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Introduction

The genetic composition of a natural population is

always changing because mutations inevitably arise and

rise or fall in frequency due to selection or drift (i.e. sto-

chasticity in finite populations). Genetic changes continue

during invasions, when a population is entering and

becoming established in new territory. Ecologists recog-

nize that selection can play a crucial role in determining

the success, speed and ultimate extent of invasions

(Hoffmann and Sgrò 1995; Sakai et al. 2001; Holt et al.

2005). Even neutral genetic change during invasions is of

high interest to researchers who use neutral markers to

infer the migration history of populations (Semino et al.

2000; Sunnucks 2000; Schaal and Leverich 2001; Wang

and Whitlock 2003; Kawiecki and Ebert 2004). This is

because to test any hypothesis concerning the past spatial

distribution of a population, it is necessary to specify a

null model that incorporates explicit assumptions about

demography and dispersal patterns. It is further necessary

to understand the distribution of neutral allele frequen-

cies under the specified model, in order to compare

observed marker data with the distribution expected

under the null hypothesis. Yet, despite the recognized

importance of genetic changes during invasions, theoreti-

cians have paid little attention to this topic until recently

(work on the evolution of dispersal constitutes an

important exception; see, for example, Holt 2003; Sim-

mons and Thomas 2004).

Recently, several authors have used stochastic simula-

tions to study the fate of a single mutant that arises dur-

ing an invasion (Edmonds et al. 2004; Klopfstein et al.

2005; Travis et al. 2007; Hallatschek and Nelson 2008).

These studies have focused on ‘mutation surfing’, in

which mutants arise on or advance to the front of a trav-

eling wave of population density and essentially shut out

wild types (i.e. nonmutants) from a certain point in the

invasion onwards (Edmonds et al. 2004). Early studies of

this topic offered a number of descriptive statements

about the fate of mutations in invasions, including a

‘midpoint rule’ for the location of the center of popula-

tion density of a successful neutral mutation (Edmonds

et al. 2004) and a proposal that a certain ‘lumped’ model

parameter has a strong linear correlation with the ulti-

mate fraction of the invading population that carries such

a mutation (Klopfstein et al. 2005). More recent studies

have treated surfing with selection, using mathematical

models such as annihilating random walks, generalized

diffusion equations and stochastic partial differential

equations to explain the phenomena observed in surfing

simulations and in vitro experiments (Hallatschek et al.

2007; Hallatschek and Nelson 2009) (Korolev et al.,
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Abstract

When a neutral mutation arises in an invading population, it quickly either

dies out or ‘surfs’, i.e. it comes to occupy almost all the habitat available at its

time of origin. Beneficial mutations can also surf, as can deleterious mutations

over finite time spans. We develop descriptive statistical models that quantify

the relationship between the probability that a mutation will surf and demo-

graphic parameters for a cellular automaton model of surfing. We also provide

a simple analytic model that performs well at predicting the probability of surf-

ing for neutral and beneficial mutations in one dimension. The results suggest

that factors – possibly including even abiotic factors – that promote invasion

success may also increase the probability of surfing and associated adaptive

genetic change, conditioned on such success.
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2010). Recently, it has been argued that some genetic dif-

ferences between human populations that had previously

been attributed to selection in fact resulted from surfing

by neutral alleles (Hofer et al. 2009).

One purpose of the present work is to provide a careful

qualitative and quantitative description of neutral muta-

tion surfing as seen in a stochastic model like those stud-

ied in Edmonds et al. (2004), Klopfstein et al. (2005),

Travis et al. (2007) and Hallatschek and Nelson (2008).

We focus on a model of a one-dimensional habitat but

include some results for two-dimensional habitats. It

should be noted that a one-dimensional habitat is a real-

istic model for certain types of invasions, such as invasion

along a coastline or river (Lubina and Levin 1988; Speirs

and Gurney 2001; Pachepsky et al. 2005). As a conse-

quence, study of such models and comparisons between

them and two-dimensional models can be practically as

well as theoretically meaningful.

There are two main reasons to study the neutral case.

First, neutrality is simpler than selection, and with so lit-

tle existing theory, it is reasonable to study the simpler

case first. Second, neutral genetic markers are of interest

because they can provide information about the history

of an invasion. Indeed, much of the original interest in

mutation surfing was among researchers whose primary

goal is to reconstruct range expansion (e.g. the spread of

humans into Europe) with such markers (Edmonds et al.

2004).

On the other hand, adaptive change during invasions

may be the genetic phenomenon of most practical interest

to conservation biologists. Accordingly, we have begun to

extend our models to the cases of beneficial and deleteri-

ous mutations, and we present some results here. Our

main goals are to describe how the probability of surfing

depends on model parameters (with or without selection),

to explain heuristically the nature of this dependence, and

to offer a simple model of the surfing process as a contri-

bution to the development of analytic models that yield

quantitative predictions about genetic change during

invasions.

Our work is based on data obtained from a series of

simulations of cellular automata. In what follows, we state

the specifications of the simulations, use statistical meth-

ods (in particular, logistic regression) to describe the

probability of surfing and to assess our analytic model,

and offer likely explanations for the quantitative results

we obtain.

Model and simulation specifications

The model we studied, following Edmonds et al. (2004),

Klopfstein et al. (2005) and Travis et al. (2007), is a type

of individual-based model known to mathematicians as

a contact process (Liggett 1999). We simulated a contact

process in which wild-type (i.e. nonmutant) and mutant

individuals reproduce asexually and move between adja-

cent cells in a rectangular grid. For the neutral case, grid

lengths l used were 100, 200 and 400 cells; grid widths

w used were 1, 3, 7, 13 and 25 cells. For the case of

selection, only 1·400 grids were used. We note that pre-

vious studies used only 25 · 100 grids (Edmonds et al.

