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Abstract: Sesquiterpenoids are one of the most diverse classes of isoprenoids which exhibit numerous
potentials in industrial biotechnology. The methanotrophs-based methane bioconversion is a promis-
ing approach for sustainable production of chemicals and fuels from methane. With intrinsic high
carbon flux though the ribulose monophosphate cycle in Methylotuvimicrobium alcaliphilum 20Z, we
demonstrated here that employing a short-cut route from ribulose 5-phosphate to 1-deoxy-d-xylulose
5-phosphate (DXP) could enable a more efficient isoprenoid production via the methylerythritol 4-
phosphate (MEP) pathway, using α-humulene as a model compound. An additional 2.8-fold increase
in α-humulene production yield was achieved by the fusion of the nDXP enzyme and DXP reductase.
Additionally, we utilized these engineering strategies for the production of another sesquiterpenoid,
α-bisabolene. The synergy of the nDXP and MEP pathways improved the α-bisabolene titer up to
12.24 ± 0.43 mg/gDCW, twofold greater than that of the initial strain. This study expanded the suite
of sesquiterpenoids that can be produced from methane and demonstrated the synergistic uses of the
nDXP and MEP pathways for improving sesquiterpenoid production in methanotrophic bacteria.

Keywords: sesquiterpenoids; Methylotuvimicrobium alcaliphilum 20Z; methylerythritol phosphate
pathway; α-bisabolene; methane

1. Introduction

Isoprenoids are the largest family in natural products which are found as secondary
metabolites in many organisms including plants, animals, and microbes and exhibit a wide
range of applications in pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives,
and biofuels [1]. In the isoprenoid family, sesquiterpenoids are the largest and the most
diverse subgroup with important medical and industrial properties [2]. However, there are
several challenges for isoprenoid production via chemical synthesis or plant extraction [3].
While extraction from plants has several disadvantages such as low productivity, weather
dependency, and waste production, chemical synthesis requires many steps with expensive
procedures and environmental hazardous catalysts. Thus, the development of microbial
cell factories for the production of diverse isoprenoids has been drawing a lot of attention
in biotechnology for decades due to these challenges [2–4].

The microbial production described so far has used sugar as the major feedstock.
However, due to increased sugar prices, inexpensive and non-food carbon feedstocks,
therefore, are needed [5–7]. Methane is considered as an alternative carbon feedstock for
industrial biomanufacturing because of its relatively high abundance and cheap price [7,8].
Additionally, methane has a degree of reduction per carbon of 8 which is much higher
than that of 4 in glucose, indicating that methane has more electrons per carbon atom
and those electrons can be used to enhance product yields [8]. Methanotrophs-based
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methane bioconversion does not compete with food production, which contrasts with
other microbial hosts employing biomass-derived substrates, enabling its potential in
industrial manufacturing for the sustainable bioproduction of isoprenoids as well as of
other biochemicals [9,10]. Methylotuvimicrobium alcaliphilum 20Z is a model methanotrophic
system because of its promising biotechnological potential with the availability of genetic
tools, omics and physiological datasets, making it a potential methanotrophic biocatalyst
for methane conversion [11–13]. However, the experience of generating isoprenoids from
methane in methanotrophic bacteria as well as of this particular biocatalyst is very lim-
ited [14,15]. Some methanotrophic strains naturally produce carotenoids, an important
class of isoprenoids, such as Methylomonas sp. DH-1 and Methylomonas sp. ZR1 [16,17].
In contrast, some are unable to synthesize isoprenoids without metabolic engineering,
although they have full enzymes in the MEP pathway [14]. Previously, Methylomonas sp.
16a was demonstrated to produce a small amount of astaxanthin from methane by ex-
pressing an astaxanthin-synthesizing gene cluster [18]. Furthermore, M. alcaliphilum 20Z, a
halophilic methanotroph, was engineered for α-humulene production via the methylery-
thritol 4-phosphate (MEP) pathway [19]. This demonstrates an important step forward in
methanotrophic biocatalysts for the conversion of methane to isoprenoids. However, low
titers of sesquiterpenoids highlight the need for more advanced engineering strategies to
improve the production of isoprenoids using this promising biocatalyst.

