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Abstract

Objective: The objective of this biomechanical study was to evaluate the stability

provided by a newly developed shape memory alloy hook (SMAH) in a cadaveric

transforaminal lumbar interbody fusion (TLIF) model.

Methods: Six human cadaveric spines (L1-S2) were tested in an in vitro flexibility

experiment by applying pure moments of ¡8 Nm in flexion/extension, left/right

lateral bending, and left/right axial rotation. After intact testing, a TLIF was

performed at L4-5. Each specimen was tested for the following constructs:

unilateral SMAH (USMAH); bilateral SMAH (BSMAH); unilateral pedicle screws and

rods (UPS); and bilateral pedicle screws and rods (BPS). The L3–L4, L4–L5, and

L5-S1 range of motion (ROM) were recorded by a Motion Analysis System.

Results: Compared to the other constructs, the BPS provided the most stability.

The UPS significantly reduced the ROM in extension/flexion and lateral bending;

the BSMAH significantly reduced the ROM in extension/flexion, lateral bending, and

axial rotation; and the USMAH significantly reduced the ROM in flexion and left

lateral bending compared with the intact spine (p,0.05). The USMAH slightly

reduced the ROM in extension, right lateral bending and axial rotation (p.0.05).

Stability provided by the USMAH compared with the UPS was not significantly

different. ROMs of adjacent segments increased in all fixed constructs (p.0.05).

Conclusions: Bilateral SMAH fixation can achieve immediate stability after L4–5

TLIF in vitro. Further studies are required to determine whether the SMAH can

achieve fusion in vivo and alleviate adjacent segment degeneration.
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Introduction

Over the last 100 years, lumbar spinal fusion has evolved as the conventional

treatment for infection, tuberculosis, fracture, malformation, arthritis, and

degenerative disorders. Traditional posterior lateral fusion has been replaced by

interbody fusion gradually, which provides solid fixation of spinal segments while

maintaining a physical load-bearing capacity and proper disc height [1].

Interbody fusion involves reconstruction of the anterior column after disc

removal, which is essential as 80% of compressive, torsion, and shear forces are

transmitted through the anterior column [2].

Transforaminal interbody fusion (TLIF) was developed by Harms [3] as an

alternative method for overcoming the risks and limitations associated with

posterior lumbar interbody fusion (PLIF). TLIF using a unilateral approach allows

preservation of the spinous processes and facets, and laminae on the contralateral

side. This minimizes retraction on the thecal sac and neural elements, decreases

the risk for a durotomy, limits possible neurological injury, and reduces intra-

operative bleeding [4, 5]. The open TLIF procedure involves the stripping of the

paravertebral muscles, which may negatively affect postoperative outcome. TLIF

can also be operated using a minimally invasive technique [6, 7], which is thought

to be favorable as it achieves similar surgical efficacy but is associated with

reductions in operation time, blood loss, and hospital length of stay compared

with open surgery.

TLIF involves fixation of adjacent vertebral bodies with implants to achieve

fusion. Pedicle screw and rod fixation was popular, but widespread application is

limited by postoperative complications and high costs [7, 8]. Both unilateral and

bilateral pedicle screw-rod fixation in one- or two-segment lumbar spinal fusion

have comparable complication rates [9–11]. Furthermore, if the primary

operation with pedicle screw and rod fixation fails, the damaged posterior bony

structure makes further rebuilding and stabilization of the spine more challenging

[9, 10].

Since Buehler found nickel-titanium alloy had a shape memory effect in 1963

[11], nickel-titanium shape memory alloy (Ni-Ti SMA) implants have been

successfully instrumented in orthopedics. Indeed, Ni-Ti SMA is a quick and easy

implant that is used for surgical correction of scoliosis [12]. To date, and despite

the unique mechanical properties and biocompatibility of SMA devices [13, 14],

no reports document their use for lumbar fusion. Therefore, we evaluated the

biomechanical stability offered by a newly developed SMA hook (SMAH) in a

cadaveric TLIF model. We compared intact spines, a unilateral SMAH (USMAH),

a bilateral SMAH (BSMAH), unilateral pedicle screws and rods (UPS), and

bilateral pedicle screws and rods (BPS) in an in vitro flexibility experiment. We

hypothesized that the semi-rigid fixation effect of the SMA construct would

decrease the range of motion (ROM) of fixed segments compared to intact spines,

and the ROM of adjacent segments, compared to fixation with pedicle screws and

rods.
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Materials and Methods

Ethics Statement

The cadavers were donated to the Department of Anatomy of Guilin Medical

College for the purpose of teaching and preclinical research. Written informed

consents from the donors or the next of kin were obtained before donation.

