADPR) (Houtkooper et al.,

2010). NAD+ is cleaved by sirtuins (SIRTs), PARPs, and

CD38, while the resynthesis involves members of the enzyme

machinery of NAD + salvage (Houtkooper et al., 2010; Nikiforov

et al., 2011; Cantó et al., 2013). Increases in NAD + levels induce

pathways that upregulate mitochondrial biogenesis and,

consequently, alleviate insulin resistance and obesity

(Houtkooper et al., 2010; Nikiforov et al., 2011; Cantó et al.,

2013). NAD + precursors can efficiently boost NAD + levels

(Canto et al., 2012; Giroud-Gerbetant et al., 2019). NAD +

metabolism is linked to adipocyte differentiation (Luo et al.,

2017; Ryu et al., 2018; Huang et al., 2020; Szanto and Bai, 2020;

Szanto et al., 2021)

Nicotinamide-riboside (NR) is an NAD + precursor that

efficiently induces cellular NAD + levels and mitochondrial

biogenesis (Canto et al., 2012). NR supplementation efficiently

induced mitochondrial biogenesis in models of obesity (Canto

et al., 2012; Jukarainen et al., 2016; Rappou et al., 2016; Jokinen

et al., 2017; Asnani-Kishnani et al., 2019; Vannini et al., 2019;

Nascimento et al., 2021), inflammatory diseases (Wu et al., 2022),

Parkinson’s (Brakedal et al., 2022), non-alcoholic fatty liver

disease (Dall et al., 2021), and aging (Sun et al., 2021). The

objective of this study was to assess the effects of NR on the

induction of shift of differentiation of white adipocytes to beige

adipocytes (beiging) in a human adipose tissue-derived

mesenchymal stem cell (hADMSC) model.

2 Materials and methods

2.1 Chemicals

Chemicals were purchased from Sigma-Aldrich (St. Louis,

MO, United States) unless stated otherwise. NR was a generous

gift from ChromaDex (Los Angeles, CA, United States). NR

concentration was selected based on literature search [e.g.,

(Canto et al., 2012; Ryu et al., 2016)]. Mito-TEMPO, a

mitochondrial antioxidant (Jankó et al., 2021; Kacsir et al.,

2021) was from Sigma-Aldrich (St. Louis, MO, United States).

2.2 Ethical statement

The study protocol was approved by the Ethics Committee of

the University of Debrecen (Hungary) and the National Medical

Research Council Committee of Human Reproduction (ETT

TUKEB). All experiments were carried out in accordance with

the Declaration of Helsinki and the approved ethical guidelines

and regulations. Written informed consent was obtained from all

participants before the surgical procedure.

2.3 Isolation, culture, and differentiation of
hADMSCs

Human ADMSCs, also called stromal-vascular fraction

(SVF) cells, were isolated from pericardial adipose tissue

specimens as described in (Kristof et al., 2015; Abdul-Rahman

et al., 2016). The hADMSCs were maintained and differentiated

to white or beige adipocytes as described in (Nagy et al., 2019).

Primary human adipose tissue-derived stem cells (hADMSC)

were cultured in DMEM F-12 HAM containing 10% FBS, 1%

penicillin/streptomycin, 33 µM Biotion and 17 µM Pantothenic

acid. Before the induction of differentiation cells were grown to

confluency then the following media were applied. For the

differentiation of white adipocytes during the 1st–3rd days of

differentiation serum-free DMEMHAM-F12 supplemented with

1% Penicilline- streptomycin, 33 µM Biotin, 17 µM Pantothenic

acid, 10 μg/ml Apotransferrin, 200 p.m. 3,3′,5-Triiodo-
L-thyronine sodium salt, 20 nM Human Insulin, 100 nM

Hydrocortisone, 2 µM Rosiglitazone, 25 nM Dexamethasone,

500 µM 3-Isobutyl-1-methylxanthine that is exchanged for

serum-free DMEM HAM-F12 supplemented with 1%

Penicilline- streptomycin, 33 µM Biotin, 17 µM Pantothenic
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acid, 10 μg/ml Apotransferrin, 200 p.m. 3,3′,5-Triiodo-
L-thyronine sodium salt, 20 nM Human Insulin, 100 nM

Hydrocortisone between the 4th–14th day of differentiation.