DXP, 1-deoxy-D-xylulose 5-phosphate, has a similar structure to pentose phosphates.
However, DXP is naturally produced by condensation of pyruvate (PYR) and glyceralde-
hyde 3-phosphate (G3P) using DXP synthase (Dxs) with the loss of one CO2 [16]. Dxs is a
well-known gatekeeper for the MEP pathway which is regulated at both the transcriptional
and the translational levels and the feedback is inhibited by prenyl phosphates [20]. To im-
prove the carbon flux entering the MEP pathway, a short cut from C5 sugars to DXP (nDXP
pathway) is a potential strategy since it possesses several advantages such as enhancement
of the carbon conservation yield and avoidance of regulatory mechanisms [21]. With a
high carbon flux through the ribulose monophosphate (RuMP) cycle in M. alcaliphilum
20Z for C5 regeneration, we demonstrated here the potential use of the nDXP pathway for
improving the carbon flux through the MEP pathway, subsequently enhancing sesquiter-
penoid production from methane in M. alcaliphilum 20Z. This study also represents the first
demonstration of microbial production of α-bisabolene from methane.

2. Materials and Methods
2.1. Strains and Plasmids

The list of all strains used in this study is provided in Supplementary Table S1. Methy-
lotuvimicrobium (formerly known as Methylomicrobium) alcaliphilum 20Z and the engineered
strains were cultivated in 500-mL baffled flasks sealed with screw caps containing 50 mL
nitrate mineral salt (NMS) medium with compositions described in detail by Ojala et al. at
30 ◦C and 230 rpm using methane as a carbon source [22]. Methane was supplied to a final
concentration of 50% (v/v) by gas substitution using a gas-tight syringe, and the headspace
was refreshed daily. Kanamycin with the final concentration of 50 µg/mL was used for
selecting recombinant methanotrophs and Escherichia coli with recombinant plasmids.

The primers and procedures used for plasmids construction are provided in Supple-
mentary Table S2, with the construction of platform plasmid pHM03 thoroughly described
by Nguyen et al. [19]. The different recombinant plasmids were constructed with distinct
genes but the constitutive promoter, Ptac, was kept consistently for driving the transcription.
These recombinant plasmids were transformed into the host strain using electroporation
described in detail by Nguyen et al. [11]. In brief, cells were harvested by centrifugation
and washed twice using cold water. An amount of 100 µL of distilled sterile water was
used to resuspend the cell pellets. Then, 50 µL cell suspension was mixed with the DNA
plasmid and put into a cold 1-mm gap cuvette for electroporation at parameters of 1.3 kV,
25 µF, and 200 Ω. The electroporated cells were then recovered in 10 mL NMS overnight
and spread on selective plates. The original ribB sequence from Methanococcus jannaschii
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was codon-optimized to maximize the codon adaptation index between the codon usage of
ribB and the codon usage of all ORFs from M. alcaliphilum 20Z as described previously [19].

2.2. Production of α-Humulene and α-Bisabolene and the Analytical Method

Two-phase flask cultivation consisting of the NMS medium as the aqueous phase
to cultivate methanotrophs and 20% (v/v) dodecane as the organic overlay to extract α-
humulene and α-bisabolene produced from the engineered strains in situ was performed
in all of the experiments as described in our previous report [19]. Briefly, precultures were
grown in 10 mL NMS medium and then inoculated into 500-mL baffled flasks containing
40 mL fresh media to achieve OD600 of 0.1 and 10 mL (20% v/v) dodecane. Sampling
was conducted after 96-h cultivation by centrifugation of 50 mL liquid culture at 3220 g
for 10 min, and then the upper dodecane layer was collected for α-humulene and α-
bisabolene quantification. An Agilent 5977B 5977E GC/MS system (Santa Clara, CA, USA)
was used to analyze and quantify α-humulene and α-bisabolene according to previous
protocols [23,24]. For quantification of α-humulene and α-bisabolene, standard curves
were made from analytical standards dissolved in dodecane which was purchased from
Sigma-Aldrich (St. Louis, MO, USA) and Alfa Aesar (Ward Hill, MA, USA). Due to the
presence of other bisabolene isomers, the contribution of α-bisabolene to the molarity of
27.52 ± 0.27% in the commercial standard was calculated previously [24].

