
����������
�������

Citation: Alemneh, S.T.; Emire, S.A.;

Jekle, M.; Paquet-Durand, O.; von

Wrochem, A.; Hitzmann, B.

Application of Two-Dimensional

Fluorescence Spectroscopy for the

On-Line Monitoring of Teff-Based

Substrate Fermentation Inoculated

with Certain Probiotic Bacteria. Foods

2022, 11, 1171. https://doi.org/

10.3390/foods11081171

Academic Editors: Jayanta

Kumar Patra, Han-Seung Shin and

Spiros Paramithiotis

Received: 28 February 2022

Accepted: 13 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Application of Two-Dimensional Fluorescence Spectroscopy for
the On-Line Monitoring of Teff-Based Substrate Fermentation
Inoculated with Certain Probiotic Bacteria
Sendeku Takele Alemneh 1 , Shimelis Admassu Emire 2 , Mario Jekle 3 , Olivier Paquet-Durand 1,
Almut von Wrochem 1 and Bernd Hitzmann 1,*

1 Department of Process Analytics and Cereal Science, Institute of Food Science and Biotechnology,
University of Hohenheim, 70599 Stuttgart, Germany; sendeku.tekele@aait.edu.et (S.T.A.);
o.paquet-durand@uni-hohenheim.de (O.P.-D.); almut.vonwrochem@uni-hohenheim.de (A.v.W.)

2 Food Engineering, Addis Ababa Institute of Technology, Addis Ababa University,
Addis Ababa 1000, Ethiopia; shimelis.admassu@aait.edu.et

3 Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim,
70599 Stuttgart, Germany; mario.jekle@uni-hohenheim.de

* Correspondence: bernd.hitzmann@uni-hohenheim.de

Abstract: There is increasing demand for cereal-based probiotic fermented beverages as an alter-
native to dairy-based products due to their limitations. However, analyzing and monitoring the
fermentation process is usually time consuming, costly, and labor intensive. This research therefore
aims to apply two-dimensional (2D)-fluorescence spectroscopy coupled with partial least-squares
regression (PLSR) and artificial neural networks (ANN) for the on-line quantitative analysis of cell
growth and concentrations of lactic acid and glucose during the fermentation of a teff-based substrate.
This substrate was inoculated with mixed strains of Lactiplantibacillus plantarum A6 (LPA6) and
Lacticaseibacillus rhamnosus GG (LCGG). The fermentation was performed under two different condi-
tions: condition 1 (7 g/100 mL substrate inoculated with 6 log cfu/mL) and condition 2 (4 g/100 mL
substrate inoculated with 6 log cfu/mL). For the prediction of LPA6 and LCGG cell growth, the
relative root mean square error of prediction (pRMSEP) was measured between 2.5 and 4.5%. The
highest pRMSEP (4.5%) was observed for the prediction of LPA6 cell growth under condition 2 using
ANN, but the lowest pRMSEP (2.5%) was observed for the prediction of LCGG cell growth under
condition 1 with ANN. A slightly more accurate prediction was found with ANN under condition 1.
However, under condition 2, a superior prediction was observed with PLSR as compared to ANN.
Moreover, for the prediction of lactic acid concentration, the observed values of pRMSEP were 7.6
and 7.7% using PLSR and ANN, respectively. The highest error rates of 13 and 14% were observed
for the prediction of glucose concentration using PLSR and ANN, respectively. Most of the predicted
values had a coefficient of determination (R2) of more than 0.85. In conclusion, a 2D-fluorescence
spectroscopy combined with PLSR and ANN can be used to accurately monitor LPA6 and LCGG
cell counts and lactic acid concentration in the fermentation process of a teff-based substrate. The
prediction of glucose concentration, however, showed a rather high error rate.