For the induction of the differentiation of beige adipocytes

serum-free DMEM HAM-F12 supplemented with 1%

Penicilline- streptomycin, 33 µM Biotin, 17 µM Pantothenic

acid, 10 μg/ml Apotransferrin, 200 p.m. 3,3′,5-Triiodo-
L-thyronine sodium salt, 850 nM Human Insulin, 1 µM

Dexamethasone, 500 µM 3-Isobutyl-1-methylxanthine was

used. From day 4th to day 14 serum-free DMEM HAM-F12

supplemented with 1% Penicilline- streptomycin, 33 µM Biotin,

17 µM Pantothenic acid, 10 μg/ml Apotransferrin, 200 p.m.

3,3’,5-Triiodo-L-thyronine sodium salt, 850 nM Human

Insulin and 500 nM Rosiglitazone was applied. Medium was

changed every 2 days. A subset of white adipocytes was treated

with 500 µM NR for 14 days during the differentiation process.

2.4 Immunofluorescence and confocal
microscopy

Mitochondrial structure was determined by staining

differentiated hADMSCs with TOMM20 immunohistochemistry

similar to (Jankó et al., 2021). The hADMSCs were seeded on glass

coverslips and differentiated as described in 2.3. To detect

TOMM20, differentiated cells were washed with PBS, fixed with

4% paraformaldehyde for 10 min at 37°C, and permeabilized with

1% Triton X-100 in PBS for 10 min. Between each step, cells were

rinsed twice with PBS. Cells were blocked with 1% bovine serum

albumin (BSA) in PBS for 1 h at room temperature.

TOMM20 primary antibody was applied overnight (4°C,

humidified chamber, diluted in blocking buffer). The next day,

cells were washed and probed with Alexa Fluor 647-conjugated

secondary antibody (Goat anti-Mouse IgG (H + L), Thermo Fisher

Scientific, Waltham, MA, United States; excitation: 651 nm,

emission: 667 nm). The pictures were taken with

the ×40 objective of the system. Cell nuclei were visualized with

DAPI (NucBlue Fixed Cell ReadyProbes Reagent, Thermo Fisher

Scientific, Waltham, MA, United States). Confocal images were

acquired with a Leica TCS SP8 confocal microscope (Leica,Wetzlar,

Germany) and LAS X 3.5.5.19976 software (Leica, Wetzlar,

Germany). Nonspecific binding of secondary antibodies was

checked in control experiments (not shown). Processed images

were analyzed using the ImageJ software Mito-Morphology Macro

(Dagda et al., 2009; Dagda, 2019). Mitochondrial content,

perimeter, circularity, and form factor were calculated from

confocal microscopic images.

2.5 Gene expression and RT-qPCR

Reverse transcription-coupled real-time quantitative PCR

(RT-qPCR) reactions were performed as described in (Bai

et al., 2007). Primers are summarized in Table 1. Expression

was normalized to the geometric mean of β-actin and 36B4 genes

and was expressed as fold change.

2.6 Protein extraction and western
blotting

The hADMSCs were seeded, differentiated, and treated in

10 cm Petri dishes. Cell were rinsed with PBS 2 times, scraped,

centrifuged, and lysed in RIPA lysis buffer (50 mM Tris, 150 mM

NaCl, 0.1% SDS, 1% Triton X 100, 0.5% sodium deoxycholate,

1 mM EDTA, 1 mM Na3VO4, 1 mM NaF, and protease inhibitor

cocktail). Western blotting was performed as described by (Nagy

et al., 2018). Blots were probed with the antibodies summarized in

Table 2. Signals were detected using enhanced chemiluminescence

(ECL) and were captured by ChemiDoc Touch (Bio-Rad

Laboratories, CA, United States).

