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We propose a mathematical model to investigate the transmission dynamics of COVID-19.
The model incorporates both human-to-human and environment-to-human transmission
pathways, and employs different transmission rates to represent the epidemiological
characteristics at different time periods. Using this model and publicly reported data, we
perform a case study for Hamilton County, the fourth-most populous county in the state of
Tennessee and a region that could represent the typical situation of COVID-19 in the United
States (US). Our data fitting and simulation results show that the environment may play an
important role in the transmission and spread of the coronavirus. In addition, we
numerically simulate a range of epidemic scenarios and make near-term forecasts on the
development and trend of COVID-19 in Hamilton County.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus disease 2019 (COVID-19) remains an on-going global pandemic at present, leading to tens of millions of cases
reported in more than 210 countries and territories. The disease is caused by a novel coronavirus named severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). With the fast spread of the infection throughout the world and the high
morbidity and mortality rates it causes, COVID-19 has triggered unprecedented challenges in public health and the economy.
The situation is further compounded by the lack of widespread testing for COVID-19, and absence of safe vaccines and
effective treatment strategies for SARS-CoV-2 (Centers for Disease Control and Prevention; WHO; World Health
Organization).

Individuals infected by COVID-19 typically exhibit dry cough, fever, fatigue, and difficulty in breathing. Severe infections
also lead to bilateral lung infiltration (Gralinski & Menachery, 2020). Non-respiratory symptoms such as nausea, vomiting,
and diarrhea are also reported in some patients (Ellerin; Yeo, Kaushal, & Yeo, 2020; Centers for Disease Control and
Prevention). The number of infections has been rapidly increasing since first reported in December 2019. Despite a large
body of clinical, experimental and theoretical studies, our knowledge regarding the fundamental transmission mechanisms
and the epidemiological characteristics of COVID-19 remain limited at present (Cheng& Shan, 2019; Sahin et al., 2019; Wang,
2020; Yang & Wang, 2020).
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Many mathematical and computational models have been proposed to quantify the transmission and spread of COVID-19
and to forecast its epidemic development. In particular, Read et al. estimated the basic reproductive number for the COVID-19
outbreak in the early stage using an assumption of Poisson-distributed daily time increments in their data fitting. Tang et al.
(Tang et al., 2020) formulated a model incorporating the clinical progression of COVID-19, and found that intervention
strategies such as intensive contact tracing followed by quarantine and isolation can effectively reduce the transmission risk.
Imai et al., conducted computational modeling of potential epidemic trajectories in Wuhan, the first COVID-19 epicenter, and
their results indicated that control measures need to block over 60% of transmission to effectively contain the outbreak. Li
et al. (Li et al., 2020) applied a meta-population susceptible-exposed-infected-recovered (SEIR) model to study the epide-
miological characteristics in China, and their estimates showed that a significant number of infections were undocumented.
Leung et al. (Leung, Wu, Liu, & Leung, 2020) quantified the transmissibility and severity of COVID-19 and simulated the
potential consequences of relaxing restrictions which could lead to a second epidemic wave.

Almost all these models are based on the SEIR compartmental framework or its variants, with a focus on the direct,
human-to-human transmission pathway (Centers for Disease Control and Prevention; Chan et al., 2020; (Rothe et al., 2020);
Wu, Leung, & Leung, 2020). On the other hand, the role of the environment in the transmission of COVID-19 has been largely
neglected in current modeling and simulation studies (Yang & Wang, 2020; Zhong & Wang, 2020). In fact, a recent experi-
mental study found convincing evidences that SARS-CoV-2 was detectable in aerosols for up to 3 hours, on copper for up to
4 hours, on cardboard for up to 24 hours, and on plastic and stainless steel for up to 3 days (van Doremalen et al., 2020). These
findings that the virus can remain viable and infectious in aerosols and on surfaces for an extended period of time indicate a
significant risk of airborne and fomite transmission for SARS-CoV-2 from the contaminated environment. For example, when
infected individuals cough, sneeze or exhale, they release respiratory droplets that contain SARS-CoV-2. Most of these viral
particles would fall with the droplets on nearby surfaces and objects, while others may float in the air as aerosols. Susceptible
individuals could catch the coronavirus by touching the contaminated surfaces or objects and then touching their mouths,
noses or eyes, or by inhaling the pathogen-laden aerosols in the air. In this pager, wewill propose a newmathematical model
for COVID-19 that incorporates both the human-to-human (direct) and the environment-to-human (indirect) transmission
routes, with an emphasis on the role of the environment in the transmission of this disease.