Permission from the ethics committee of Guilin Medical College was obtained

before the study. And the study was conducted according to the principles

outlined in the Declaration of Helsinki.

Specimen Preparation

Six male fresh-frozen human cadaver lumbosacral spines were used in this study

(mean death age, 58.8 years; range, 45–67 years). Anterior-posterior and lateral

radiographs of the spines confirmed the absence of any neoplastic disease,

significant degeneration, fractures, or deformities [15, 16]. The bone mineral

density (BMD) of each specimen was evaluated at L2–L5 by a computed

tomography (CT) scan with a slice thickness of 2 mm. The mean BMD value of

the 6 specimens was 1.08 g/cm2 ranging from 0.91 to 1.38 g/cm2. All specimens

had normal bones without osteoporosis. Specimens were thawed at 4 C̊ overnight.

Subsequently, the paraspinal muscles were carefully removed while preserving the

intervertebral ligaments, capsules, joints, and discs intact. Specimens were

implanted with steel nails at L1 and S2, and embedded at L1 and S1–S2 vertically

with polymethylmethacrylate (PMMA), finally wrapped with physiological saline

gauze, sealed, and stored at 220 C̊ until the flexibility test.

Flexibility Test System

The Flexibility Test System was composed of cables, pulleys, suspended

counterweights, a loading disc, and a basement. The lower side of the PMMA

block was placed on the basement, the upper side of the PMMA block was fixed to

the loading disc. The cables connected to the loading disc and suspended

counterweight transferred equal but opposing forces on to the top of the specimen

(Figure 1). Thus, the custom-made testing system could apply pure moments in

flexion/extension, right/left rotation and right/left lateral bending and allowed

complete, unconstrained 3-dimensional motion of the spine. To overcome the

spine’s viscoelastic effects, before recording motion data for each loading scenario,

three preconditioning cycles were applied to the specimen, and applied moments

were maintained for approximately 30 seconds. The motion of each segment was

recorded using a clinical motion analysis system with four marker balls arranged

rigidly along the plane of each vertebral body. ROM was calculated by Cortex

software.
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Flexibility Test Protocol

Specimens were initially tested in the intact state. Subsequently, TLIF was

performed; each specimen underwent a right-sided L4-5 facetectomy and

discectomy. Facetectomy was performed 1 cm away from the facet surface. The

superior edge of the L4 lamina, the inferior edge of the L5 lamina, and the part of

the lamina connected to the vertebral pedicle were intact. Therefore, force applied

to the lamina was delivered to the vertebral body under physiological conditions,

and hooks instrumented on the superior edge of the L4 lamina and the inferior

edge of the L5 lamina could achieve stability and resistance to failure. Each

specimen was then tested for the following surgical constructs: USMAH, BSMAH,

UPS, and BPS. A maximum moment of ¡8 Nm was applied on all specimens as

previously described [15, 17, 18]. Three-dimensional movements including

flexion/extension, left/right lateral bending, and left/right axial rotation were

tested on all specimens.