2.7 Determination of differentiation rate

The rate of differentiation was determined as described in

(Bai et al., 2007). The hADMSC cells were seeded, differentiated,

and treated in 24-well plates. On the day of the experiment, cells

were stained with Nile Red dye (10 μg/ml) in medium and

incubated for 30 min at 37°C. Cells were rinsed with PBS

3 times, digested with Trypsin-EDTA, suspended in PBS, and

pipetted in FACS tubes. The differentiation rate was determined

using a NovoCyte Flow Cytometer (NovoCyte 3000, Acea

Biosciences Inc., San Diego, United States) and analyzed using

NovoExpress 1.2.5 Software. Differentiation rate was expressed

as a percent of all cells.

2.8 Determination of oxygen consumption

Oxygen consumption rate (OCR) was determined using an

XF96 Flux Analyzer using the assay plates designed for the

instrument (Agilent Technologies, CA, United States). The

hADMSCs were seeded in 96-well assay plates, then

differentiated as described above. After recording the baseline

oxygen consumption, cells were treated with a single bolus dose

of dibutyril-cAMP (500 μM final concentration) to simulate

adrenergic stimulation and OCR was recorded in 30 min

intervals 5 times. Next, etomoxir (50 μM final concentration)

was applied and OCR was recorded every 5 times for 3 min.

Etomoxir is an inhibitor of mitochondrial fatty acid import

(Declercq et al., 1987), etomoxir-sensitive respiration corresponds

to fatty acid oxidation, while etomoxir-resistant respiration

corresponds to the oxidation of other, non-fatty acid substrates.

The cells were then treated with oligomycin (2.5 μM final

concentration), and OCR was recorded every 5 times for 3 min.
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Oligomycin blocks the F1/F0 ATP synthase. Therefore, etomoxir-

resistant respiration corresponds to uncoupled respiration. Finally,

cells were treated with a single bolus dose of antimycin A (10 μM)

and rotenone (5 μM) and OCR was recorded every 5 times for

3 min. These drugs completely block mitochondrial respiration and

can be used to determine the baseline fluorescence intensity

(i.e., background). After the measurement, XF96 cell plates were

stained with Nile Red dye, and cell number and differentiation rate

were determined using a Novocyte Flow cytometer (NovoCyte

3000, Acea Biosciences Inc., San Diego, United States) and

TABLE 1 Human primers used in RT-qPCR reactions.