Keywords: artificial neural network; functional beverage; partial least-squares regression; probiotics;
teff-based substrate; 2D-fluorescence spectroscopy

1. Introduction

Consumer demand for probiotic fermented cereal-based beverages is increasing. This
is predominantly due to the limitations associated with dairy-based products, i.e., lactose
and milk protein sensitivity or intolerance, fat content, and consumers’ desire for foods
without animal products [1]. However, analyzing and monitoring the fermentation process
with conventional methods such as high-performance liquid chromatography is challeng-
ing, as it is time-consuming, costly, and labor-intensive [2]. Further challenges may arise
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during sterilization, calibration, and sampling [3]. The productivity of the fermentation
process and the cost of the fermented products depend mostly on the methods of monitor-
ing and on the control over the operating conditions. On-line control of the fermentation
process usually involves determination of pH and temperature. However, other key pa-
rameters of the fermentation process such as concentrations of metabolite, substrate, and
cellular density need further investigation [4]. The key fermentation process parameters are
not usually examined due to the expensive and time-consuming measurement methods [5].

Glucose was found to be the primarily consumed substrate while lactic acid was the
primary metabolic product observed in the fermentation process of teff-based substrates
inoculated with Lactiplantibacillus plantarum A6 (LPA6) and Lacticaseibacillus rhamnosus GG
(LCGG) [6]. Teff is a staple food crop in Ethiopia and Eritrea. It is gluten-free and an
attractive source of iron (363 mg/kg flour) [7]. Thus, the fermentation industry needs an
effective and efficient method to supervise the fermentation process. On-line analysis of
the key fermentation process parameters assures product quality and productivity [8].

An alternative approach for this purpose is the application of a 2D-fluorescence spec-
troscopy. It is an ideal instrument for the on-line supervision of fermentation processes.
In addition, its measurement is non-invasive and does not interfere with the fermenta-
tion medium [9]. In a 2D-fluorescence measurement, many wavelength combinations of
excitation and emission are measured. A large volume of spectral data can be evaluated
quantitatively using chemometric methods such as principal component regression (PCR)
and partial least-squares regression (PLSR) [10]. Calibrating multivariate spectral data for
quantitative spectral evaluation is becoming a standard method which allows an exam-
ination of several analytes at the same time. The PLSR and PCR are full-spectrum and
are factor analyses based on multivariate calibration methods [11]. While PLSR and PCR
are the most widely employed chemometric methods, PLSR usually requires fewer latent
variables than PCR without influencing its predictive ability. Moreover, PLSR has superior
prediction ability to PCR when there are different independent spectral components that
can join with the spectral features [12].

Another method for the evaluation of the spectral data involves the use of artificial
neural networks (ANN), which can be used to model a nonlinear correlation of the spectra
with the variables [13]. ANN models generally contain two or more layers, each having a
number of neurons. The ANN’s activation functions are used to connect the neurons of
the different layers to each other. One vital process in the utilization of ANN is training. It
serves to minimize errors between the model output and measured values. The process of
training is a continual one and consists of adjusting biases and weights at each sequence.
The training process is completed when the error rate is at its lowest [14].

As of yet, there has been no work conducted on the simultaneous measurements
of cell growth, glucose, and lactic acid in samples from a fermented teff-based substrate
inoculated with mixed strains of LPA6 and LCGG using 2D-fluorescence spectroscopy.
Therefore, this research aims to apply the potential of 2D-fluorescence spectroscopy and
mathematical models of PLSR and ANN as tools for the on-line analysis of the fermentation
process of a teff-based substrate inoculated with co-culture strains of LPA6 and LCGG.

2. Materials and Methods
2.1. Materials

Whole-grain teff flour was purchased from Teff-shop.de, Manuel Boesel, Homburger
Str.49a, 61191 Rosbach von der Höhe, Germany. Freeze-dried strains of LPA6 (LMG 18053,
BCCM, Gent, Belgium) and LCGG (LMG 18243, BCCM, Gent, Belgium) were provided
by the Department of Process Analytics and Cereal Science, Institute of Food Science and
Biotechnology, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany.