2004; Klopfstein et al. 2005; Travis et al. 2007). We var-

ied grid width in order to study the effect of dimension-

ality on the probability of surfing. We varied grid length

in order to make sure that numerically ascertained prob-

abilities of surfing on a finite grid came close to asymp-

totes, which we expect to correspond to probabilities of

surfing on an infinitely long grid. Accordingly, all results

below pertain to grids of length 400 unless otherwise

specified.

As in Klopfstein et al. (2005), each simulation run

began with a single wild-type individual placed at the

center of the leftmost column of the grid. (This is not the

only possible choice. For example, the founder could be

placed along a side or in the middle of the grid to model

colonization beginning other that at the mouth of a river.

We have not yet extended our simulations to such cases.)

Generations were discrete and comprised three steps.

First, each individual was replaced in the same cell by a

number of offspring chosen from a Poisson distribution

with mean k. For the neutral case, we used k ) 1 ¼ 0.05,

0.1, 0.2, 0.4, 0.8, 7, 15 and 31; in each simulation run, k
was the same for mutants and wild types. For the case

with selection, we used kwt ) 1 ¼ 0.1 and 0.4 for wild

types and kmut ) 1 ¼ a(kwt ) 1) for mutants, with a¼
0.5, 0.95, 1.05 and 1.5. Next, each cell whose population

N (of mutant and wild types combined) was greater than

a carrying capacity K underwent culling, in which N)K

randomly chosen individuals were discarded. All individu-

als within a cell, whether mutant or wild type, had equal

probability of being culled. For the neutral case with

k < 2, we used carrying capacities K ¼ 10, 50, 100 and

500; we used K ¼ (k ) 1)/2 for all k > 2. For the case

with selection, we used K ¼ 10 and 100.

The final step in each generation was migration. Each

individual (whether mutant or wild type) had a probabil-

ity m of migrating in each generation. For the neutral

case with k < 2, we used mean migration rates m ¼ 0.05,

0.1, 0.2 and 0.4; with k > 2, we used m ¼ 0.1 and 0.2.

For the case with selection, we used m ¼ 0.05 and 0.2.

Each individual chosen to migrate then moved to a cell

chosen with equal probability from all those adjacent to

its original cell. (Cells in the interior of the grid had four

neighbors, those on the boundary had three and those

in the corners had two; diagonal moves were not

permitted).
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When at least one member of the population reached

the 10th column from the left, one (wild-type) individual

chosen randomly with equal probability from all individ-

uals in the 10th column was replaced by a mutant. No

other mutation events were included in the model. Thus,

each offspring shared the type of its parent, with the sole

exception being the original mutant.

A run was stopped after the first generation in which

either the entire population went extinct, mutants went

extinct after being introduced or at least one individual

reached the rightmost column of the grid. After a run

was stopped, a code for the state of the mutant and wild-

type populations was saved. Three states were distin-

guished for each type: extinction (no individuals of a

given type persisted), persistence without advancing (at

least one individual remained, but no individuals of the

specified type were found in the rightmost column) and

advancing (at least one individual of the specified type

was found in the rightmost column). A run was consid-

ered ‘unsuccessful’ if both mutants and wild types went

extinct and ‘successful’ otherwise. Experimentation

showed that wild types virtually never went extinct after a

mutation event had occurred; so, runs with mutation

events were counted as successful, even though they were

usually aborted if the mutants subsequently went extinct.

(As the total population size was close to 10K times the

habitat width when the mutant was introduced, it is not

surprising that extinction almost never occurred after this

time.)

Surfing was considered to occur in runs where a

mutant advanced to the rightmost column. When this

occurred, it was extremely rare for wild types to also be

found in the rightmost column. In addition to outcome

codes for each run, we saved the state of the 7h subgrid

centered on the 10th column for the three generations

immediately following introduction of the mutant. We

also saved the complete final grids for each run.

For the neutral case with a one-dimensional (1 · 400)

grid, each possible combination of the model parameters

k, K and m was used in 600 simulation runs. For the case

of selection, each combination of the model parameters

was used in 10 000 runs. For each two-dimensional

(w · 400 with w ¼ 3, 7, 13 and 25) grid, each parameter

was used in 50 simulation runs. We also performed small

numbers of runs with parameter combinations other than

those listed here; specifications for these runs are given

when they are discussed below.

Unlike in Klopfstein et al. (2005), sequences of runs

were not stopped when a predetermined number of

instances of surfing was reached. This avoided bias in

estimating the probability of surfing, as otherwise a nega-

tive binomial distribution would have had to be used to

model this probability (Hogg and Tanis 1997).

Dependence of the probability of surfing
on model parameters

Visual inspection of runs in progress gave a strong

impression of a dichotomy of outcomes: mutants either

Table 1. Predictors, estimated coefficients with standard errors and

95% confidence interval lower and upper bounds for odds ratios for

one-dimensional habitat with K ¼ 10.

Predictor Coefficient SE Lower odds Higher odds

Constant )0.90 0.13 NA NA

ln m )0.47 0.057 0.56 0.70

ln (k)1) 1.1 0.095 2.57 3.73
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Figure 1 Wild-type (circle) and mutant (star) population densities as functions of longitude on a 1 · 400 grid after 20, 40, 80 and 300 genera-

tions in a run with mutant surfing. Parameters: m ¼ 0.4, k¼1.8, K ¼ 100.
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vanished or flourished (see Figs 1 and 2). In many runs,

mutants went extinct. In most runs (and in nearly all

runs on grids of length 400) where mutants persisted

without advancing, only a few mutants remained on the

grid at the end of the simulation, and these few were

found close to their point of origin. Longer habitat

lengths led to more mutant extinctions and fewer cases of

mutant persistence without advancing. This was appar-

ently because runs on longer grids simply took longer,

allowing more time for nonsurfing mutant populations to

dwindle and ultimately die out.