Another highlight of this work is the employment of different types of transmission rates to represent the epidemiological
characteristics at different time periods. Most COVID-19 epidemic models use constant transmission rates which are fixed
throughout the time (see, e.g. (Imai et al., ; Leung et al., 2020; Li et al., 2020; Read et al., ; Wu et al., 2020),). In reality, however,
the transmission rates may change with the epidemiological status and may be impacted by the outbreak control. For
example, strong disease control measures implemented by the government such as Stay-at-Home orders, closure of schools
and non-essential businesses, quarantine and isolation, and environmental sanitation and disinfection, would effectively
reduce the transmission rates andminimize the transmission risk. Once such control policies are lifted, the transmission rates
may quickly increase leading to high incidence and prevalence. On the other hand, when the reported infection level is high,
the general public would be motivated to take voluntary action, such as wearing face masks, practicing social distancing, and
washing hands often, to reduce the contact with potential infected individuals and contaminated environment and to protect
themselves and their family members (Yang, Wang, Gao, & Wang, 2017). Consequently, realistic transmission rates may
depend on time, disease prevalence, outbreak control and human behavior, and reflecting such features could improve the
accuracy in modeling and simulating COVID-19.

As an application of our model, we study the transmission of COVID-19 in Hamilton County, the fourth-most populous
county in the US state of Tennessee. Hamilton County has a total population of 367,804 (Hamilton County Health Department)
and its county seat is Chattanooga, the fourth-largest city in Tennessee. In addition to Chattanooga, Hamilton County includes
several small cities, towns, census-designated places and unincorporated communities, which form a region that combines
both urban and rural areas. The racial makeup of the county is about 74.75% White and 25.25% other races, while on the
national level the US population consists of 73.1%White Americans and 26.9% other racial groups (Wikipedia: United States..).
As of September 18, 2020, there were 9,119 confirmed cases of COVID-19 in Hamilton County, with a cumulative case ratio of
2,478 per 100,000 (COVID-19 in Hamilton County ; Hamilton County Health Department), comparable to the ratio of 2,134 per
100,000 for the entire country of the US at the same time (Centers for Disease Control and Prevention). In these aspects,
Hamilton County can be regarded as a place that represents the typical, or “average”, situation of COVID-19 in the US. In this
study, we will fit our model to the reported data in Hamilton County to estimate key parameter values and quantify disease
transmission risks at different time periods. We will also run model simulation to make near-term predictions for the
epidemic development in this region.

2. Methods

We utilize a mathematical model based on differential equations to investigate the transmission dynamics of COVID-19.
The model divides the host population into five classes: the susceptible individuals (denoted by S), the exposed individuals
(denoted by E), the infected but non-hospitalized individuals (denoted by I), the hospitalized individuals (denoted by H), and
the recovered individuals (denoted by R). Meanwhile, the model involves a compartment that represents the concentration of
the coronavirus in the environment (denoted by V).

Individuals in the exposed class E are in the incubation period; they do not show symptoms, and have not been tested, but
they are capable of infecting others. Individuals in the infected class I have tested positive but only show minor or moderate
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symptoms; they are typically advised to self-quarantine at home and are not admitted into a hospital. Individuals in the
hospitalized class H have tested positive and are at a higher risk (e.g., the elderly and those with underlying health condi-
tions). We assume that disease induced deaths only occur in hospitalized individuals.

The following system of differential equations describes our model. Meanwhile, a flow diagram is given in Fig. 1.

dS
dt

¼ L� bEðI; tÞSE � bIðI; tÞSI � bHðI; tÞSH � bV ðI; tÞSV � mS;

dE
dt

¼ bEðI; tÞSE þ bIðI; tÞSI þ bHðI; tÞSH þ bV ðI; tÞSV � ðaþ g1 þ mÞE;

dI
dt

¼ að1� pÞE � ðqþ g2 þ mÞI;

dH
dt

¼ apE þ qI � ðwþ g3 þ mÞH;

dR
dt

¼ g1E þ g2I þ g3H � mR;

dV
dt

¼ x1E þ x2I þ x3H � sV :