2.3. Calculation of the Maximum Theoretical Molar Yield Using a Genome-Scale Model

The iIA407 genome-scale model (GSM) of M. alcaliphilum 20Z was used for in silico
calculation [12]. The iIA407-nDXP model was constructed by adding heterologous reactions
for the nDXP reaction and an exchange reaction for converting isopentenyl pyrophosphate
(IPP) into iIA407 by Cobrapy (Appendix A) [25]. The maximum theoretical molar yield of
IPP (MTMYIPP) was calculated by means of the flux balance analysis using OptFlux [26].

3. Results and Discussion
3.1. Enhancing α-Humulene Production via the Synergy of the MEP and nDXP Pathways

In our previous study, metabolic flux analysis using a genome-scale model of M.
alcaliphilum 20Z refined core metabolic pathways of M. alcaliphilum 20Z grown on C1 sub-
strates and indicated that a large portion of carbon flux (~75%) enters the RuMP cycle for
the regeneration of ribulose-5-phosphate (Ru5P) [13]. Consistent with the highest fluxes of
the RuMP cycle, omics datasets also showed higher transcripts, protein abundances, and
pool size of metabolites in the RuMP cycle compared to other pathways [12,13]. Therefore,
M. alcaliphilum 20Z could be a suitable host for producing C5 sugar phosphate-derived
products [27]. Based on the in silico analysis of the MTMYIPP and the thermodynamic prop-
erties, the MEP pathway is a suitable pathway for isoprenoid production in M. alcaliphilum
20Z [19]. However, as noted before, the MEP pathway starts with the condensation of G3P
and PYR to produce DXP by DXP synthase (Dxs) which is known as an important control
point for the MEP pathway. By using the nDXP route, DXP could be provided directly from
C5 sugars. With the high carbon flux through the RuMP cycle, redirection of the carbon
flux from the RuMP cycle to the DXP pathway is a promising strategy for improving the
carbon flux through the MEP pathway and further enhancing the isoprenoid production
(Figure 1). In order to confirm this hypothesis, we performed the flux balance analysis
to calculate the MTMYIPP in the presence of the nDXP pathway. The nDXP reaction was
manually added to the iIA407 model and the first enzyme (Dxs) that condenses G3P and
PYR in the MEP pathway was inactivated before simulations (Appendix A). As a result,
M. alcaliphilum 20Z employing the nDXP pathway resulted in the maximum theoretical
molar IPP yield of 14.4% per mmol methane, which was slightly higher than that of the
MEP pathway which was 13.6%, revealing that the nDXP route is a more efficient pathway
for isoprenoid production in M. alcaliphilum 20Z as well as in other type I methanotrophs.
Therefore, the synergy between the MEP and nDXP pathways is potentially more appealing
to engineering isoprenoids in M. alcaliphilum 20Z.
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Figure 1. Schematic overview of the central metabolism of M. alcaliphilum 20Z on methane, including the ribulose
monophosphate (RuMP) cycle, the Embden–Meyerhof–Parnas (EMP) pathway, the Entner–Doudoroff (ED) pathway,
the TCA cycle, endogenous isoprenoid synthesis via the methylerythritol 4-phosphate pathway (MEP). Abbreviations: H6P,
hexulose 6-phosphate; F6P, fructose 6-phosphate; X5P, xylulose 5-phosphate; Ru5P, ribulose 5-phosphate; E4P, erythrose
4-phosphate; S7P, sedoheptulose 7-phosphate; R5P, ribose 5-phosphate; F1,6P, fructose 1,6-bisphosphate; G6P, glucose
6-phosphate; 6PGL, 6-phosphogluconolactonase; 6PGC, 6-phosphogluconate; 2DDG6P, 2-dehydro-3-deoxy-D-gluconate
6-phosphate; G3P, glyceraldehyde 3-phosphate; PYR, pyruvate; DXP, deoxyxylulose 5-phosphate; MEP, methylerythritol
4-phosphate; CDP-ME, diphosphocytidylyl methylerythritol; CDP-MEP, CDP-ME 2-phosphate; MEC, methylerythritol
2,4-cyclodiphosphate; HMBPP, hydroxymethylbutenyl diphosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl
diphosphate; FPP, farnesyl pyrophosphate; OAA, oxaloacetate; CIT, citrate; DTICIT, D-threo-isocitrate; AKG, α-ketoglutarate;
SUCCOA, succinyl-CoA; SUCC, succinate; FUM, fumarate; MAL, malate; dxs, DXP synthase; dxr, DXP reductoisomerase;
ispD, CDP-ME synthase; ispE, CDP-ME kinase; ispF, MEC synthase; ispG, HMBPP synthase; ispH, HMBPP reductase; ispA,
FPP synthase; zssI, α-humulene synthase; AgBs, Abies grandis α-bisabolene synthase; ribBG108S, nDXP enzyme catalyzing
the reaction from ribulose 5-phosphate to DXP. Red arrows indicate the overexpression targets.