For the USMAH, an appropriately sized TLIF spacer was inserted into the

middle third of the L4-5 disc space. The length between the superior edge of the

L4 lamina and inferior edge of the L5 lamina was measured to allow selection of a

suitable SMAH. Different size SMAHs ranging from 39 mm to 59 mm in length

were designed to meet individual needs. Every 2 mm is an interval. Therefore, if

the shortest length between the superior edge of the L4 lamina and inferior edge of

the L5 lamina was 45 mm, a 43 mm or 41 mm SMAH was chosen. The smaller

size hook provided a persistent compressive force to stabilize the lumbar

segments. After an SMAH was instrumented, stability was checked by shaking the

hook. The hook was unfolded in an ice-water mixture using a stretcher, and

instrumented on the right side superior edge of the L4 lamina and inferior edge of

the L5 lamina using a holder (Figure 2). Gauze soaked in water at 37 C̊ water was

Figure 1. Flexibility test system. The specimen was fixed on the working table. Laser balls were used to
simulate planes of representative vertebral bodies. An unstrained spinal 3-D motion was obtained by cables
connected to loading discs. A suspended counterweight transferred equal but opposing forces on to the top of
the specimen. The movement of the laser balls was tracked by six cameras hanging at different sites from the
ceiling.

doi:10.1371/journal.pone.0114326.g001
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spread on the surface of the hook to promote re-plasticity. BSMAHs were

instrumented on both side of L4 and L5 laminas, but the left facet joint was

retained intact. When the SMAHs flexibility tests were complete, gauze soaked in

ice-water was spread onto the surface of the hook to facilitate its removal. The

pedicle screws (6.5 mm in diameter 645 mm in length) and 5.5-mm–diameter

titanium rods were instrumented according to common practice. As the SMAH

did not damage the posterior structure, implantation of the pedicle screw-rod

constructs was not affected by previous instrumentation with the SMAH.

During the testing progress, physiological saline was sprayed on the specimen

every 5 minutes to keep it moist and fresh. Testing was conducted at room

temperature. X-rays were taken after each test (Figure 3). All operations were

performed by an experienced spinal surgeon.

Statistical Analysis

Statistical analyses were performed using SPSS 19.0 software. Comparison of

ROM was performed using one-way analysis of variance (ANOVA) and post hoc

analysis by Tukey for multiple comparison procedures. p,0.05 was considered

significant.

Results

Range of Motion at L4-5

In flexion, all instrumented constructs significantly decreased ROM compared

with the intact spine (p,0.05). BPS and BSMAH decreased ROM by 71% and

60%, respectively. UPS and USMAH decreased ROM by 41% each. There was no

Figure 2. 45 mm Shape memory Alloy Hook (SMAH). Left, prototype; right, unfolded in ice and water
mixture.

doi:10.1371/journal.pone.0114326.g002
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significant difference between the stability offered by USMAH, BSMAH, UPS and

BPS.

In extension, BSMAH, UPS, and BPS significantly decreased ROM by 51%,

46%, and 70%, respectively, compared with the intact spine (p,0.05). USMAH

decreased ROM by 26%; however, there was no significant difference compared

with the intact spine (p.0.05). There was significant difference between the

stability offered by USMAH and BPS (p,0.05).

In left lateral bending, all instrumented constructs significantly decreased ROM

compared with the intact spine (p,0.05). BSMAH and BPS decreased ROM by

68% and 72%, respectively; USMAH and UPS decreased ROM by 33% and 35%,

respectively. There was no significant difference between the stability offered by

USMAH and UPS, or BSMAH and BPS. Bilateral fixation constructs had lower

ROM compared with unilateral fixation constructs (p,0.05).

In right lateral bending, BSMAH, UPS, and BPS significantly decreased ROM

compared with the intact spine (p,0.05). BSMAH and BPS decreased ROM by

52% and 71%, respectively. USMAH and UPS decreased ROM by 29% and 31%,

respectively. There was no significant difference between the stability offered by

USMAH and UPS, or BSMAH and BPS.

In axial rotation, BSMAH and BPS significantly decreased ROM by 51% and

54%, respectively, compared with the intact spine, (p,0.05). There was no

significant difference between the stability offered by USMAH and UPS compared

with the intact spine (Fig. 4).