Visual inspection also showed that in virtually all runs

where mutant surfing occurred, the mutants excluded

wild types from the wavefront very soon after the initial

mutation arose, and proceeded to nearly monopolize the

habitat between the point of mutant introduction and

the right-hand boundary. We thus viewed all successful

runs as random trials with two possible outcomes, surf-

ing or mutant extinction. For a given combination of

parameters, we denote the probability of surfing (condi-

tioned on nonextinction of the total population) by

psurf.

We note that under neutrality, the left-hand boundary

of the habitat occupied by surfing mutants remained close

to the point at which the mutation first arose. By con-

trast, beneficial mutations ‘backfilled’ from the point of

introduction to replace the wild types. Likewise, deleteri-

ous mutations that originally appeared to ‘surf’ subse-

quently lost habitat as wild types advanced to replace the

less-fit types.

A major goal of work on mutation surfing is to relate

the probability of surfing to model parameters such as

cell carrying capacity K, migration rate m and growth

rate k (Edmonds et al. 2004; Klopfstein et al. 2005;

Hallatschek and Nelson 2008). For the one-dimensional

case, plots of mean (over all runs with given values of k,

m and K) psurf against model parameters showed an inter-

action between K and k (Fig. 3). For each value of K, psurf

increased with k. However, the rate of increase was much

greater for the smallest carrying capacity, K ¼ 10, than

for the higher values of K. This motivated dividing the

runs into two groups, one with K ¼ 10 and one with

K ¼ 50, 100, 500, for further analysis.

To quantify the dependence of psurf on K, m and k, we

use logistic regression, a tool which is adapted to pro-

cesses with binary outcomes for individual trials (Hogg

and Tanis 1997). In our logistic regression, the response

(or y) variable is the log-odds of surfing:

gpsurf ¼ ln½psurf=ð1� psurf Þ�: ð1Þ

The predictor (or x) variables could in principle be any

or all of the model or simulation parameters, or functions

of those parameters.

In seeking an appropriate statistical model to describe

the simulation output, we tried various functions of K, m

and k as predictor variables. We used three different

goodness-of-fit tests (Pearson’s chi-squared, deviance and

Hosmer–Lemeshow) (Hosmer and Lemeshow 2000) to

assess the suitability of each statistical model. We used

three criteria to choose among the models that passed the

goodness-of-fit tests at the 1% significance level. First, we

sought a model in which every predictor was associated

with an odds ratio that differed significantly from 1. Sec-

ond, we sought a model with few or no interaction terms.

Third, we sought a model with a low value of the Akaike

information criterion (AIC) (Akaike 1974). We judged
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Figure 2 Wild-type (circle) and mutant (star) population densities as functions of longitude on a 1 · 400 grid after 20, 40, 80 and 300 genera-

tions in a run with mutant extinction. Parameters are as in Figure 2.
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the most suitable model to be a function of ln m,

ln (k ) 1) and ln K:

gpsurf � �0:52� 0:090ðk� 1Þ
þ 1:1 lnðk� 1Þ � 0:43 ln m� 0:27

ln K � 0:025ðk� 1Þ ln mþ 0:08 lnðk� 1Þ ln m ð2Þ

(standard errors for the coefficients and confidence inter-

vals for odds ratios are given in Table 2). We used McF-

adden’s pseudo-R2 (wR2) to assess the amount of

variability explained by equation (2); we found wR2 ¼
0.31, indicating reasonably strong explanatory power.

For the same one-dimensional grid with K ¼ 10, we

did not find a satisfactory model. This may have been

because values of psurf with K ¼ 10 were typically very

low, so that the relative sampling error in estimating psurf

was high enough to obscure associations with the other

model parameters; further simulations are planned to

explore this possibility. It was possible to combine data

for all values of K and find a model that satisfied our for-

mal criteria, but this required including so many interac-

tion terms that the model did not seem to be useful for

gaining insights.

It is possible to explain heuristically the direction of

the dependence of psurf on each predictor (k, m, K) in

equation (2). To do so, recall that just one mutant is ini-

tially present. It is well known for simpler demographic

structures that the smaller the total population, the

greater is the probability that a mutation initially present

in a single copy will rise to high frequencies (Hartl and

Clark 1997). Correspondingly, in our model the mutant

should be more likely to surf if it initially appears in a

cell with no other (wild-type) occupants. This is turn

should be more likely if the cell carrying capacity K and

the migration rate m are low because these conditions

should lower the number of individuals at the wavefront,

where the mutation occurs. Furthermore, cells at the

wavefront should generally contain fewer individuals than

cells further back in the wave; so, fewer offspring will be

culled at the front, making the effective growth rate

higher there. Again, as the mutant must arise at the

front, this means that the probability of surfing should

increase with k (as for fixed m and K, a higher value of

k should allow more mutants to be born before wild

types ‘catch up’ to the mutant population at the leading

edge).

In equation (2), it is a straightforward calculus exercise

to check that the derivatives dgpsurf=dm and dgpsurf=dK are

both negative, while dgpsurf=dk is positive, for the range of

parameter values used. Thus, our statistical model pre-

dicts that the probability of surfing psurf will decline as m

or K increases but rise as k increases, which is consistent

with our heuristic argument.