Gene Forward Reverse

36B4 5′-CCATTGAAATCCTGAGTGATGTG-3′ 5′-GTCGAACACCTGCTGGATGAC-3′
β-actin 5′-GACCCAGATCATGTTTGAGACC-3′ 5′-CATCACGATGCCAGTGGTAC -3′
UCP1 5′-AACGAAGGACCAACGGCTTTC-3′ 5′-GGCACAGTCCATAGTCTGCCTTG -3′
TBX1 5′-TCCCACCTTCCAAGTGAAGCTC -3′ 5′-CACGATTTGCTTCATCCACTGC -3′
PRDM16 5′-CACTGTGCAGGCAGGCTAAGAA-3′ 5′-AGAGGTGGTTGATGGGGTGAAA-3′
COX7A1 5′-ATACGGAAACAGGCTCGGAGGT-3′ 5′-ATCCGTTTCGGTCTCGGAATTT-3′
CIDEA 5′-TCTCCAACCATGACAGGAGCAG-3′ 5′-AATGCGTGTTGTCTCCCAAGGT-3′
TMEM26 5′-ACCTCCCATGTGTGGACATCCT-3′ 5′-ACCAACAGCACCAACAACCTCA -3′
SIRT1 5′-TGGCAAAGGAGCAGATTAGTAGGC-3′ 5′-TGGACTCTGGCATGTCCCACT-3′
PGC1α 5′-TTCCTCTGACCCCAGAGTCACC-3′ 5′-TTGCAAGAGGACTTCAGCTTTGG-3′
PPARγ1 5′-GTGGCCGCAGATTTGAAAGAAG-3′ 5′-CCATGGTCATTTCGTTAAAGGCTG-3′
PPARγ2 5′-CAGCAAACCCCTATTCCATGC-3′ 5′-GGGAGTGGTCTTCCATTACGG-3′
ADIPOQ 5′-TTAAAACCTCCCCCAAGCAGA-3′ 5′-GCCTTGAGGAACAGGGATGAG-3′
FAS 5′-GCAGGAGCTCAAGAAGGTGATC-3′ 5′-ACCAGGTTGTTGACATTGTACTCG-3′
FABP4 5′-GGAAAGTCAAGAGCACCATAACC-3′ 5′-GCTCTCTCATAAACTCTCGTGGAAG-3′
HSL 5′-GAAGCCTTTGAGATGCCACTG-3′ 5′-CTCACTGTCCTGTCCTTCACG-3′
leptin 5′-CACACACGCAGTCAGTCTCCTC-3′ 5′-GTATGCCTTCCAGAAACGTGATCC-3′
LPL 5′-CTGGATGGAGGAGGAGTTTAACTACC-3′ 5′-CTGCATCATCAGGAGAAAGACG-3′
PLIN1/2 5′-GAACAAGTTCAGTGAGGTAGCAGC-3′ 5′-CTTGGTTGAGGAGACAGCAGG-3′
TNFa 5′-GCAGTCAGATCATCTTCTCGAAC-3′ 5′-GAAGAGGACCTGGGAGTAGATGAG-3′
PARP1 5′-CACTGGTACCACTTCTCCTGCTTC-3′ 5′-CTTTGCCTGTCACTCCTCCAG-3′
PARP2 5′-GCTAAATCAGACCAATCTCC-3′ 5′-CAGGCTGTGCTGTCCCATTT-3′
PARP3 5′- CTTCCTGGGCCTCATCCTCTG-3′ 5′- CAACCGCTTCTTCACCTGCTG-3′
PARP5a 5′- AACATCCTTCCTTCCAAAACCT-3′ 5′- GGCAAACGTAAATGCAAAGG-3′
PARP5b 5′- AAGGTTACCCGGCAAAAGA-3′ 5′- TGGGTGTCCAGTTCACAAAG-3′
PARP10 5′-CTGTGGACCTGCTGTTGCTG-3′ 5′-GGATGTCGTAGTGGGGGACA-3′

TABLE 2 Primary antibodies used in the study.

Target Type Company Dilution

TOMM20 monoclonal Abcam, Cambridge UK 1:200

UCP1 monoclonal Cell Signaling, Danvers MA, United States 1:1000

TBX1 polyclonal GeneTex, Irvine, CA, United States 1:500

PGC1a polyclonal Thermo Fisher Scientific, Waltham, MA, United States 1:1000 for WB

1:200 for IP

acetyl-lysine antibody polyclonal Cell Signaling, Danvers MA, United States 1:500

Poly (ADP-ribose) (10H) monoclonal Sigma aldrich 1:500

Mono(ADP-ribose) monoclonal Sigma aldrich 1:1000

β-Actin−Peroxidase polyclonal Sigma aldrich 1:20000
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analyzed using NovoExpress 1.2.5 Software. OCR values were

normalized to the differentiation rate for each well and

normalized readings were analyzed and plotted. The calculation

and measurement procedure are published in (Miko et al., 2017).

2.9 Immunoprecipitation

Cells were lysed in RIPA lysis buffer as described in 2.6.

PGC1α acetylation levels were analyzed by

immunoprecipitating lysates with anti-PGC1α antibodies

followed by Western blotting using an acetyl-lysine

antibody and normalization to total PGC1α levels similar to

(Bai et al., 2011a; Bai et al., 2011b).

2.10 Statistical analysis

Data were analyzed using GraphPad Prism nine software. The

modified ThompsonTau test was used to identify outlier data points

that were removed from the analysis. Normality was tested using

D’Agonstino and Pearson tests. Statistical tests are stated in the

figure legends. All data is represented as average ±SD, unless stated

otherwise. All experiments were repeated at least three times.