Figure 3. Surgical constructs. 1. Transforaminal lumbar interbody fusion (TLIF) with unilateral shape
memory alloy hook (USMAH) at L4-5; 2. TLIF with bilateral shape memory alloy hook (BSMAH) at L4-5; 3.
TLIF with unilateral pedicle screws and rods (UPS) at L4-5; 4. TLIF with bilateral pedicle screws and rods
(BPS) at L4-5.

doi:10.1371/journal.pone.0114326.g003
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Range of Motion at L3-4 and L5-S1

At L3-4 and L5-S1, there was no significant difference in ROM between the

constructs compared with the intact spine (p.0.05). Mean ROM of BSMAH and

BPS appeared higher compared with the intact spine and USMAH and UPS, but

the differences were not significant (Figs. 5, 6).

Discussion

In this study, TLIF was chosen as the model for in vitro spinal reconstruction and

biomechanical testing. In 1998, Harms and Jeszenszky introduced TLIF as an

alternative technique to PLIF in an attempt to overcome risk for damage to the

conusmedullaris and dural sac [3, 19]. TLIF offers numerous theoretical and

clinical advantages over PLIF, and has become more popular over the last decade.

Unilateral and bilateral TLIF procedures are safe and effective options for

reconstructive spinal fusion surgery, achieving lumbar fusion and relieving pain

and neural compression [14, 20, 21, 22, 23]. In vitro biomechanical tests have

demonstrated that TLIF can achieve immediate stability following surgery with

unilateral or bilateral pedicle screw and rod fixation [15, 17, 24, 25]. Through a

unilateral approach, TLIF can provide an adequate surface area for solid fusion as

69% disk volume (56% of endplate surface area) excision can be achieved [25].

In vivo analysis has revealed that 30% of the vertebral endplate surface area is the

minimum required to achieve rigid interbody fusion [26]. To achieve consistent

experiment conditions in this study, spacer was placed in the middle third of the

L4-5 disc space, rather than the anterior third. Practically, it is easier to place a

spacer in the middle third of the disc space. Most importantly the position of the

spacer did not influence the maintenance of segmental lordosis or the stability of

Figure 4. Range of motion at L4-5. Abbreviations: F, flexion; E, extension; LLB, left lateral bending; RLB,
right lateral bending; LR, left rotation; RR, right rotation. USMAH, unilateral shape memory alloy hook;
BSMAH, bilateral shape memory alloy hook; UPS, unilateral pedicle screws and rods; BPS, bilateral pedicle
screws and rods. * significant difference vs. the intact spine (p,0.05). # significant difference vs. the BPS
construct (p,0.05). + significant difference vs. the BSMAH construct (p,0.05).

doi:10.1371/journal.pone.0114326.g004
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the TLIF constructs. In a finite element analysis, Chen et al demonstrated that

similar ROM was achieved in TLIFa (spacer was placed in anterior third) and

TLIFm(middle third) [27]. Faundez et al demonstrated that TLIFa and

TLIFp(posterior third) constructs had a statistically equivalent 3-dimensional

stability and maintained similar segmental lordosis. Even though diverse spacer

positions have been recommended by several authors, no clinical study has shown

any correlation between fusion rates and different TLIF techniques and implant

positions [28].

Ni-Ti SMA instruments have a combination of good mechanical strength,

specific properties such as the shape memory effect and superelasticity, and good

biocompatibility [13, 29]. Therefore, Ni-Ti SMA instruments have been widely

used for orthodontic tooth alignment, vascular applications, and osteosynthesis

staples [20, 30]. The safty of Ni-Ti SMAs can be enhanced by alloy surface

treatment [31]. Animal experiments showed that the histological response of the

Figure 5. Range of motion at L3-4. Abbreviations: F, flexion; E, extension; LLB, left lateral bending; RLB,
right lateral bending; LR, left rotation; RR, right rotation. USMAH, unilateral shape memory alloy hook;
BSMAH, bilateral shape memory alloy hook; UPS, unilateral pedicle screws and rods; BPS, bilateral pedicle
screws and rods.

doi:10.1371/journal.pone.0114326.g005

Figure 6. Range of motion at L5-S1. Abbreviations: F, flexion; E, extension; LLB, left lateral bending; RLB,
right lateral bending; LR, left rotation; RR, right rotation. USMAH, unilateral shape memory alloy hook;
BSMAH, bilateral shape memory alloy hook; UPS, unilateral pedicle screws and rods; BPS, bilateral pedicle
screws and rods.