2.2. Starter Culture Preparation and Storage

Freeze-dried strains of LPA6 (LMG 18053, BCCM, Gent, Belgium) and LCGG (LMG
18243, BCCM, Gent, Belgium) were activated and placed in a refrigerator (6 ◦C) until the
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inoculation of the fermentation medium. The starter culture of LPA6 was prepared using
the method described by Bationo, Songré-Ouattara, Hemery, Hama-Ba, Parkouda, Chapron,
Le Merrer, Leconte, Sawadogo-Lingani, and Diawara [15]. The inoculum of LPA6 was
obtained with sterilized MRS (DE MAN, ROGOSA, and SHARPE) broth by incubating in
an incubator (BINDER GmbH, KB 115, Tuttlingen, Germany) for 24 h at 30 ◦C. Furthermore,
the LCGG starter culture was prepared according to the method used by Matejčeková,
Liptáková, and Valík [16]. The LCGG inoculum was collected after 24 h of incubation at
37 ◦C in sterilized MRS broth. Starter cultures were harvested by centrifugation (Mega
star 600R, Leuven, Belgium) at 3000× g, 4 ◦C for 15 min. The LPA6 and LCGG cells were
washed using a sterilized saline solution (0.9% NaCl). Finally, the supernatant was removed,
and cell pellets were mixed with a sterilized saline solution to form a cell suspension of
approximately 9 log cfu/mL. This was taken as an inoculum and was kept in a refrigerator
(6 ◦C) until utilization within 48 h.

Strains of LPA6 and LCGG were stored with a medium containing 60% MRS broth
and 40% glycerol in a deep freezer (−70 ◦C) [17].

2.3. Off-Line Measurement of Microbial Viability

The LPA6 cell count was determined by counting individual colonies on MRS agar
plates (colony-forming units—cfu) according to the method used by Alemneh, Emire, and
Hitzmann [6]. Each reported value represents the mean count of three plates containing
25–250 colonies. Plate agar was made by mixing 15 g agar into 1 L of MRS broth. Serial
ten-fold dilutions of samples were prepared using a 0.9% NaCl solution. Fifty µL drops of
diluted samples were put on MRS agar plates and incubated overnight at 30 ◦C. A similar
procedure was followed for counting LCGG cells. However, the incubation time was nearly
48 h. For counting LPA6 and LCGG cells, the method developed by Alemneh, Emire, and
Hitzmann [6] was used. Samples with co-culture strains of LPA6 and LCGG were incubated
for 48 h on MRS agar plates at 30 ◦C. After overnight incubation, LPA6 cells were counted.
Afterwards, LCGG was grown for approximately 48 h of incubation. Then, total cell counts
of both LPA6 and LCGG were recorded. Finally, the difference (total cell counts of LPA6
and LCGG—cell count of LPA6) was determined as the LCGG cell count.

2.4. Fermentation Process Conditions

Overnight cultures of LPA6 and LCGG, each with an initial cell density of 6 log cfu/mL,
were inoculated to the fermenting substrates, which were prepared from 4 and 7 g/100 mL
of whole-grain teff flour in distilled water. Two different fermentation conditions were
examined: condition 1, 7 g/100 mL substrate inoculated with 6 log cfu/mL mixed strains
of LPA6 and LCGG and condition 2, 4 g/100 mL substrate inoculated with 6 log cfu/mL
mixed strains of LPA6 and LCGG. Before fermentation, the substrates were heated in a
water bath (GFL-1083, Burgwedel, Germany) set at 85 ◦C for 15 min and then sterilized in an
autoclave (SHP Laboklav, 160-MSLV, Satuelle, Germany). Before the addition of microbes,
the sterilized substrates were cooled down in a safety cabinet (Kendro Laboratory Products
GmbH, KS 12, Hanau, Germany). Fermentations were performed without pH control for
15 h using a 2.5 L bioreactor (INFORS AG CH-4103, Bottmingen, Switzerland). The working
volume was 1 L, the stirrer speed of the bioreactor was 150 rpm, and the fermentation
temperature was 37 ◦C. Three h after the start of fermentation, samples were taken at 2 h
intervals for determining LPA6 and LCGG cell counts and analyzing the concentration of
glucose and lactic acid.