3 Results

3.1 NR treatment induces mitochondrial
biogenesis and mitochondrial oxidation in
human primary white adipocytes

First, we measured mitochondrial content by

immunofluorescently labeling TOMM20, a mitochondrial marker

protein, followed by image analysis. Mitochondrial content was

higher in beige cells compared with white adipocytes, similar to NR-

treated white adipocytes (Figure 1A). Furthermore, beige and NR-

treated adipocytes had a more fused mitochondrial network

compared with the network of white adipocytes, marked by

increases in the form factor (Figure 1A). These changes resulted

in increases in mitochondrial oxidative activity upon cAMP

stimulation. (Figure 1B). Furthermore, the substrates for

mitochondrial oxidation were altered. In beige adipocytes,

etomoxir-resistant respiration, representing carbohydrate and

amino acid oxidation, decreased, while etomoxir-sensitive

respiration, representing fatty acid oxidation, increased

(Figure 1B) compared with respiration in white adipocytes. In

NR-treated cells, etomoxir-resistant respiration was similar to

white adipocytes, while, fatty acid oxidation was higher in beige

adipocytes (Figure 1B), highlighting the robust increases in fatty acid

oxidation in response to NR treatment. Oligomycin-resistant

respiration, a proxy for uncoupled respiration, increased in beige

adipocytes compared with white and beige cells (Figure 1B).

Furthermore, oligomycin-sensitive respiration, representing

coupled-respiration, increased both in beige and NR-treated cells

(Figure 1B).

NR treatment reduced the rate of differentiation in adipocytes

compared with white adipocytes (Figure 1C), similar to treatment of

cells with olaparib, a PARP inhibitor (Nagy et al., 2019). ThemRNA

and protein expression levels of a brown and beige marker gene,

uncoupling protein-1 (UCP1), which drives uncoupled

respiration and heat generation (Cinti, 2017), and T-Box

Transcription Factor (TBX1), a beige-specific marker. The

mRNA expression levels of UCP1 and TBX1 were higher in

beige and NR-treated cells compared with white adipocytes

(Figure 1D). Furthermore, higher UCP1 mRNA expression

was translated to higher UCP1 protein levels in beige and NR-

treated cells (Figure 1E). Finally, we assessed the mRNA

expression of adipogenic marker genes. The expression of

peroxisome proliferator activated receptor- γ1 (PPARγ1),
fatty acid binding protein-4 (FABP4), fatty acid synthase

(FAS), perilipin, and tumor necrosis factor α (TNFα)
increased, while lipoprotein lipase (LPL) decreased in

beige adipocytes compared with expression levels in white

adipocytes (Figure 1F). NR-treatment of white adipocytes did

not elicit identical changes to gene expression as beige

differentiation. NR treatment induced the expression of

perilipin and decreased the expression of LPL and FABP4

but did not alter the expression of PPARγ, FAS, and TNFα,

suggesting that NR-treated cells have a different

adipogenic enzyme composition and, therefore, different

function.

3.2 NR treatment induces SIRT1 activation
but not excess PARP1 activation

NR is a precursor of NAD + salvage and can support the

activity of NAD + -dependent enzymes, such as PARPs or

sirtuins (Canto et al., 2012). First, we assessed the mRNA

expression of PARP enzymes known to be involved in

regulating mitochondrial metabolism, including PARP1

(Virag et al., 1998; Bai et al., 2011b), PARP2 (Bai et al.,

2011a; Mohamed et al., 2014), PARP3 (Rodriguez-Vargas

et al., 2020), PARP5a (TNKS1), PARP5b (TNKS2) (Yeh

et al., 2009; Wang et al., 2020), and PARP10 (Marton et al.,

2018). The activity of PARP1 and PARP2, the enzymes

responsible for the bulk of cellular PARP activity (Schreiber

et al., 2002; Szanto et al., 2011), and PARP10 did not change

in response to NR supplementation (Figure 2A). However,

the mRNA levels of PARP3, PARP5a, and PARP5b

were slightly increased by NR (Figure 2A). Of note, the

mRNA expression levels of PARP3, PARP5a, and PARP5b

were also elevated upon differentiation of hADMSCs

into beige adipocytes (Figure 2A). These findings prompted

us to assess poly- and mono-ADP-ribosylation in cells.
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No differences in cellular levels of poly-ADP-ribose

or mono-ADP-ribose were detected (Figure 2B),

suggesting that NR supplementation did not induce PARP

activity.