doi:10.1371/journal.pone.0114326.g006
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soft tissues around the Ni-Ti implant was clearly non-toxic and non-irritating

after 26 weeks of implantation [32]. In vitro experiments demonstrated that Ni-Ti

SMA instruments were completely cytocompatible and genocompatible [33]. Ni-

Ti SMAs have a Young’s modulus of 50 GPa. This is close to the Young’s modulus

of cortical bone (14 GPa), but much smaller than the Young’s modulus of

titanium (110 GPa). According to BO principles, an implant with a low Young’s

modulus can alleviate stress shielding and concentration, which can cause implant

rupture and failure [34].

The Ni-Ti alloy can be bent when cooled and then retake its original shape

when heated. This property, known as shape-memory, has resulted in the

application of shape-memory alloy wire implantations for gradual correction of

scoliosis [34, 35]. However, to the best of our knowledge, there are no

publications describing shape-memory alloy fixation for lumbar fusion.

Therefore, we designed the SMAH as a posterior lumber fixation system. In our

cadaveric model, the SMAH implantation procedure was easy, minimally invasive,

and associated with a short operation time. The hook was placed on the superior

edge of the L4 lamina and inferior edge of the L5 lamina. The posterior lumbar

osteostructures remained unimpaired, which may be associated with reduced

blood loss compared with pedicle screw-rod constructs in clinic, and should

provide perfect conditions for rebuilding and stabilization if a primary operation

fails. Compared with the traditional lamina hook, the SMAH has a lower risk of

hook out. Because traditional laminar hook fixation systems are composed of

hooks and rods, the connection between the hook and rod may loosen, which can

result in hook out. In contrast, the SMAH is an independent device. When

instrumented, the SMAH applies a continuous retractive force to the lamina,

which results in a reliable construct. The SMAH is also cost effective. The SMAH

is not yet on the market, so the price is unknown. But the price of a similar SMA

product, the Ni-Ti-patella concentrator, is 1/10 of the price of one pedicle screw

and rod.

We predicted that the SMAH would be an ideal implant if it could provide

enough stability after TLIF. In accordance with previous reports, our study

demonstrated that the ROM of an operated segment was decreased after TLIF

using unilateral or bilateral pedicle screw and rod fixation [15, 17, 24, 36, 37], but

axial rotation was not well controlled by unilateral fixation. When considering the

SMAH, in flexion, the USMAH and BSMAH compared favorably with the UPS

and BPS. In extension, the USMAH provided less stability compared with the

BSMAH and BPS. In left lateral bending, all instrumented constructs significantly

restricted the lateral instability caused by right facetectomy and discectomy.

However, in right lateral bending, only the BSMAH, UPS, and BPS provided

stability, indicating that the USMAH could only restrict contralateral bending and

supporting the recommendation for bilateral fixation. In axial rotation, only the

BSMAH and BPS significantly decreased ROM. This was likely because the SMAH

is positioned in opposition to the direction of motion in flexion/extension and

lateral bending. In axial rotation, the hook is parallel to the axis of rotation, and

the resultant limit on motion is not as great.

Biomechanical Analysis of Shape Memory Alloy Hook in TLIF
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In right lateral bending and axial rotation, USMAH did not significantly

decrease ROM compared to the intact spine; this may have been due to a small

sample size. The degree of stability required to attain lumbar fusion is unknown,

but it is generally believed that the ROM of an operated segment should not be

larger than the intact spine. Although UPS cause a non-significant decrease in

ROM in axial rotation, clinical studies have shown that TLIF with unilateral

pedicle screw and rod fixation can achieve the same fusion rate and satisfaction as

bilateral instrumentation [23, 38, 39]. These data suggest that implantation of the

USMAH construct may result in an acceptable fusion rate and satisfactory

outcomes. However, further animal and clinical studies are required to confirm

this effect.