2.5. Off-Line Measurement of Glucose and Lactic Acid

Glucose and lactic acid content was determined using high-performance liquid chro-
matography (HPLC). Samples were centrifuged at 3000× g, 4 ◦C for 15 min and the su-
pernatant filtered with a 0.45 µm polypropylene membrane (VWR, Darmstadt, Germany).
After filtration, samples were analyzed by HPLC (ProStar, Variant, Walnut Creek, CA, USA),
which was equipped with a refractive index detector. Twenty µL of samples were injected



Foods 2022, 11, 1171 4 of 14

into a Rezex ROA-organic acid H+ (8%) column (Phenomenex, Aschaffenburg, Germany).
The working temperature was set at 70 ◦C, and a 5 mM H2SO4 solvent with a flow rate
of 0.6 mL/min was used. Lactic acid and glucose content was obtained using Software
GalaxieTM Chromatography (Varian, Walnut Creek, CA, USA). Duplicate measurements
were obtained for each analyte.

2.6. On-Line Measurement Using 2D-Fluorescence Spectroscopy

A BioView sensor (DELTA Lights and Optics, Venlighedsvej 4, 2970, Horsholm, Den-
mark) was used to collect 2D-fluorescence spectra. A fluorescence probe was attached to
the sterilized bioreactor over a light guide, which connected with a 25 mm standard port.
This standard port has a quartz glass window to interface with the bioreactor. Therefore,
there was no contact between the fermenting medium and the actual probe. A BioView
sensor measured several combinations of excitation (270–550) and emission (310–590). The
observed fluorescence spectrum had 120 intensity values of wavelength combinations
measured in intervals of 20 nm. Off-line measured results and the analogous fluorescence
spectra data were utilized to develop calibration models of PLSR and ANN for the predic-
tion of LPA6 and LCGG cell counts and concentrations of glucose and lactic acid. Software
Unscrambler X version 10.3 (CAMO Software AS., Oslo, Norway) and MATLAB R2019a
version 9.6 (The MathWorks Inc. 2019, Natick, MA, USA) were utilized to calibrate the
models and to test and validate their predictive capabilities.

2.7. Examination of the Model Performance

The predicted versus measured values were plotted, and the prediction quality was
estimated by calculating the root mean square error of prediction (RMSEP) and relative root
mean square error of prediction (pRMSEP), which were calculated using Equations (1) and
(2), respectively. The coefficient of determination (R2) was calculated with Equation (3).

RMSEP =

√
∑N

i=(mi − pi)
2

N
(1)

pRMSEP [%] =
RMSEPx100

max
(2)

N, number of measurements; mi, measured values; pi, predicted values; max, maxi-
mum measured value; i, running index.

R2 = 1 − RSS
TSS

(3)

RSS, residual sum of squares; TSS, total sum of squares.

2.8. Statistical Analysis

To build calibration and prediction models, Unscrambler X version 10.3 (CAMO
Software AS., Oslo, Norway) and MATLAB R2019a version 9.6 (The MathWorks Inc. 2019,
Natick, MA, USA) were utilized. Graphs were sketched with the same version of Matlab,
which was used for model calibrations.

3. Results and Discussion
3.1. Off-Line Measurement of Cell Growth, Glucose and Lactic Acid

Off-line measured results of LPA6 and LCGG cell growth and concentrations of glucose
and lactic acid are shown in Figures 1 and 2, respectively. The fermentation of the teff-
based substrate (hereinafter ‘substrate’) inoculated with mixed strains of LPA6 and LCGG
predominantly had glucose (consumed substrate) and lactic acid (produced metabolite) [6].
Under condition 1, LPA6 and LCGG growth did not decline over fermentation time. Under
condition 2, however, growth of both microbes began declining after 13 h of fermentation
(Figure 1). Under condition 1, LPA6 and LCGG growth increased from 6 log cfu/mL to
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8.49 and 8.29 log cfu/mL, respectively. Conversely, under condition 2, growth of LPA6
and LCGG decreased between 13 to 15 h fermentation from 8.24 to 8.21 log cfu/mL and
from 7.99 to 7.74 log cfu/mL, respectively. At this decreasing point of cell growth, the main
substrate glucose was not consumed entirely. Thus, the reason for declining cell growth
appears to be due to the development of an acidic environment.