Sirtuins are also major NAD + consumers in cells and SIRT1 is

a major driver of beige differentiation (Fu et al., 2014; Khanh

et al., 2018; Liao et al., 2021). Therefore, we assessed

SIRT1 activity in differentiated cells. Peroxisome proliferator-

activated receptor gamma coactivator-1α (PGC1α) is a

target of SIRT1 deacetylation (Nemoto et al., 2005). Hence,

determining changes in PGC1α acetylation is a good proxy

for SIRT1 activity. In addition, PGC1α is a key element

in beige differentiation (Yan et al., 2016). PGC1α
acetylation levels decreased in beige cells compared

with white adipocytes, similar to NR-treated cells

(Figure 2C), suggesting the SIRT1 activity increased during

beige differentiation and upon NR-induced shift in

differentiation.

FIGURE 1
NR-treatment shifts the differentiation of white adipocytes to beige-like cells. The hADMSCs cells from three donors were seeded and
differentiated to mature adipocytes. Cells were treated with NR (500 µM) throughout the differentiation process. (A) Differentiated cells were
stained with TOMM20 antibody, then mitochondrial quantity and morphology were evaluated (B) Human adipose tissue-derived
mesenchymal stem cells were seeded into Seahorse assay plates and assayed after differentiation. Mitochondrial oxygen consumption
was assessed as described in Materials and Methods. (C) Adipocyte differentiation rate was determined as described in Materials and Methods
(D) The expression levels of the indicated genes were measured by RT-qPCR in differentiated human adipose tissue-derived mesenchymal
stem cells. (E) UCP1 protein expression was measured by Western blot in differentiated human adipose tissue-derived mesenchymal stem
cells (F) The expression levels of the indicated genes were measured by RT-qPCR in differentiated human adipose tissue-derived
mesenchymal stem cells. Normality was checked. Statistical significance was assessed by One-way ANOVA test followed by a post-hoc test
versus white adipocytes. *, **, *** indicate significant differences between groups at p < 0.05, p < 0.01 or p < 0.001, respectively. Data are
represented as means ± SD. Data are expressed as fold change normalized to white adipocytes. Abbreviations: ETO-S, etomoxir sensitive;
ETO-R, etomoxir-resistant; hADMSC, human adipose tissue-derived mesenchymal stem cell; NR, nicotinamide-riboside; PAR, poly (ADP-
ribose); UCP, uncoupling protein-1.
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3.3 NR treatment supports uncoupled
respiration through mitochondrial
reactive species production

Mitochondrial reactive species play a fundamental role in

inducing mitochondrial biogenesis (Valero, 2014; Fu et al., 2018;