(2.1)
The parameterL is the population influx rate, m is the natural death rate for the human hosts, a�1 is the incubation period,
p is the portion of exposed individuals who become severely ill and hospitalized after the incubation period, q is the rate of
infected individuals (who initially show minor or moderate symptoms) getting hospitalized due to the worsening of their
conditions, w is the disease induced death rate, s is the removal rate of the coronavirus from the environment; g1, g2 and g3
are the rates of recovery, and x1, x2 and x3 are the rates of contributing the coronavirus to the environment, from the exposed,
infected (non-hospitalized), and hospitalized individuals, respectively.

We incorporatemultiple transmission routes in this model, each associatedwith a bilinear incidence. The functions bE(I, t),
bI(I, t) and bH(I, t) represent the direct, human-to-human transmission rates between the exposed and susceptible individuals,
between the infected and susceptible individuals, and between the hospitalized and susceptible individuals, respectively, and
the function bV(I, t) represents the indirect, environment-to-human transmission rate. In reality, since hospitalized in-
dividuals are isolated and receive intensive medical care, we may assume that they have a very low level of contact with the
public (so that bH(I, t)z 0) and contribute little or no pathogen to the environment (so that x3 z 0). On the other hand, since
self-quarantine is not strictly monitored, we assume that there is still a chance that infected individuals have contact with
other people and they may also shed the coronavirus to the environment.

The values of these parameters are discussed in the Appendix, Sec. A2. Particularly, the parameters associated with the
transmission rates are estimated from data fitting.

In this study, we are concernedwith the application of this model to a typical place in the United States.We consider a time
domain of T consecutive days, divided into three distinct intervals: [0, T1], [T1, T2] and [T2, T], for some positive constants
0 < T1< T2< T. The first time interval corresponds to a periodwhen the Stay-at-Home (or, similarly, Shelter-in-Place and Safer-
at-Home) orders were active so that the disease transmission rates were kept at a minimum. The second time interval is
associated with a transition period when schools and businesses gradually re-opened and when the disease transmission
rates would steadily increase. The third time interval is regarded as a more stabilized period, following the second, transient
period, and people would have a better understanding of the disease risk and would be more rational in their behavior in
order to protect themselves and their families. Particularly, when the prevalence is high, people would be more motivated to
follow public health recommendations (such as wearing face masks, avoiding crowds, staying six feet apart, and washing
Fig. 1. A schematic representation of the model (2.1).
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hands often) to reduce the chance of contracting the disease. Hence, we assume that in the third period the disease trans-
mission rates stopped increasing monotonically but instead were shaped by the disease prevalence and human behavior.

We formulate different transmission rates in these three periods to represent their different characteristics. Per our dis-
cussion before, we assume bH(I, t) ¼ 0 throughout the time.

C Period 1: We assume

bEðI; tÞ ¼ bE0; bIðI; tÞ ¼ bI0; bV ðI; tÞ ¼ bV0 (2.2)

for 0 � t � T1, where bE0, bI0 and bV0 are all constants, representing the minimum values of the three transmission rates
because of the active Stay-at-Home order in this period. These constant transmission rates will be estimated through data
fitting.

C Period 2: We assume that the three transmission rates all increase with time t in this transient period due to the re-opening of businesses, and are
described by

bEðI; tÞ ¼ bE0 f ðtÞ; bIðI; tÞ ¼ bI0 f ðtÞ; bV ðI; tÞ ¼ bV0 f ðtÞ; (2.3)

where

f ðtÞ ¼ 1þ dðt� T1Þ

for T1 � t � T2. Each transmission rate starts from its minimum at t ¼ T1 and increases monotonically with respect to t at a
constant rate d. The parameter d will be determined through data fitting.