Figure 1. (a) Lactiplantibacillus plantarum A6 and (b) Lacticaseibacillus rhamnosus GG growth under two
different fermentation conditions: Condition 1, 7 g/100 mL substrate inoculated with 6 log cfu/mL
mixed strains of Lactiplantibacillus plantarum A6 and Lacticaseibacillus rhamnosus GG; Condition 2,
4 g/100 mL substrate inoculated with 6 log cfu/mL mixed strains of Lactiplantibacillus plantarum A6
and Lacticaseibacillus rhamnosus GG.

Figure 2. Glucose consumption and Lactic acid production during fermentation of 7 g/100 mL
substrate inoculated with 6 log cfu/mL mixed strains of Lactiplantibacillus plantarum A6 and Lacticas-
eibacillus rhamnosus GG.

Under both fermentation conditions, LPA6 and LCGG cell growth was over 8 log cfu/mL.
However, lower LCGG cell counts (7.74 log cfu/mL) were observed under condition 2. Both
LPA6 and LCGG grew beyond the minimum level of the recommended viable probiotic of
6 log cfu/mL [18]. The minimum cell counts of probiotics must be achieved at the time of
consumption to assure the probiotic effect of the product. The concentration of glucose and
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lactic acid changed from 1442.5 to 0 mg/L and 14.5 to 1831.5 mg/L, respectively. Overall,
consumption of glucose by LPA6 and LCGG was associated with cell growth and lactic
acid production (Figures 1 and 2).

3.2. On-Line Measurement Using 2D-Fluorescence Spectroscopy

Under two different conditions after 0, 9, and 15 h fermentations, 2D-fluorescence
spectra of substrate fermentation inoculated with mixed strains of LPA6 and LCGG are
presented in Figures 3 and 4. As can be seen, all fluorescence spectra showed peaks in
the same region. High fluorescence intensities were observed in the region of excitation
(410–450 nm) and emission (510–570 nm), where riboflavin typically reaches its maximum
fluorescence [19–21]. The other peak region was visible at excitation (350–390 nm) and
emission (430–490 nm), which showed the presence of NADH [22–24]. Moreover, all
fluorescence spectra revealed peaks in the region of excitation (270–290 nm) and emission
(310–390 nm), which verified the presence of protein [19,23–25].

Figure 3. Original spectra after (a) 0 h, (b) 9 h, and (c) 15 h fermentation of 7 g/100 mL substrate
inoculated with 6 log cfu/mL mixed strains of Lactiplantibacillus plantarum A6 and Lacticaseibacillus
rhamnosus GG.

Figure 4. Original spectra after (a) 0 h, (b) 9 h, and (c) 15 h fermentation of 4 g/100 mL substrate
inoculated with 6 log cfu/mL mixed strains of Lactiplantibacillus plantarum A6 and Lacticaseibacillus
rhamnosus GG.