Ryoo and Kwak, 2018; Palmeira et al., 2019; Jankó et al., 2021). We

tested whether reactive species were produced in our system by

supplementing the differentiation medium with Mito-TEMPO, a

mitochondrial-targeted antioxidant, during the differentiation

process. Mito-TEMPO treatment did not influence baseline,

cAMP-induced, or etomoxir-sensitive (representing fatty acid

FIGURE 2
NR supplementation does not induce PARP activity but induces SIRT1 in hADMSC-derived adipocytes. Human adipose tissue-derived
mesenchymal stem cells from three different controls were differentiated to adipocytes as described in Materials and Methods. (A) The expression
levels of the indicated genes were determined using RT-qPCR (B) Poly (ADP-ribose) andmono-ADP-ribose levels were determined byWestern blot.
(C) PGC-1α was immunoprecipitated and acetylation levels were determined in the immunprecipitates. Normality was checked. Statistical
significance was assessed by One-way ANOVA test followed by a post-hoc test versus white adipocytes. *, **, *** indicate significant differences
between groups at p < 0.05, p < 0.01 or p < 0.001, respectively. Data are represented asmeans ± SD. Data are expressed as fold change normalized to
white adipocytes. Abbreviations: hADMSC, human adipose tissue-derived mesenchymal stem cell; NR, nicotinamide-riboside; PAR, poly (ADP-
ribose); PGC1α, peroxisome proliferator-activated receptor gamma coactivator-1α.
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FIGURE 3
Mitochondria-derived reactive species production supports a switch towards uncoupled respiration. (A) Human adipose tissue-derived
mesenchymal stem cells from three different donors were seeded in Seahorse plates and differentiated to adipocytes and mitochondrial oxidation
was determined as described in Materials and Methods. The bottom graph depicts the same data on a log2-scale for better visibility (B) Human
adipose tissue-derived mesenchymal stem cells from three different donors were seeded on coverslips, differentiated, stained with a

(Continued )
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oxidation) mitochondrial oxidation rates (Figure 3A). However,

etomoxir-resistant rates (representing amino acid and carbohydrate

oxidation) were increased in response toMito-TEMPO treatment in

white and beige adipocytes, suggesting that reactive species

production is important in driving fatty acid oxidation

(Figure 3A). A similar trend was observed in NR-treated cells;

however, the changes were not statistically significant (Figure 3A).

No differences in the oligomycin-sensitive fraction of mitochondrial

oxidation, corresponding to coupled-respiration, were detected.

Nevertheless, Mito-TEMPO suppressed oligomycin-resistant

(uncoupled) respiration in white and beige adipocytes and NR-

treated white adipocytes (Figure 3A). These results highlight the key

role of reactive species production in uncoupling. Mito-TEMPO

treatment did not influence mitochondrial morphology (Figure 3B).

4 Discussion

In this study, we assessed the applicability of an NAD +

precursor, NR, in shifting the differentiation of human adipose-

derived pluripotent cells differentiated to white adipocytes. NR

supplementation induced mitochondrial biogenesis and,

consequently, increased mitochondrial oxidative capacity. These

changes coincided with increased expression of UCP1, a marker

of uncoupled mitochondrial oxidation, and TBX1, a beige marker

gene. NR suppressed the rate of differentiation, similar to olaparib, a

PARP inhibitor that induces NAD + -sparing and declutches beige

transdifferentiation in the same model system (Nagy et al., 2019).

Previous studies identified NAD + as a key player in the

induction of thermogenesis (Yamaguchi et al., 2019) and NR

supplementation induces NAD + levels (Canto et al., 2012).

NAD + interacts with a plethora of enzymes (Ziegler, 2000;

Houtkooper et al., 2010; Nikiforov et al., 2011; Chiarugi et al.,

2012; Bai et al., 2015), some of which are involved in intermediary

metabolism and higher order metabolic regulation in beige or

brown adipose tissue differentiation and function. These

enzymes include AMP-activated protein kinase (AMPK) (Shan

et al., 2013; Abdul-Rahman et al., 2016; Mottillo et al., 2016; Zhu

et al., 2016; Desjardins and Steinberg, 2018; Imran et al., 2018; Wu

et al., 2018; Serrano et al., 2020), PGC1α (Shan et al., 2013; Nagy

et al., 2019), and SIRT1 (Qiang et al., 2012; Khanh et al., 2018;

Asnani-Kishnani et al., 2019). Serrano and colleagues showed that

NR also induces epigenetic changes (Serrano et al., 2020). We

observed the activation of SIRT1 in response to NR treatment,

which is consistent with previous studies (Qiang et al., 2012; Khanh

et al., 2018). PARP enzymes aremajor consumers of NAD+ and can

degrade NAD+ and limit NAD + availability to sirtuins (Bai et al.,

2011a; Bai et al., 2011b; Cantó et al., 2013). However, we did not

detect PARP activation in response to NR supplementation,

suggesting that increases in NAD + support SIRT1 but not

activation of PARP enzymes.