Recently, a novel route for synthesizing DXP from ribulose 5-phosphate was dis-
covered using the directed evolution approach which uncovered two nDXP genes: yajO
encoding putative xylose reductase and mutant of ribBG108S encoding 3,4-dihydroxy-2-
butanone 4-phosphate synthase which involved riboflavin biosynthesis [21]. Therefore,
to demonstrate the potential use of the nDXP pathway to enhance the production of iso-
prenoids, we chose to overexpress these nDXP enzymes in M. alcaliphilum 20Z (Figure 1).
Besides, we selected α-humulene as the target sesquiterpenoid product. In our previous
study, for the production of α-humulene, we constructed a pHM03 vector containing
α-humulene synthase (zssI) along with some bottlenecks of the MEP pathway in M. al-
caliphilum 20Z (Dxs, IspG, and IspA) that had previously shown to improve the flux
pathway [19]. Then, yajO and the ribBG108S variant from E. coli which was generated by
Gibson assembly-based site-directed mutagenesis were cloned into pHM03 under control
of a strong constitutive Ptac promoter, resulting in the pDXP-01 and pDXP-02 vectors
(Supplementary Tables S1 and S2). Additionally, we also found other nDXP candidates
for screening. The RibB encoding 3,4-dihydroxy-2-butanone 4-phosphate synthase in
the archaebacterium Methanococcus jannaschii was well-investigated with the availability
of the crystal structure [28]. Multiple alignment was performed using RibB from E. coli
and other well-studied RibB including RibB from M. jannaschii, which showed that the
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amino acid G at position 108 in the RibB from E. coli is conserved among these species
(Supplementary Figure S1). Therefore, we hypothesized that the replacement of amino
acid G to S in other RibB variants might work as nDXP enzymes. Thus, we employed the
ribBG113S variant from M. jannaschii as an nDXP enzyme, resulting in vector pDXP-03
(Appendix B). The resultant strain (pDXP-01-03) was employed using a two-phase culture
wherein 20% dodecane was used as the organic phase and methane was used as the carbon
source, and α-humulene production in these engineered strains was assayed. Interest-
ingly, as expected, the overexpression of ribBG108S and yajO from E. coli boosted higher
α-humulene production compared to the parent strain pHM03, while ribBG113S from M.
jannaschii did not (Figure 2A). In particular, pDXP-02 harboring ribBG108S from E. coli
showed the highest improvement, which was ~1.6-fold higher than the pHM03 strain with
the productivity of 0.32 mg/gDCW. In agreement with this result, the previous study had
shown that ribBG108S has a more efficient enzyme activity for the conversion of Ru5P to
DXP as compared to yajO. Therefore, the pDXP-02 strain was used for further experiments.
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Figure 2. Production of α-humulene in the M. alcaliphilum 20Z pHM03, pDXP-01, pDXP-02, and pDXP-03 strains using
methane (50% v/v) as the sole carbon substrate (A). Schematic overview of the protein fusions between ribBG108S and dxr
and the α-humulene production of the M. alcaliphilum 20Z pDXP-02, pDXP-04, pDXP-05, pDXP-06 and pDXP-07 strains (B).
Analysis of α-humulene in the dodecane layer was performed, and the concentrations were compared after 96-h cultivation.
The data represent the means from three replicates ± standard deviations.