C Period 3: We assume that the three transmission rates would not monotonically increase any more; instead, they take the form

bEðI; tÞ ¼ bE0f ðT2ÞgðIÞ; bIðI; tÞ ¼ bI0f ðT2ÞgðIÞ; bV ðI; tÞ ¼ bV0f ðT2ÞgðIÞ; (2.4)

where f(T2) ¼ 1 þ d(T2 � T1), and

gðIÞ ¼ 1� 2
p
tan�1ðc,ðIðtÞ � IðT2ÞÞ Þ

for T2 � t � T. The function g(I) describes the change of each transmission rate with respect to the prevalence I, due to the
awareness of the infection risk by the general public and their responses to reduce the chance of contracting the pathogen.
The prevalence level at the beginning of this period, t ¼ T2, is given by I(T2) and used as a reference value in this study. At any
Fig. 2. Reported daily new cases and the 7-day moving average of new cases in Hamilton County from April 1 to June 30.
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time t, if I(t) > I(T2), then g(I) < 1 and each transmission ratewill be lower than its value at the point T2. In contrast, if I(t) < I(T2),
then g(I) > 1 and each transmission rate will be higher than its value at the point T2. The constant c is introduced to adjust the
size of the difference I(t) � I(T2), and the inverse tangent function tan�1 is introduced to map this difference to a standard
interval (�p/2, p/2). The adjustment parameter c will be determined through data fitting.
3. Results

As a case study, we apply our model to study the transmission and spread of COVID-19 in Hamilton County, located in the
southeast corner of Tennessee and centered by the City of Chattanooga, with a total population of 367,804 (Hamilton County
Health Department).

Fig. 2 displays the reported daily new cases and their 7-day moving average in Hamilton County for the months of April,
May and June in 2020. The Stay-at-Home order in Tennessee started on April 1 and ended on April 30. As shown in Fig. 2, the
number of new cases is kept at a very low level during this period, indicating a low transmission risk. Starting from April 30,
there is a general trend of rapid increase for the number of new cases which lasts for about one month. This clearly marks a
transient period with increasing transmission rates. After May 31, the increasing trend for the number of new cases dis-
continues and is replaced by an oscillatory pattern. Based on these observations, we define

C Period 1: 4/01e4/30;
C Period 2: 4/30e5/31.

In addition, we consider a relatively long time for the third period, which consists of 110 days starting from May 31; i.e.,

C Period 3: 5/31e9/18.

We then formulate different transmission rates for these three periods, as described in Section 2, and conduct data fitting
and model simulation. Other parameters involved in our model and their base values are discussed in Section A2 of the
Appendix.
3.1. Data fitting in Period 1

We first conduct the data fitting in Period 1 (from April 1 to April 30) to estimate the values of the parameters bE0, bI0 and
bV0. Using the demographic and epidemic data reported on April 1, we set the initial condition for the host population as (S(0),
E(0), I(0), H(0), R(0)) ¼ (367704, 50, 30, 20, 0) (COVID-19 in Hamilton County, ; Hamilton County Health Department). There
are currently no data published for the environmental concentration of the coronavirus. To initialize V, we have tested a range
of V(0) and then selected V(0) ¼ 100 virions/ml that yields the best fitting result.

Fig. 3 shows the numbers of cumulative confirmed cases during this period versus our fitting curve. The parameter values
and their 95% confidence intervals are presented in Table 1. According to the fitted values (see Table 1), the basic reproduction
number for this period is given by
Fig. 3. Data fitting result for the cumulative confirmed cases in Hamilton County for Period 1: 4/1e4/30. The circles (in blue) denote the reported cases and the
solid line (in red) denotes the fitting result.
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Table 1
Parameter values estimated by curve fitting in Period 1.

Parameter Value Unit 95% Confidence Interval

bE0 5.47 � 10�7 person�1day�1 (0, 4.67 � 10�6)
bI0 2.13 � 10�8 person�1day�1 (0, 4.22 � 10�6)
bV0 5.54 � 10�8 ml ,virion�1day�1 (0, 2.33 � 10�6)

C. Yang, J. Wang Infectious Disease Modelling 6 (2021) 195e211
R0 ¼ RE þRI þRV ¼ 0:587þ 0:036þ 0:245 ¼ 0:868: (3.1)
See equation (A1.3) in the Appendix for the expression of R0 (note that RH ¼ 0). The three components RE , RI and RV
represent the contributions from the three transmission routes: exposed individuals to susceptible individuals, infected
individuals to susceptible individuals, and the contaminated environment to susceptible individuals, respectively.We observe
thatRE is much higher thanRI , indicating that the exposed individuals play a larger role than that of the infected individuals
in terms of the transmission risk, since infected individuals (those who have tested positive) are generally recommended or
required to self-quarantine. Meanwhile, we observe that RV also contributes a significant portion to the total value of R0,
showing the important role played by the environment-to-human transmission route. Overall, the fact thatR0 <1 indicates a
relatively low risk of infection in Period 1, due to the active Stay-at-Home order which significantly reduces human-human
and human-environment communications and effectively weakens all the transmission routes. A mathematical result con-
cerned with this case R0 <1 is stated in Theorem A3.2 in the Appendix.