For the (neutral) two-dimensional case, we first con-

sidered only those runs with a 25 · 400 grid. Using the

same criteria as for the one-dimensional case, we found

a simple model to provide the best description of the

relationship between psurf and the model parameters:
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Figure 3 ln (psurf) versus ln (k)1) for a one-dimensional habitat, with regression lines for K¼10 (circles) and 100 (squares).

Table 2. Predictors, estimated coefficients with standard errors and

95% confidence interval lower and upper bounds for odds ratios for

one-dimensional habitat with K ¼ 10, 100, 500.

Predictor Coefficient SE Lower odds Higher odds

Constant )0.74 0.17 NA NA

ln m )0.51 0.039 0.56 0.65

ln (k)1) 0.82 0.053 2.04 2.51

ln K )0.28 0.030 0.72 0.81
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gpsurf ¼ �0:31� 0:31 lnðKÞ þ 0:62 lnðk� 1Þ ð3Þ

(standard errors for the three coefficients, in order, were

0.27, 0.063 and 0.13). We caution, however, that for this

model wR2 ¼ 5%. As in the one-dimensional case, here

dgpsurf=dK is negative and dgpsurf=dk is positive. Unlike in

the one-dimensional case, however, including functions of

the migration rate m as a predictor did not improve the

model in two dimensions. Equations (not shown) with

coefficients close to those in equation (3) provided good

fits to simulation data with grids of widths 13 or 7; the

fit was less good for a 3 · 400 grid. However, all results

for the two-dimensional case should be viewed as preli-

minary because of the small number of trials performed

with each combination of parameters.

For the case with selection, surfing never occurred

when kmut was less than 1; so, we considered only param-

eter combinations with kmut > 0 (these did include some

deleterious mutations). We did not find a statistical

model that simultaneously satisfied goodness-of-fit crite-

ria and provided good explanatory power as measured by

wR2. The model

gpsurf ¼ �3:7þ 6:2 lnðkmut � 1Þ
� 0:42 lnðkwt � 1Þ � 0:25 ln m� 0:14 ln K ð4Þ

gave wR2=0.23 but failed goodness-of fit tests (P<0.001);

standard errors for the coefficients, in order, were 0.061,

0.055, 0.030, 0.015 and .0093.

In equation (4), it is noteworthy that psurf depends on

kmut much more than on kwt. This suggests that for the

cases studied, absolute fitness was more important than

relative fitness in determining surfing success (a similar

effect was found in an island model analyzed by Holt and

Gomulkiewicz (1997)). We also note that although the

coefficients of ln m and ln K differ from those in the

neutral case (2), their sign is the same. Thus, for the cases

studied, the probability of mutant surfing varies inversely

with m and K for both neutral and selected mutations.

Analytic models

Beyond merely describing (even quantitatively) the

dependence of psurf on model parameters, it is clearly

important to explain the form of this dependence in a

way that sheds light on the process by which a mutation

succeeds or fails. A partial explanation can be obtained

from two observations; we consider the neutral case first.

In this case, mutants and wild types in our model behave

identically. They reproduce and migrate in identical ways,

and ‘count’ identically toward the carrying capacity of a

cell. The second observation, based on watching genera-

tion-by-generation plots of mutant and wild-type popula-

tion density as a function of longitude, is that in virtually

every case when surfing occurs, mutants take the lead and

begin to fill the available unoccupied terrain within a very

few generations after the original mutation occurs.

As mutant and wild-type individuals behave identically,

we may draw a conclusion about the genealogies of indi-

viduals in the advancing wave of population density as

follows. Imagine drawing a line at the longitude where

the mutant first arises, or a short distance past this point.

Then when a simulation run terminates, nearly all of the

individuals to the right of this line will have descended from

a single common ancestor in the generation when the

mutant first appeared – regardless of whether mutation

surfing occurred. For when surfing does occur, almost all

of the relevant terrain will be occupied by mutants, which

must have descended from the single original mutant.

Therefore, as mutants and wild types are functionally

identical, similar genealogies must arise even when surfing

does not occur and the terrain is filled by wild types. We

can thus recharacterize mutation surfing as the scenario

in which the common ancestor of nearly all individuals in

the population that ultimately invades happens to be the

original mutant, rather than any of the wild types present

at the time the mutation occurred. (This line of reasoning

informs models of the coalescent with stepping-stone

spatial structure; see, for example, Austerlitz et al. 1997;

Wilkins and Wakeley 2002; Durrett and Restrepo 2008.)

Our second observation – that a mutation’s fate appears

to be sealed within a few generations of its appearance –

suggests a simplified model of the process by which this

common ancestor is ‘‘chosen’’. This model consists of an

iteration of two steps. The first step occurs in a early gener-

ation (P, F1 or F2, where the generation including the ori-

ginal mutant is counted as P). In this step, one individual is

chosen randomly from those in the rightmost cells as a

potential common ancestor for the future population. Each

individual in the rightmost cell, whether mutant or wild

type, has the same probability of being chosen. In the sec-

ond step, the chosen individual succeeds or fails to propa-

gate with probabilities equal to the probabilities of survival

or extinction at the very beginning of a run (when the pop-

ulation consists of exactly one individual, located at the

left-hand boundary). Motivation for this step comes from

the strong association between psurf and prun, the a priori

probability that a run will not end in extinction, when k is

not very high (Fig. 4; R2 ¼ 60.1% between ln psurf and ln

prun). If the chosen individual fails to propagate (i.e. its

progeny die out), the process begins again with a new

choice of potential common ancestor from those which

were present in the rightmost cells during the P generation

(all of which are assumed to have survived).
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This model leads to a testable quantitative prediction.