For a better understanding of the fluorescence spectra variations, difference spectra
were calculated by subtracting the initial spectrum from the spectra of 9 and 15 h fermenta-
tions (Figures 5 and 6). The highest peak difference was observed in the protein fluorescence
region at excitation (270–290 nm) and emission (310–390 nm) for all fluorescence spectra
in 9 h fermentation. The other highest peak differences were observed in the fluorescence
regions of riboflavin at excitation (410–450 nm) and emission (510–570 nm) and NADH for
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all fluorescence spectra in 15 h fermentation. The difference fluorescence spectra under
condition 1 had a higher intensity as compared to the difference fluorescence spectra under
condition 2. The difference and original fluorescence spectra showed peaks in the same
regions. However, different fluorescence intensities were observed. These variations in the
fluorescence intensities are due to differences in substrate concentration used under the two
different fermentation conditions. The fluorescence intensities decreased from their initial
values during the 9 h fermentation in all fluorescence regions. However, the fluorescence
intensities increased during the 15 h fermentation in the regions of riboflavin and NADH.

Figure 5. Subtracted spectra of the initial one from the original spectra after (a) 9 h and (b) 15 h
fermentation of 7 g/100 mL substrate inoculated with 6 log cfu/mL mixed strains of Lactiplantibacil-
lusplantarum A6 and Lacticaseibacillusrhamnosus GG.

Figure 6. Subtracted spectra of the initial one from the original spectra after (a) 9 h and (b) 15 h
fermentation of 4 g/100 mL substrate inoculated with mixed strains of Lactiplantibacillusplantarum A6
and Lacticaseibacillusrhamnosus GG.

The fluorescence intensities of NADH and riboflavin decreased during the exponential
growth phase of LPA6 and LCGG. Conversely, their fluorescence intensities increased in the
stationary phase of LPA6 and LCGG. This shows that riboflavin consumption is inversely
associated with cell growth, meaning that it is consumed during the logarithmic phase of
LPA6 and LCGG, but accumulated during a stationary phase. The accumulation of NADH
begins when it no longer oxidizes to form the non-fluorophore molecule (NAD+), which
results in an increase in its fluorescence intensity [3]. All fluorescence intensities decreased
throughout the fermentation time in the protein region.

LCGG does not produce riboflavin [26]. Therefore, the production of riboflavin shown
in the results can be attributed to LPA6 or the interaction effect of LPA6 and LCGG. Thakur
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and Tomar [27] reported riboflavin production ability of Lactiplantibacillus plantarum in
MRS media. Riboflavin (vitamin B2) is a water-soluble vitamin and is essential for human
health. It must be supplemented externally from food sources since it cannot be produced
in the human body [28]. Hence, it is better to use bacteria, which can produce riboflavin
rather than consume it throughout fermentation [26]. Thus, the capacity of mixed strains
of LPA6 and LCGG to produce riboflavin can, together with their probiotic properties, be
exploited for manufacturing multifunctional foods.

3.3. Prediction of Cell Growth in the Fermentation Process

The PLSR and ANN models were built using 1670 calibration samples. Off-line
measured data and the corresponding 2D-fluorescence spectra were used to develop a
model for predicting LPA6 and LCGG cell growth. Two different fermentation process
conditions were examined for collecting on-line data as well as the corresponding off-line
results. The prediction models for LPA6 and LCGG cell counts under condition 1 and
condition 2 are presented in Figures 7–10. The PLSR and ANN models were built separately
for the prediction of LPA6 and LCGG cell counts.

Figure 7. Predicted vs. measured cell growth in the fermentation of 4 g/100 mL of substrate
inoculated with mixed strains of 6 log cfu/mL Lactiplantibacillus plantarum A6 and Lacticaseibacillus
rhamnosus GG; predicted with partial least-squares regression using four principal components.
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Figure 8. Predicted vs. measured cell growth in the fermentation of 7 g/100 mL of substrate
inoculated with mixed strains of 6 log cfu/mL Lactiplantibacillus plantarum A6 and Lacticaseibacillus
rhamnosus GG; predicted with partial least-squares regression using six principal components.

Analysis of Cell Growth Using Artificial Neural Networks

Figure 9. Predicted vs. measured cell growth in the fermentation of 4 g/100 mL of substrate
inoculated with mixed strains of 6 log cfu/mL Lactiplantibacillus plantarum A6 and Lacticaseibacillus
rhamnosus GG; predicted with artificial neural networks using five hidden neurons.
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Figure 10. Predicted vs. measured cell growth in the fermentation of 7 g/100 mL of substrate
inoculated with mixed strains of 6 log cfu/mL Lactiplantibacillus plantarum A6 and Lacticaseibacillus
rhamnosus GG; predicted with artificial neural networks using five hidden neurons.