To further examine the contribution of different transmission routes to the overall disease burden, we consider three sub-
models associated with system (2.1) in Period 1 where all transmission rates are constants. In the first sub-model, we
incorporate only the exposed-to-susceptible transmission pathway, and drop all the other transmission routes. Specifically,
we modify the first two equations in system (2.1) as

dS
dt

¼ L� bE0SE � mS;

dE
dt

¼ bE0SE � ðaþ g1 þ mÞE;
(3.2)

whereas other equations in system (2.1) remain the same. Similarly, in the second sub-model, we incorporate only the

infected-to-susceptible transmission pathway, with the modified equations as

dS
dt

¼ L� bI0SI � mS;

dE
dt

¼ bI0SI � ðaþ g1 þ mÞE:
(3.3)
In the third sub-model, we incorporate only the environmental-to-susceptible transmission pathway, with the modified
equations as
Fig. 4. Simulation result for the cumulative confirmed cases in Hamilton County during 4/1e4/30 based on three single transmission routes, represented by sub-
models (3.2)e(3.4), respectively.
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Fig. 5. Data fitting result for the cumulative confirmed cases in Hamilton County for Period 2: 4/30e5/31. The circles (in blue) denote the reported cases and the
solid line (in red) denotes the fitting result.
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dS
dt

¼ L� bV0SV � mS;

dE
dt

¼ bV0SV � ðaþ g1 þ mÞE:
(3.4)
We then simulate these three sub-models separately in Period 1 and plot the cumulative cases. The numerical results are
presented in Fig. 4, where we observe that each transmission route generates an infection curve at a level lower than that
generated by the original, multi-route model (2.1). Due to the nonlinear dynamics, the numbers represented by these three
curves in Fig. 4 do not add up to the same total shown in Fig. 3. Nevertheless, it can be clearly seen that among these three
transmission routes, the exposed-to-susceptible pathway generates the highest number of infections, whereas the infected-
to-susceptible pathway produces the lowest number of infections. This is qualitatively consistent with the values of the
reproduction numbers, shown in equation (3.1).

3.2. Data fitting in Periods 2 and 3

In Period 2, with the re-opening of businesses and schools, human activity levels gradually increased, which led to
increased transmission rates, described in this work by equation (2.3). We conduct data fitting to estimate the value of the
parameter d, and Fig. 5 shows the number of cumulative confirmed cases versus our fitting curve. The parameter value and its
95% confidence intervals are presented in Table 2.

In Period 3, we consider a more steady epidemic period in the sense that the transmission rates stopped their monotonic
increase which took place in Period 2. A significant portion of the population followed the advice of wearing face masks and
continued the practice of social distancing and personal hygiene. When disease prevalence gets higher, more people would
tend to follow such disease prevention measures which would lead to decreased transmission rates. Hence, the transmission
rates were shaped by the interaction between the disease prevalence and human behavior and remained as variables during
Period 3, described in this work by equation (2.4).

We conduct data fitting to estimate the value of the parameter c, and Fig. 6 shows the number of cumulative confirmed
cases versus our fitting curve. The parameter value and its 95% confidence intervals are presented in Table 2. Using equation
(A1.3) in the Appendix and the fitted value of c (see Table 2), the basic reproduction number for Period 3 can be evaluated by

R0 ¼ RE þRI þRV ¼ 1:212þ 0:074þ 0:505 ¼ 1:791: (3.5)
Note also that RH ¼ 0. Compared to the reproduction numbers in Period 1, given in equation (3.1), we see a similar
pattern: the exposed-to-susceptible and infected-to-susceptible transmission routes make the highest and lowest contri-
butions, respectively, and the environment-to-human transmission pathway plays an important role, toward shaping the
overall disease risk. The difference, however, is that all the values of RE ,RI andRV are significantly increased, leading to the
totalR0 >1 in Period 3 and indicating the persistence of the disease. A mathematical description of this result is provided by
Theorem A3.2 in the Appendix.
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Table 2
Parameter values estimated by curve fitting in Periods 2 and 3.