To derive an estimate dpsurf for psurf under this model, we

let N denote the number of individuals present in the

rightmost cell in generation P. Then

dpsurf ¼
1

N
prun þ

N � 1

N

� �
ð1� prunÞ

1

N � 1

� �
prun

þ N � 1

N

� �
ð1� prunÞ

N � 2

N � 1

� �

ð1� prunÞÞ
1

N � 2

� �
prun þ � � � þ

N � 1

N

� �
ð1� prunÞ

� � � N � ðN � 1Þ
N � ðN � 2Þ

� �
ð1� prunÞ

1

1

� �
prun: ð5Þ

The first term on the right-hand side of equation (5),

(1/N)prun, is the probability that the mutant is the first

candidate chosen and does succeed in propagating. The

second term is the probability (N ) 1)/N(1 ) prun) that a

wild-type individual is the first chosen but fails to propa-

gate, times the probability 1/(N ) 1)prun that the mutant

is the second chosen and does propagate. The subsequent

terms are derived similarly. Algebraic manipulation con-

denses equation (5) into the form

dpsurf ¼
1

N
prun

XN�1

k¼ 0

1� prunð Þk¼ 1

N
½1� ð1� prunÞN �: ð6Þ

To test whether equation (6) was a good fit to the

one-dimensional simulation results, we first estimated

prun and mean N separately for each combination of

the parameters k, m and K that yielded at least one

run not ending in extinction (there were 70 such

parameter combinations), then ran a linear regression

of the observed values of ln (psurf) against the pre-

dicted values lnðdpsurf Þ from equation (6). (Taking loga-

rithms rendered the variance of observed psurf

approximately equal for all values of dpsurf , a necessary

condition for valid inference in linear regression.) We

caution that in our simulations when k was very high

(i.e. k‡8), prun was always very close to 1 and so a

relationship between prun and psurf was no longer

apparent; therefore, the following discussion considers

only our neutral simulations with k < 2.

The regression equation was

lnðpsurf Þ ¼ �0:693þ 0:905 lnðdpsurf Þ; ð7Þ
(R2¼56.1%), which is broadly consistent with prediction

(6), except that the constant was lower than expected

(standard errors for the constant and the coefficient of

ln (prun) were 0.1766 and 0.1120 respectively). When the

regression was run for each value of the migration rate m

separately, the discrepancy between predicted and

observed psurf was seen to occur only for very high migra-

tion rates. Indeed, the constant term and the coefficient

of lnðdpsurf Þ in the regression equation were not signifi-

cantly different from the predicted values of 0 and 1,

respectively, except for the highest value of m, namely

0.40. Agreement between the predicted and observed

equations improved as m decreased (details are shown in

Table 3).

We now briefly consider model (6) for large k. When k
and K are both very large, prun approaches 1, and taking

a limit of the right-hand side of equation (6) with K

being a fixed multiple of k ) 1 (K ¼ a(k ) 1)) and prun

1 ) e)k suggests that psurf should approximately equal 1/

k. However, our simulations with large k and K ¼
(k ) 1)/2 show far higher values of psurf than this calcula-

tion would predict – for example, psurf � 0.85 with k ¼
32, K ¼ 16 and m ¼ 0.1. Furthermore, psurf did not

appear to decrease as k was increased. The explanation

appears to be that even though most cells filled to capac-

ity within one or two generations of colonization, the

rightmost cell generally contained very few individuals –

averaging fewer than two for all conditions simulated –

and each of these individuals had a high probability of

becoming the common ancestor of the future occupants

of the grid from that point onwards. (It is possible that

different behavior might be found if K were held constant

as k increased, however.)

Analogues of equation (6) proved to be almost com-

pletely unexplanatory in two-dimensional settings under

neutrality, yielding R2 values of less than 5%. Indeed,

there appeared to be no meaningful relationship between

any powers of psurf and prun in two dimensions.
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Figure 4 ln (psurf) versus ln (prun) for a one-dimensional habitat and

k < 2.
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Under selection (i.e. with kmut „ kwt), the analogue of

equation (6) is more complicated because the numbers of

mutant and wild-type ‘candidates’ remaining after each

unsuccessful attempt to propagate do not follow a simple

linear pattern. Rather, if the rightmost cell in generation

P is occupied by one mutant and N ) 1 wild types, and

if the number of candidates is still assumed to decrease

by 1 after each failed attempt, then the expected numbers

u(t) and w(t) of mutant and wild-type candidates t gener-

ations later (conditioned on mutant survival) are given by

uðtÞ ¼ N � t

1þ ðN � 1Þðkwt=kmutÞt
; ð8Þ

wðtÞ ¼ ðN � tÞðN � 1Þðkwt=kmutÞt

1þ ðN � 1Þðkwt=kmutÞt
: ð9Þ

When these expressions are used in an analogue of equa-

tion (6) that also includes different values of prun for

mutants and wild types, the result is not readily simpli-

fied. However, the first two terms can be computed:

T1 ¼
1

N
pm

run; ð10Þ

T2 ¼
N � 1

N
ð1� pwt

runÞ
kmut

kmut þ ðN � 2ÞðkwtÞ

� �
pm

run; ð11Þ

where pm
run and pwt

run are the values of prun for mutants

and wild types, respectively, and Ti is the probability of

mutant surfing, conditioned on the event that the

successful surfing attempt occurs i ) 1 generations after

generation P.

For the parameter combinations used in our simula-

tions, mean T1 performed very well as a predictor of

mean psurf for beneficial mutations (R2 ¼ 96.8%), and

mean T1 + T2 performed slightly better (R2 ¼ 98.5%).