3.2. Fusion of nDXP/Dxr Enhanced the Carbon Flux through the nDXP Pathway

There are several protein engineering strategies employed to improve isoprenoid
production [29]. Protein fusions or scaffolds were reported to enhance the carbon flux
in several cases such as isoprenoid pathway engineering [30]. Due to poor kinetics of
RibBG108S enzymes, we hypothesized that protein fusion of RibBG108S and DXP re-
ductase (Dxr) might improve the kinetic property in the delivery of Ru5P to the MEP
pathway [21]. Therefore, the fusions of ribBG108S and native dxr were constructed with
different orders and linkers. We used two peptide linkers: G2 corresponds to a GSGGSG
linker and DSAG corresponds to a DSAGSAGSAG linker. As a result, the four fused
proteins were constructed including dxr-G2-ribB, ribB-G2-dxr, dxr-DSAG-ribB, and ribB-
DSAG-dxr (Figure 2B). These fused proteins were co-overexpressed with the pHM03 vector,
resulting in pDXP04–pDXP07 vectors (Supplementary Tables S1 and S2). These vectors also
harbored a strong constitutive Ptac promoter, which was applied to heterologous expression
in M. alcaliphilum 20Z. Subsequently, the production of α-humulene from methane in these
engineering strains was assayed using aqueous–organic two-phase flask cultivation where
20% dodecane was added as the organic phase. As shown in Figure 2B, the fusions of
ribBG108S and dxr using the DSAG linker (ribB-DSAG-dxr, dxr-DSAG-ribB) both yielded
higher productivity, which was ~2.8-fold higher than that of the pHM03 strain with the pro-
ductivity of ~0.56 mg/gDCW. In contrast, the fusions by the G2 linker did not improve the
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production of α-humulene, suggesting that the G2 linker might not work in M. alcaliphilum
20Z. Likewise, Kirby et al. also reported that the expression of the Dxr-RibB (G108S) fusion
improved α-bisabolene titers more than fourfold [21]. In summary, these results suggest
that the fusion of dxr to ribBG108S could enhance the carbon flux through the isoprenoid
biosynthesis pathway in M. alcaliphilum 20Z.

3.3. Engineering of M. alcaliphilum 20Z for α-Bisabolene Production via Synergy of the MEP and
nDXP Pathways

To expand the suite of products that can be generated from methane using methan-
otrophic biocatalysts, we further demonstrated the bioconversion of methane to another
sesquiterpenoid, α-bisabolene. It is a monocyclic sesquiterpene and a candidate biodiesel
fuel that is produced by several microbial hosts via the heterologous expression of α-
bisabolene synthase from various plant sources [31]. Recently, to improve the economic
feasibility of the biological production of α-bisabolene, various microbial hosts using
different alternative carbon sources were used to produce α-bisabolene via the MEP path-
way [24,32,33]. However, α-bisabolene production from the next-generation feedstock,
such as C1 compounds, is still in its infancy.