Parameter Value Unit 95% Confidence Interval

d (Period 2) 3.76 � 10�2 day�1 (3.70 � 10�2, 3.83 � 10�2)
c (Period 3) 4.70 � 10�3 person�1 (4.36 � 10�3, 5.05 � 10�3)

Fig. 6. Data fitting result for the cumulative confirmed cases in Hamilton County for Period 3: 5/31e9/18. The circles (in blue) denote the reported cases and the
solid line (in red) denotes the fitting result.

Table 3
Parameter values estimated by curve fitting in the entire time domain.

Parameter Value Unit 95% Confidence Interval

bE0 7.38 � 10�7 person�1day�1 (6.35 � 10�7, 8.41 � 10�7)
bI0 5.61 � 10�10 person�1day�1 (0, 6.68 � 10�8)
bV0 7.38 � 10�8 ml ,virion�1day�1 (6.70 � 10�8, 8.02 � 10�8)

Fig. 7. Data fitting result for the cumulative confirmed cases in Hamilton County for the entire time domain (4/1e9/18) based on uniform, constant transmission
rates. The circles (in blue) denote the reported cases and the solid line (in red) denotes the fitting result.

C. Yang, J. Wang Infectious Disease Modelling 6 (2021) 195e211
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Fig. 8. Comparison between the reported number of hospitalized individuals and the numerical simulation result. The circles represent the reported cases and
the solid line represents the simulation result.

Fig. 9. Simulation results for the numbers of the exposed, infected and hospitalized individuals from 10/1 to 11/30, with different values of the hospitalization
rate p due to severe infections.

C. Yang, J. Wang Infectious Disease Modelling 6 (2021) 195e211
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Our numerical study and data fitting involve three time periods employing different representations of the transmission
rates. For comparison, we have also conducted data fitting for the model (2.1) using uniform, constant transmission rates
throughout all the three periods. The values of the parameters (i.e., the constant transmission rates bE0, bI0 and bV0) estimated
from the fitting are provided in Table 3. Meanwhile, Fig. 7 shows the fitting result for the cumulative cases.

To measure and compare the goodness-of-fit, we calculate the normalized root-mean-square error (NRMSE) for each
approach. The NRMSE is generally defined as follows:

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1ðyi � xiÞ2
q

Pn
i¼1xi

;

where xi (1 � i � n) are reported data, yi (1 � i � n) are computed data, and n is the number of data points used. For the entire
duration from 4/1 to 9/18, We found that the NRMSE is 0.12 based on our approach of using different, time-dependent
transmission rates on the three time periods, and the NRMSE is 0.22 by using uniform, constant transmission rates for all
the three periods. This is a demonstration that our proposed approach has a better performance in fitting the data than that
based on the standard practice of using constant transmission rates.

One of the major concerns of the health administrations in almost every place is whether the hospital capacity can meet
the demands of COVID-19 patients. A mathematical model can provide useful insight in simulating and predicting hospital
needs. Based on our model (2.1) and data fitting results for Hamilton County, we have also conducted numerical simulation to
the number of hospitalized individuals, represented by H in our model, and compared with the reported hospitalized cases
from April 1 to September 18. Fig. 8 displays the result.
Fig. 10. Simulation results for the numbers of the exposed, infected and hospitalized individuals from 10/1 to 11/30, with different values of the hospitalization
rate q due to minor or moderate infections.
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Fig. 11. Simulation results for the numbers of the exposed, infected and hospitalized individuals from 10/1 to 11/30, with different lengths of the average hospital
stay represented by 1/g3.

C. Yang, J. Wang Infectious Disease Modelling 6 (2021) 195e211
3.3. Simulation results with varied parameters

Using the parameter values estimated through data fitting, we can make simulation and prediction for the COVID-19
epidemic development in Hamilton County for the near future by running the model (2.1). Meanwhile, we have also
considered the variation of several important model parameters. The values of the model parameters could be impacted by a
number of factors, including the change of environmental conditions (such as temperature and rainfall), change of the
economic situation and health care standards in the region, evolution of the immunity level in the host population, mutation
of the viral strains, and availability of new therapeutic treatment. Though, many of such changes will probably only happen in
the long term.