Specifically, linear regression yielded the equations

psurf ¼ �0:011þ 1:2�T1 ð12Þ

with standard errors of 0.028 for the constant and 0.056

for the coefficient of �T1, and

psurf ¼ �0:020þ 1:1ðT1 þ T2Þ ð13Þ

with standard errors of 0.019 for the constant and 0.037

for the coefficient of T1+T2. As equations (10) and (11)

show that T1 and T2 are linear functions of pm
run and pwt

run,

this indicates that psurf itself is very close to a linear func-

tion of these two quantities. For deleterious mutations,

however, �T1 and T1+T2 drastically overestimated psurf,

possibly because deleterious mutations that initially ‘sur-

fed’ later lost ground to introgressing wild types.

Discussion

We have developed descriptive statistical models that

quantify the relationship between the probability psurf that

a mutation will surf and the parameters k, m and K of a

frequently studied cellular automaton model (Edmonds

et al. 2004; Klopfstein et al. 2005; Travis et al. 2007;

Hallatschek and Nelson 2008). We have also proposed an

analytic model that performs reasonably well at predicting

psurf for the case of a neutral or beneficial mutation on a

one-dimensional grid. Such simplified models are desir-

able because a completely rigorous explanation of the

dependence of surfing probability on a full range of

demographic and genetic parameters currently appears

unobtainable. (This is not to say that the mathematical

models that have been developed, such as those in

Hallatschek and Nelson 2008, 2009, are uninformative,

but simply that they do not yield self-contained formulas

for psurf as a function of system parameters in all

regimes.) Moreover, a typical rigorous result for an indi-

vidual-based model of invasion dynamics may simply give

conditions under which the probability of persistence is

either positive or zero; see, for example, the recent result

on surfing in E. Andjel, J. Miller and E. Pardoux, unpub-

lished manuscript. In the absence of a rigorous theory,

descriptive statistical models and simplified analytic mod-

els like those developed here can assess the strengths or

weaknesses of heuristic explanations and may be of value

in making predictions of invasiveness. Thus, such models

remain crucial tools for checking and expanding upon

nonquantitative verbal models of mutation dynamics

during invasions.

For the neutral case, our statistical models differ in sev-

eral respects from those proposed in earlier work

(Klopfstein et al. 2005). One reason may simply be that

previous authors used only grids of length 100 cells for

their simulations (Edmonds et al. 2004; Klopfstein et al.

2005; Travis et al. 2007; Hallatschek and Nelson 2008).

This may have inflated estimates of the probability of

surfing, and especially of mutant survival without surfing

(Travis et al. 2007 contains some discussion on this

Table 3. Coefficients for regression of observed on predicted

ln (psurf)

m Constant SE Coefficient of ln (psurf) SE

0.40 )1.5 0.35 0.43 0.24

0.20 )0.31 0.38 1.5 0.28

0.10 )0.24 0.31 1.2 0.20

0.05 )0.22 0.19 0.99 0.11
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point). With the grids of length 400 used here, it is extre-

mely rare for mutants to survive to the end of a simula-

tion unless surfing has occurred. As a result, the

bimodality of the final spatial distribution of mutants

reported in Edmonds et al. (2004) essentially vanishes.

Some experimentation (details not shown) suggested that

extension to still longer grids would have little effect on

observed probability of mutant survival and psurf.

We note that with the bimodality removed, it is easy to

explain the ‘midpoint rule’ for locating the point of ori-

gin of a mutation proposed in Edmonds et al. (2004).

Specifically, surviving mutants have almost invariably sur-

fed. Furthermore, visual inspection of simulations in pro-

gress shows that surfing neutral mutants almost invariably

occupy nearly all of the terrain from their point of origin

to the rightmost boundary of the grid. It follows that the

centroid of the final mutant population is halfway

between the point of origin and the boundary, which is a

rephrasing of the midpoint rule. In addition, as we have

noted above, when beneficial mutants surf they also intro-

gress backwards into territory previously colonized by

wild types. The extent to which weak selective advantage

or linkage to selected loci may bias midpoint-rule esti-

mates therefore deserves study.

More substantively, it is important to address why

equations (2) and (3), which we propose as statistical

descriptions of the relationship between the log-odds of

surfing gpsurf ¼ lnðpsurf Þ=ð1 � psurf Þ and the parameters k,

m and K, differ dramatically from the simple linear rela-

tionship between ‘mutant success’ (a proxy for psurf) and

the ‘lumped’ parameter (k ) 1)/Km proposed in

Klopfstein et al. (2005) (which, we note, is also consistent

with the heuristics presented above). Indeed, equation (2)

suggests that more appropriate lumped parameters for

the one- and two-dimensional cases, respectively, might

be (k)1)/K1/4m1/2 and (k ) 1)1/2/K1/4. The answer appears

to be that the analysis in Klopfstein et al. (2005) depends

on a linear regression of psurf on (k ) 1)/Km. Linear

regression is generally not appropriate for response vari-

ables, like psurf, that are constrained to lie between 0 and

1 (Hogg and Tanis 1997). Furthermore, from fig. 3 in

Klopfstein et al. (2005) it appears that much of the

apparently high R2 attributed to this regression is due to

one or a very few influential data points. Thus, we believe

that equations (2) and (3) are better justified as statistical

descriptions of the dependence of gpsurf (and hence psurf)

on k, m and K.