We observed changes in substrate preferences in NR-treated

cells that were dependent on mitochondria-derived reactive

species. Mito-TEMPO, a mitochondrial reactive species

scavenger, induced etomoxir-resistant respiration in

adipocytes but did not affect etomoxir-sensitive respiration

(Figure 3A). Etomoxir is an inhibitor of mitochondrial fatty

acid import (Declercq et al., 1987). Hence, etomoxir-sensitive

respiration corresponds to fatty acid oxidation, while etomoxir-

resistant respiration corresponds to the oxidation of

carbohydrates, carbohydrate degradation products (e.g.,

pyruvate), and other substrates (e.g., amino acids). Thus, our

data suggest that increased mitochondrial oxidation upon cAMP

stimulation is dependent on increased carbohydrate and amino

acid oxidation. Our observations are consistent with Dall et al.

(Dall et al., 2019), who showed that the beneficial effects of NR

treatment in liver mitochondria were dependent on glutamine

and pyruvate oxidation. Pyruvate oxidation was implicated in

modulating obesity and adipose tissue function (Ingram and

Roth, 2021). However, our findings conflict with the findings of

Canto et al. (Canto et al., 2012), who reported increases in fatty

acid oxidation in NR-treated C57/Bl6 mice. Shi et al. (Shi et al.,

2017) reported that NR administration to mice supported

metabolic flexibility marked by large changes in respiratory

quotient (or respiratory exchange ratio) values between the

fed and fasted states compared with vehicle-fed animals.

Another important finding of this study is the key role that

mitochondria-derived reactive species play in setting the ratio of

coupled to uncoupled respiration. Mito-TEMPO treatment

decreased the oligomycin-resistant fraction of respiration,

indicating decreased uncoupled respiration in white, beige, and

NR-treated adipocytes, while Mito-TEMPO had no effect on

oligomycin-sensitive, coupled respiration. In other words,

mitochondrial reactive species production is needed to support

uncoupled respiration. Consistent with this conclusion,

Chouchani and colleagues showed that the addition of the

general thiol reductant, N-acetyl-cysteine (NAC), reduced

UCP1-mediated uncoupling in mitochondria (Chouchani et al.,

FIGURE 3
TOMM20 antibody, and mitochondrial morphology was assessed as described in Materials and Methods. The bar equals to 25 µm. Normality
was checked. Statistical significance was assessed by Two-way ANOVA test followed by a post-hoc test that compares all possible combinations. *
and ** symbolize significant differences between groups at p < 0.05 or p < 0.01, respectively. Data are represented asmeans ± SD. Data are expressed
as fold change, where white adipocytes were considered as 1. Abbreviations: ETO-S, etomoxir sensitive; ETO-R, etomoxir-resistant; hADMSC,
human adipose tissue-derived mesenchymal stem cell; Mito, mitochondria; MT, Mito-TEMPO; NR, nicotinamide-riboside; Oligo-S, oligomycin
sensitive; Oligo-R, oligomycin resistant.
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2016). NAC is a general thiol reducing agent and may affect thiols

and redox-labile groups outside the mitochondria. Mito-TEMPO

is specific for the mitochondria. Hence, our results consolidate the

role of mitochondrial reactive species production in inducing

uncoupled respiration. In addition, these data highlight the role

of reactive species in regulating mitochondrial oxidation. The

accepted view is that reactive species inhibit mitochondrial

respiration by oxidizing components of the electron transport

chain (Wang et al., 2010). Our results indicate that reactive species

overproduction can induce uncoupling that spares destructive

oxidation of mitochondrial oxidative phosphorylation

machinery. Nevertheless, in human subjects, NR had no impact

on thermogenesis (Nascimento et al., 2021), leaving the question

open about how these findings can be translated to humans.

In this study, we showed that the application of NR to

hADMSCs shifted the differentiation of white adipocytes to

beige. Furthermore, we showed that SIRT1 induction and

reactive species production play key roles in differentiation,

mitochondrial biogenesis, substrate preference, and the

induction of uncoupled respiration. These results have

implications for understanding organismal energy balance

mechanisms and may have implications in the metabolic arena.
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