To further increase the supply of the farnesyl pyrophosphate (FPP) pool, the native
FPP synthase (ispA) from M. alcaliphilum 20Z was expressed along with α-bisabolene
synthase from Abies grandis (AgBs). The pBs01 vector was constructed for expression of
a codon-optimized AgBs and native ispA, driven by the Ptac promoter (Supplementary
Tables S1 and S2). Interestingly, the pBs-01 strain could produce α-bisabolene as character-
ized by GC-MS analysis. As shown in Figure 3A, B, α-bisabolene produced from pBs-01
has a similar retention time and mass spectrum compared to the α-bisabolene standard. In
contrast, α-bisabolene was not produced in wildtype. In particular, the pBs-01 strain was
able to produce 6.44 ± 0.33 mg/gDCW (12.8 ± 0.66 mg/L) of α-bisabolene (Figure 3C).

Figure 3. GC-MS chromatogram (A), extracted ion GC-MS chromatograms (B) of the α-bisabolene standard and synthetic
α-bisabolene produced by the pBs-01 strain and α-bisabolene production of the M. alcaliphilum 20Z pBs-01 and pBs-
02 strains using methane (50% v/v) as the sole carbon substrate (C). Analysis of α-bisabolene in the dodecane layer
was performed, and the concentrations were compared after 96-h cultivation. The data represent the means from three
replicates ± standard deviations.
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As noted in the previous section, the utility of nDXP along with the MEP pathway
could improve isoprenoid production using a methanotrophic biocatalyst. Therefore, we
expected that the synergy of the DXP route along with the optimized MEP pathway might
also enhance α-bisabolene production in M. alcaliphilum 20Z. Thus, we constructed a vector
for the expression of AgBs along with MEP pathway enzymes (ispA, dxs, and ispG) and the
optimized nDXP route (dxr-DSAG-ribB), resulting in the pBs-02 vector (Supplementary
Tables S1 and S2). As a result, α-bisabolene was produced in the pBs-02 strain with the
titer of 12.24 ± 0.43 mg/gDCW (24.55 ± 0.86 mg/L), which was twofold higher than that
in the pBs-01 strain (Figure 3C). These results suggested that the engineering strategies
proposed in this study could become a powerful approach for enhancing the production of
isoprenoid-related products.

However, in comparison with other conventional bacteria, the resulting titer of iso-
prenoids from methanotrophic bacteria was still far below. Methanotrophic bacteria utilize
methane as the sole carbon source through the oxidation process, which requires a large
amount of energy [34]. Besides, the generation of multi-carbon products such as iso-
prenoids from a C1 compound such as methane or methanol is very difficult. Therefore,
the heterologous expression of the assimilation pathway for utilizing an additional carbon
source such as xylose beside methane and the addition of a micromineral such as tungsten
into the media could be fantastic options to significantly enhance the production of iso-
prenoids in methanotrophic bacteria. Indeed, the addition of xylose, as well as of tungsten,
led to the increase in the growth of methanotrophic bacteria resulting in the improvement
of some valuable products such as shinorine, acetoin, 2,3-butanediol, or 3-hydroxybutyric
acid [27]. Moreover, for further improvement of the isoprenoid titer, a fed-batch bioreactor
with a continuous supply of methane could also be applied [35].

4. Conclusions

In summary, we demonstrated a novel engineering strategy for enhancing sesquiter-
penoid production from methane in metabolically engineered methanotrophic bacteria by
the synergy of the MEP pathway and a novel short-cut nDXP pathway. This study also
expanded the suite of sesquiterpenoids converted from methane using methanotrophic
biocatalysts. The approaches developed in this study enabled enhanced sesquiterpenoid
production and can be applied to the production of diverse isoprenoids from methane.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9061236/s1, Figure S1: Multiple alignment of some RibB variants, Table
S1: Strains and plasmids used in this study, Table S2: Primers and procedures used for plasmid
construction in this study.
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Appendix A

Genome-scale model of iIA407-nDXP.

Appendix B

Codon-optimized ribB from Methanococcus jannaschii.
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