However, perhaps the most noteworthy difference

between our statistical model (3) for the two-dimensional

case and that proposed in Klopfstein et al. (2005) is that

equation (3) does not include the migration rate m. In

fact, a logistic regression of gpsurf on ln (m) for a

25 · 100 grid did show a marginally statistically signifi-

cant inverse dependence [gpsurf ¼ �0:244 � 0:183 lnðmÞ,
with a standard error of 0.1077 for the coefficient of ln (

m) (P ¼ 0.090)]. This agrees with the inverse dependence

noted in Klopfstein et al. (2005), which was not quanti-

fied. However, the important point is the weakness of the

dependence. This is also a major difference between equa-

tion (3) and our proposed model (2) for the one-dimen-

sional case. It is reasonable to ask what factors account

for the decreased importance of m in the two-dimen-

sional setting.

One such factor may be the irregular profile of the

wavefront in two dimensions (see Fig. 5). This irregularity

may dampen the effect of migration rate in two ways.

First, individuals in cells surrounded by empty or nearly

empty cells (i.e. where the wavefront has positive curva-

ture) are expected to have more surviving offspring than

individuals in cells surrounded by relatively full cells (i.e.

where the wavefront has negative curvature). Thus, the

probability of surfing will be greater for mutations that

happen to arise in reasons of positive curvature. Second,

the irregular profile will result in competition between

outcroppings of the wavefront at different latitudes in the

grid. Unlike in the one-dimensional case, an outcropping

of mutants at one latitude may be rivalled by an outcrop-

ping of wild types at another latitude. The mutant and

wild types will eventually meet, and only one type will

then fill the remaining open terrain (this has been dis-

cussed in detail in Hallatschek et al. 2007). Thus, the

irregular, two-dimensional wavefront introduces two

additional random factors affecting the probability of

surfing that do not have clear relationships to the migra-

tion rate m.

A point related to the relative unimportance of m in

two dimensions concerns equation (6), which predicts the

probability of surfing in the one-dimensional case. As

noted in the Analytic models section, the model
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Figure 5 Contour plot of total population density in part of a

25 · 100 grid. Black region contains 0 individuals per cell, white

region contains eight or more individuals per cell. Parameter values

are k ¼ 1.8, m ¼ 0.4, K ¼ 10.
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performed better at smaller values of the migration rate

m. This may be because the model ignores all individuals

present on the grid except for those in the leading cell. In

reality, individuals behind the wavefront do have some

chance of filling the remaining open terrain with their

progeny. To do so, however, their progeny must advance

to the wavefront, and the likelihood of this occurring

should decrease with m. An analogy may be drawn to

solutions of Fisher’s equation,

du=dt ¼ ruð1� uÞ þ D d2u=dx2; ð14Þ

a classical model of travelling waves of population den-

sity (Fisher 1937). The diffusion coefficient D in equation

(14) is one-half the mean-squared distance traveled by an

individual during one generation; so, for us D ¼ m2/2.

It is straightforward to check that near the leading

edge, traveling wave solutions of equation (15) have

shapes proportional to the exponential function

expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=m2

p
xÞ. Thus, the number of individuals

originally present one cell behind the leading cell (say)

whose progeny will travel forward a given distance in

a given short span of time is proportional to

m expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=m2

p
xÞ. This quantity increases with m.

Therefore, referring back to our simplified model, when

an individual originally in the leading cell fails to propa-

gate, we expect fewer candidates from cells further back

to be available at the wavefront as potential propagators.

As a result, ignoring all cells other than the leading cell

makes equation (6) a better approximation of psurf when

m is small.

The simulations in the present work are necessarily

limited in scope; even for the neutral case, they do not

represent all possible scenarios of biological interest. In

our simulations, density regulation precedes migration in

each generation. In many natural populations this order-

ing is reversed. A change in the ordering of life cycle

events may change the conclusions we draw from the

simulations, and it will therefore be necessary to vary this

ordering in future work. Likewise, our simulations

assume nearest neighbor migration in a stepping-stone

model with a selection regime that is spatially and tempo-

rally invariant. If such a scenario is used as a null model

for hypothesis tests regarding a population’s migration

history, other spatial structures and migration patterns

may need to be considered as alternatives.

The present work modeled only mutations arising at

the leading edge of an invasion. Some authors have mod-

eled mutations arising further back in an invasion as well

(Klopfstein et al. 2005; Travis et al. 2007; Hallatschek and

Nelson 2008). It was noted in both Klopfstein et al.

(2005) and Travis et al. (2007) that the probability of

surfing for the model considered here drops off sharply

for neutral mutations arising even a few cells behind the

front; in Burton and Travis (2008b), it was shown that

this holds true for deleterious and, to a lesser extent, ben-

eficial mutations as well (but different boundary condi-

tions can alter this behavior). As mutants and wild types

behave identically in our neutral model, this helps explain

why our simplified analytic model achieves good predic-

tive power, even though it assumes that the probability of

propagation is zero for individuals behind the front.

In all the simulations discussed here, a single mutant

was introduced at a fixed location once the wild-type

invasion had advanced to the 10th grid column from the

left. One could ask how varying mutation times and loca-

tions might affect the results. As extinction almost never

occurred after the mutant was introduced, we suspect that

increasing the longitude of the mutation would have little

effect on psurf; however, this remains to be checked. On

the other hand, changing the model to include multiple

mutations, perhaps at random times, would shed light on

a number of questions. Serial neutral mutations might

lead to a ‘banding’ of the colonized territory by genotype

(R. Holt, personal communication), allowing for more

precise tracking of a population’s migration history and

possibly providing the basis for a null distribution in tests

for selection at other loci. Simulations with serial selected

mutations could be used to study adaptive changes in

quantitative traits during invasion. Among other ques-

tions, they could be used to study the distribution of

effects of quantitative trait loci (QTL) in a trait subject to

selection during an invasion, extending existing theory

which does not take spatial population dynamics into

account (Mackay 2001; Orr 2005).