Analysis of Cell Growth Using Partial Least-Squares Regression
Models and predictions for LPA6 and LCGG cell growth under two different fermen-

tation conditions were performed using a maximum of six principal components. The
RMSEP, pRMSEP, and R2 calculated for PLSR and ANN models are shown in Table 1. Better
predictions were obtained with ANN for LCGG cell growth under condition 1. However,
the predictions with PLSR were found to be better compared to ANN under condition 2.
Predictions of principal component regression showed the highest rate of errors (data not
shown) as compared to PLSR and ANN.

Table 1. The RMSEP, pRMSEP, and R2 values for the prediction of LPA6 and LCGG cell growth using
PLSR and ANN under two different fermentation conditions.

Predicted with
PLSR

Condition 1 Condition 2

RMSEP (log cfu/mL) pRMSEP (%) R2 RMSEP (log cfu/mL) pRMSEP (%) R2

LPA6 0.31 3.7 0.88 0.22 2.7 0.92

LCGG 0.32 3.9 0.85 0.20 2.4 0.92

Predicted with
ANN RMSEP (log cfu/mL) pRMSEP (%) R2 RMSEP (log cfu/mL) pRMSEP (%) R2

LPA6 0.21 2.5 0.95 0.37 4.5 0.78

LCGG 0.20 2.5 0.94 0.29 3.6 0.83

LPA6, Lactiplantibacillus plantarum A6; LCGG, Lacticaseibacillus rhamnosus GG; RMSEP, root mean square error of
prediction; pRMSEP, relative root mean square error of prediction; R2, coefficient of determination; PLSR, partial
least-squares regression; ANN, artificial neural network; Condition 1, 7 g/100 mL substrate inoculated with
6 log cfu/mL; Condition 2, 4 g/100 mL substrate inoculated with 6 log cfu/mL.

For the prediction of LPA6 and LCGG cell growth, the observed R2 values varied
between 0.78–0.95, with the lowest R2 value being 0.78 for the prediction of LPA6 under
condition 2 using ANN. In the prediction of the PLSR model, the pRMSEP was 3.7 and
3.9%, respectively, to predict LPA6 and LCGG cell growth under condition 1. Under the
same condition, the ANN model had a pRMSEP of 2.5% to predict LPA6 cell growth and
2.5% to predict LCGG cell growth. Furthermore, the prediction of the PLSR model had
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a pRMSEP of 2.7 and 2.4% to predict LPA6 and LCGG cell growth, respectively, under
condition 2. Under similar conditions, the ANN model had a pRMSEP of 4.5% to predict
LPA6 cell growth and 3.6% to predict LCGG cell growth (Table 1). The lower pRMSEP and
higher R2 values showed that the PLSR and ANN models were important for predicting
LPA6 and LCGG cell counts in the fermentation of a teff-based substrate.

3.4. Prediction of Lactic Acid and Glucose in the Fermentation Process

The PLSR and ANN models were built using 1670 calibration samples. Lactic acid and
glucose concentrations measured in an experiment were used with their corresponding
on-line data to develop the PLSR and ANN models. To compare the PLSR and ANN
models as well as to verify their performance, RMSEP, pRMSEP, and R2 values were
calculated between the predicted and measured values (Table 2). The developed PLSR and
ANN models were then used to predict lactic acid and glucose in another fermentation
process run using 2D-fluorescence spectra. In principle, a direct measurement of glucose
concentration by using fluorescence information is not possible, as it is not a fluorescence
molecule. However, its consumption is directly related to an accumulation of fluorescence
molecules such as tryptophan. Thus, it is possible to indirectly measure glucose by using
2D-fluorescence spectroscopy [29].