Fig. 9 shows the simulation results on the evolution of the numbers of the exposed, infected and hospitalized individuals
from October 1 to November 30, with different hospitalization rate p due to severe infections. The base value is p ¼ 0.1 (i.e.,
10%) in our model. This value, however, possibly varies with time. In Fig. 9 we present simulation results with 4 different
values of the hospitalization rate related to severe infections: p ¼ 0.05, 0.1, 0.2 and 0.3, while other parameters remain fixed.
As can be naturally expected, a higher value of p leads to a larger number of hospitalized individuals. Though, the increase of
hospitalized cases appears gradual and smooth, and the simulation does not show any surge of hospitalized COVID-19 pa-
tients during this two-month period. On the other hand, the impact of the variation in p on the numbers of exposed and
infected individuals seems to be minor during this period.
205
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cubation period represented by 1/a.
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Fig. 10 shows our simulation results for the exposed, infected and hospitalized populations from October 1 to November
30, when the hospitalization rate q related to minor or moderate infections varies. We have assumed that among individuals
with non-severe infections (who are classified into the I class in our model), a small portion may be later admitted into a
hospital for reasons such as an exacerbation of health conditions. The base value is q¼ 0.01 in our model. In Fig. 10 we explore
the possible scenarios with 4 different values for this parameter: q ¼ 0.01, 0.05, 0.1 and 0.2, while other parameters remain
fixed. We observe that the value of q seems to have a more significant impact than that of p on the hospitalized cases. In
particular, when q ¼ 0.1 and q ¼ 0.2, the number of hospitalized individuals rises rapidly to 500 and 1,000, respectively.
Meanwhile, with a higher value of q, the level of I decreases accordingly, since more individuals move from the infected class I
to the hospitalized class H.

Fig. 11 illustrates the impact of the length of hospital stays in this two-month period. The parameter g3 in our model
represents the reciprocal of the average hospital duration, and its base value is g3 ¼ 1/7. We simulate the evolution of the
exposed, infected and hospitalized populations in Fig. 11 at 4 different values: g3 ¼ 0.05, 0.1, 1/7 and 0.2, with other pa-
rameters fixed at their base values. A smaller value of g3 corresponds to a longer hospital stay in average, which leads to a
higher number of hospitalized patients at a time. In particular, we observe that the hospitalized cases gradually increase to
200 when g3 ¼ 0.05, whereas the numbers remain below 100 when g3 ¼ 1/7 and 1/5.

In addition, we have also considered the impact of the incubation period on the epidemic development. The parameter a in
our model represents the reciprocal of the average incubation length, and its base value is a ¼ 1/7. Fig. 12 shows the
simulation results with 4 different values: a ¼ 1/3, 1/5, 1/7 and 1/10, while other parameters are fixed. We observe that the
206
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variation of a changes the hospitalized number H very little, however it has a significant impact on the infected number I. A
larger value of a corresponds to a shorter incubation period, which then leads to a higher level of infected cases I at a time. In
particular, when a ¼ 1/3, the infection level could reach as high as 1,100, compared to 800 at the base value a ¼ 1/7.

4. Discussion

We have presented a new mathematical model to investigate the transmission dynamics of COVID-19. The model in-
corporates multiple transmission routes that include both human-to-human and environment-to-human pathways. Our
modeling study is conducted by dividing the time domain into three distinct periods: the first period with an active Stay-at-
Home order, the second period with a transient increase of disease incidence and prevalence, and the third period with a
more stabilized epidemic development. We then formulate different types of transmission rates to represent the charac-
teristic of these three different periods: constant transmission rates that reflect the minimum incidence in Period 1, variable
transmission rates that increase monotonically with time in Period 2, and variable transmission rates that are shaped by the
disease prevalence and human behavior in Period 3.

As a case study, we have applied our model to Hamilton County in the US state of Tennessee. Results show that our data
fitting approach based on different transmission rates in different time periods has a better performance than that based on
the standard approach of using uniform, constant transmission rates throughout the entire time domain. Results also indicate
that the environmentmay play an important role in the transmission and spread of COVID-19. In addition, we have conducted
numerical simulation to make near-term predictions for the epidemic development in Hamilton County, with the variation of
several important model parameters that could represent a range of epidemic scenarios.