As distance from the front strongly influences the

probability of surfing for neutral mutations, one might

ask why we have chosen to study only mutations arising

at the front. The explanation is that we have done so pre-

cisely in order to focus on what other factors may affect

the probability of surfing. Analogously, one might study a

group known to be at high risk of contracting a certain

disease, in order to learn what additional factors might

predispose an individual to contract the disease or to stay

healthy. On the other hand, Hallatschek and Nelson have

shown that as population density is (almost by definition)

low at the wavefront, if mutation rates are constant over

space then the modal point of origin of surfing mutations

will be slightly behind the front (Hallatschek and Nelson

2008). Thus, studies of adaptive genetic change during

invasions via the accumulation of weakly beneficial muta-

tions need to vary their points of origin; a two-locus

model which includes this variation has already been

studied in Burton and Travis (2008a,b).

As have previous studies of mutation surfing (Edmonds

et al. 2004; Klopfstein et al. 2005; Travis et al. 2007;

Survival of mutations arising during invasions Miller
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Hallatschek and Nelson 2008), the present work considers

only nearest-neighbor migration, in which an individual

can move at most one cell length per generation. This

results in diffusive movement, which can be modeled

deterministically by a reaction–diffusion equation; such

equations are the basis for the analysis of surfing in Vlad

et al. (2002) (cited in Edmonds et al. 2004) and

Hallatschek and Nelson (2008). However, it is well estab-

lished that models assuming diffusive movement can yield

inaccurate predictions when applied to many real inva-

sions. This may be especially true when the movement

rate m is relatively high for a given cell carrying capacity

K. Not every combination of m and K may be well

described by a limiting process on a continuous spatial

domain (see, for example, Durrett and Neuhauser 1999).

A future task will be to assess, in the first instance

through simulation, how patterns that have been observed

for discrete mutation surfing models converge or fail to

converge to limiting relationships as the scaled island

model approaches a continuum.

For accurate modeling, ‘heavy-tailed’ dispersal kernels

that model a greater frequency of long-distance dispersal

events are often necessary (see, for example, Kot et al.

1996 and references therein). An important area for

future work will be to extend studies of mutation surfing

to invasion models that incorporate heavy-tailed kernels

(e.g. Laplace, or reflected exponential, kernels) and rare

long-range dispersal events (this was noted in Burton and

Travis 2008b as well). Yet, as stochastic effects inevitably

will be even more important in such models, it may be

extremely difficult to develop a rigorous theory that will

yield useful quantitative predictions of psurf under these

conditions. Simplified models that yield good agreement

with simulation and, ultimately, experimental data will be

especially necessary in these settings.

The bulk of the present work concerns neutral muta-

tions, but we have obtained some results for beneficial

and deleterious mutations (in one-dimensional habitats)

as well. Equation (4) describes the dependence of psurf on

m, K and nonidentical reproduction rates kmut and kwt.

As noted above, the direction of the dependence on m

and K was the same under neutrality and selection. In

addition, the psurf was much more sensitive to the value

of kmut than to kwt, so that absolute fitness was a better

predictor of surfing success than relative fitness. Consis-

tent with this finding, equation (13), which includes pwt
run

as a predictor of psurf, performs only slightly better than

equation (12), which does not.

As it is difficult to identify consistent predictors of

establishment success from empirical studies (Kolar and

Lodge 2001; Hayes and Barry 2008), one might ask why

analytic models that include prun (whether for mutants or

wild types) as a predictor of psurf are informative. We

offer two answers. First, our results indicate that finding

the determinants of surfing and of invasiveness may not

be two separate hard problems but only one. Second, they

lead to a novel and (in principle) empirically testable

prediction about adaptive change during invasions, as

follows.

Our simulations indicate a strong positive association

between the probability of establishment (which in this

model leads to invasion) pwt
run and the probability psurf of

surfing, conditioned on establishment, for neutral and

beneficial mutations in one dimension. (However, this

association was not found for parameter regimes in which

pwt
run was very close to 1.) In these simulations, the only

difference between mutants and wild types was fecundity,

as measured by the growth rate k. For most of the

parameter combinations studied here, when km and kwt

are held fixed and cell carrying capacity K and migration

rate m are varied, higher pwt
run is associated with higher

psurf. This suggests that in the scenarios modeled here,

conditions that favor the establishment of a population in

a novel habitat might in and of themselves also favor the

fixation of beneficial mutations once establishment has

occurred and an invasion has begun. It has been noted

previously that high intrinsic growth rates and small

deme sizes at the front may promote surfing, and that

‘genetic revolutions’ during invasions can occur because

of surfing due to increased drift at the sparsely populated

front (Klopfstein et al. 2005; Travis et al. 2007; Excoffier

and Ray 2008; Hallatschek and Nelson 2008, 2009), but

the finding that factors other than k and population den-

sity can promote surfing in some invasions is novel, to

our knowledge.

As K and m do not depend solely on organismal

traits (whether genetic or nongenetic) but also on fea-

tures of a given habitat, our results suggest that even

abiotic factors that promote establishment might also

promote the survival and spread of beneficial mutations

(as well as neutral ones), conditioned on establishment.

This finding is complementary to studies that have iden-

tified propagule size and number of introductions as the

factors with the strongest currently known association

with establishment success (Kolar and Lodge 2001;

Hayes and Barry 2008). Further simulation and empiri-

cal studies seem warranted to assess the generality of

this effect and its importance in explaining adaptive

genetic change during invasions.
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