Table 2. RMSEP, pRMSEP, and R2 values for the prediction of glucose and lactic acid with PLSR
and ANN during the fermentation process of 7 g/100 mL of substrate inoculated with 6 log cfu/mL
mixed strains of LPA6 and LCGG.

Analyte
PLSR ANN

RMSEP (log cfu/mL) pRMSEP (%) R2 RMSEP (log cfu/mL) pRMSEP (%) R2

Glucose 191.72 13.5 0.86 199.92 14.1 0.85
Lactic acid 98.41 7.6 0.96 100.09 7.7 0.96

LPA6, Lactiplantibacillus plantarum A6; LCGG, Lacticaseibacillus rhamnosus GG; RMSEP, root mean square error of
prediction; pRMSEP, relative root mean square error of prediction, R2, coefficient of determination; PLSR, partial
least-squares regression; ANN, artificial neural network.

Analysis of Lactic Acid and Glucose Using Partial Least-Squares Regression
Prediction models for concentrations of glucose and lactic acid were developed using

a maximum of seven principal components. The calculated results of RMSEP, pRMSEP, and
R2 for the prediction using PLSR and ANN are shown in Table 2. Glucose and lactic acid
prediction models are presented in Figures 11 and 12. There were no significant differences
observed between the prediction abilities of PLSR and ANN for glucose and lactic acid.
Prediction of glucose and lactic acid using principal component regression showed the
highest rate of errors (data not shown) as compared to PLSR and ANN. Overall, a stronger
correlation was observed between 2D-fluorescence data and experimentally determined
values of lactic acid than between 2D-fluorescence data and experimentally determined
values of glucose.
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Figure 11. Predicted vs. measured glucose and lactic acid in the fermentation of 7 g/100 mL of sub-
strate inoculated with 6 log cfu/mL mixed strains of Lactiplantibacillus plantarum A6 and Lacticaseibacil-
lus rhamnosus GG; predicted with partial least-squares regression using seven principal components.

Analysis of Glucose and Lactic Acid Using Artificial Neural Networks

Figure 12. Predicted vs. measured glucose and lactic acid in the fermentation of 7 g/100 mL
of substrate inoculated with 6 log cfu/mL mixed strains of Lactiplantibacillus plantarum A6 and
Lacticaseibacillus rhamnosus GG; predicted with artificial neural networks using one hidden neuron.

Once the models were developed, it was possible to obtain results pertaining to
cell counts, lactic acid, and glucose in minutes by using a two-dimensional fluorescence
spectroscopy. However, it took more than three days to obtain the same results by using a
plate count agar and high-performance liquid chromatography. For the analysis of lactic
acid and glucose, we used expensive instruments such as a deep freezer, centrifugation,
pump, filter, and fully equipped high-performance liquid chromatography. This form of
analysis is time-consuming and labor-intensive. To determine LPA6 and LCGG cell counts
using a plate count agar, we used several chemicals and spent a long time performing
tedious work. However, without using the instruments required for the conventional
analysis, similar results were obtained in minutes by using a two-dimensional fluorescence
spectroscopy integrated with PLSR and ANN.
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4. Conclusions

An essential vitamin (riboflavin) was accumulated in the fermentation of a teff-based
substrate inoculated with mixed strains of LPA6 and LCGG. The riboflavin production
ability of LPA6 and LCGG, together with their probiotic properties, could be exploited
for manufacturing multifunctional food products. A 2D-fluorescence spectroscope is an
ideal instrument for the rapid supervision of the fermentation process without interfering
with the fermentation medium. It provides broad information about metabolic changes
occurring during the fermentation process. This study has shown that 2D-fluorescence
spectroscopy coupled with PLSR and ANN models can be applied to accurately monitor
LPA6 and LCGG cell counts and lactic acid concentration in the fermentation of a teff-based
substrate. It might even be possible to use a simple, inexpensive fluorescence sensor using
light-emitting diodes and photodiodes.
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