Adjacent segment degeneration (ASD) has been recognized as a potential long-

term complication of rigidly instrumented fusion [40, 41, 42]. After solid fusion,

there may be a change in the ROM of the spine. The ROM of adjacent segments

will increase, compensating for the decreased ROM caused by a solid fixed

segment [40]. To reduce the incidence of ASD, several implants of semi-rigid or

dynamic stabilization of lumbar intervertebral segments have been developed.

Examples of such devices are Isobar TTL, a metal rod with disc springs, the CD

Horizon Legacy PEEK rod, and Dynesys Dynamic Stabilization System consisting

of a polymeric dampener and posterior tensioning cord. However, most studies

show the stiffness of these constructs to be too high to have much of an effect

[41, 43]. We speculate that the SMAH maybe a semi-rigid fixation device for two

reasons. First, the Young’s modulus of Ni-Ti SMA is smaller than titanium but

larger than cortical bone. A lower modulus may alleviate shielding and stress

concentration. Second, the results of our study showed that SMAH constructs

have a relatively higher ROM than pedicle screw and rod constructs. Therefore,

SMAH fixation is probably not as rigid as fixation with pedicle screws and rods. In

our study, we measured the ROM of the L3-4 and L5-S1 segments. The results

showed that all implants increased the ROM of the adjacent segment, and that

bilateral fixation increased the ROM to a greater extent than unilateral fixation.

This indicates that a more rigid fixation resulted in an increased ROM in the

adjacent segment. Notably, there was no significant difference in the ROM of the

adjacent segment when compared to the intact spine. However, these results

should be interpreted with caution, and the applicability of the SMAH as a semi-

rigid fixation device that may be beneficial for the prevention of ASD requires

further investigation. In particular, Sengupta et al. [18] demonstrated that a 10%

increase in the ROM of the adjacent segment in a human cadaveric lumbosacral

spine injury model implanted with a posterior dynamic stabilization device

resulted in a 220% increase in intradiscal pressure compared to the intact spine.

The relevance of such large pressure increases in the intradiscal and facet joint to

SMAH fixation warrant consideration.

There are several limitations in our study: First, the sample size was necessarily

small as we conducted our investigations using a cadaveric model. Second, our

results were only indicative of immediate stabilization. Lack of experimental

equipment limited our ability to apply axial pressure to simulate the physical load,
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and perform tests for fatigability and pull out strength. The biomechanical

properties of implants after TLIF in vivo are complex. The ability of this newly

developed SMAH to provide stabilization and achieve fusion in vivo requires

further experiments and supportive clinical data. Third, we could not make a clear

conclusion about the effect on the adjacent segment. These studies should be

extended to include measurement of intravertebral facet-joint pressure and the

use of a finite element analysis model to simulate the ROM, the intravertebral and

facet-joint, and the strain distribution of the whole unit, to enable more definitive

conclusions to be made. Fourth, because stability and resistance to failure of

SMAH implants are dependent upon the integrity of the lamina, we performed

facetectomy within 1 cm from the facet surface to ensure the lamina remained

intact and was strong enough to instrument with an SMAH. However, in clinical

practice, for the purpose of decompression, wide resection of lamina may be

needed. Under these conditions, application of an SMAH may not be the optimal

choice. Fifth, some patients have severe lumbar spinal degeneration with

thickened lamina and spinal canal stenosis, which will make SMAH implantation

difficult. Even if implantation is successful, epidural compression is possible. We

recommend that surgeons use pre-operative CT scans to guide their decision-

making, and that SMAH should be used for patients with mild osteo-degenerated

lumbar diseases that require TLIF (e.g., as in discogenic back pain). We propose

that the SMAH represents another option for spinal surgeons treating these

diseases. Sixth, we did not test the stability of the SMAH construct when the

placement of the spacer in the disc space was varied. Therefore, we plan further

studies using cadaveric experiments and Finite Element Analysis.

Conclusions

In conclusion, bilateral SMAH fixation can achieve immediate stability at L4-5

after TLIF. The newly developed SMAH is an ideal implant for lumbar fusion,

with the possibility to reduce operative time and healthcare costs and improve

patient outcomes. Further studies are warranted to identify the stress distribution

of the whole unit and whether this fixation method could achieve an acceptable

fusion rate in other segments and in vivo.
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