Our simulation results show that under most of these parameter settings, there would be no surge on the numbers of the
infected and hospitalized individuals, indicating that the second wave of COVID-19 is not likely to take place in Hamilton
County in the short term (until November 30). An exception may occur if the hospitalization rate related to minor/moderate
disease symptoms becomes very large, for reasons such as a mutation of the coronavirus with a significantly different
infection mechanism. This could cause the number of hospitalized patients to rapidly increase to a level as high as 1,000
(shown in Fig. 10) which would well exceed the hospital capacity in Hamilton County (COVID-19 in Hamilton County, ;
Hamilton County Health Department), though the chance for this to happen is considered low. Another scenario which may
largely impact the epidemic development in this region is a significant reduction of the length of the incubation period.When
the average incubation period becomes as short as 3 days, the number of infected individuals could rise to a peak of 1,100 (see
Fig. 12), in contrast to a level of 800 under other parameter settings. This may also be caused, though with a low probability, a
mutation of the viral strains.

There are, however, several limitations in this study. Ourmodel has not considered the impact of the age distribution of the
host population, whereas COVID-19 infections exhibit significant differences in risk factors, disease severity and mortality
rates among different age groups (with the elderly being the most vulnerable) (Centers for Disease Control and Prevention;
World Health Organization). The model can be extended to explicitly incorporate the age structure of the hosts, with age-
dependent parameters such as the transmission rates, hospitalization rates, and incubation and recovery periods. Mean-
while, our model application has not considered the long-term evolution of COVID-19 in Hamilton County, and the simulation
results may not reflect the situation in the distant future as the epidemic and pandemic characteristics might undergo sig-
nificant changes in the long run. In addition, the quality of our data fittingmay be impacted by the fact that there are currently
no published data on the environmental concentration and distribution of the coronavirus.We hope to be able to improve this
modeling study when such data are available.
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Appendix
A1. Basic reproduction number

In the first and third time periods, the model (2.1) is an autonomous dynamical system and the transmission rates are
either constants (including 0), or functions of I only. They can be generally represented as bE(I, t) ¼ bE(I), bI(I, t) ¼ bI(I), bH(I,
t)¼ bH(I), and bV(I, t)¼ bV(I), for 0� t� T1 or T2� t� T. For such an autonomous system, the basic reproduction number can be
computed using the standard next-generation matrix technique (van den Driessche & Watmough, 2002).
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Apparently, system (2.1) has a unique disease-free equilibrium (DFE) at

X0 ¼ ðS0; E0; I0;H0;R0;V0Þ ¼
�L
m
;0;0;0; 0;0

�
(A1.1)
We treat E, I,H and V as the infection components in ourmodel, thus the new infectionmatrix F and the transitionmatrix V
are given by

F ¼

2
664
bEð0ÞS0 bIð0ÞS0 bHð0ÞS0 bV ð0ÞS0

0 0 0 0
0 0 0 0
0 0 0 0

3
775; V ¼

2
664

u1 0 0 0
�að1� pÞ u2 0 0

�ap �q u3 0
�x1 �x2 �x3 s

3
775; (A1.2)

where u1 ¼ a þ g1 þ m, u2 ¼ q þ g2 þ m, and u3 ¼ wþ g3 þ m. The basic reproduction number of model (2.1) is then defined as
the spectral radius of the next generation matrix FV�1; i.e.,

R0 ¼ rðFV�1Þ ¼ RE þRI þRH þRV ; (A1.3)

where

RE ¼ bEð0ÞS0
u1

;

RI ¼
að1� pÞbIð0ÞS0

u1u2
;

RH ¼ abHð0ÞS0
u1u3

�
pþ qð1� pÞ

u2

�
;

RV ¼ bV ð0ÞS0
su1

�
x1 þ

x2að1� pÞ
u2

þ x3a

u3

�
pþ qð1� pÞ

u2

��
;

which provides a measurement for the disease risk during Period 1 and Period 3. The first three terms RE , RI and RH
characterize the contribution of the three human-to-human transmission routes originated from the exposed, infected and
hospitalized individuals, respectively, and the fourth termRV characterize the contribution from the environment-to-human
transmission route.

A2. Parameter values

We obtain the values of the model parameters from the literature and through data fitting. The incubation period of the
infection ranges between 2 and 14 days, with a mean of 5e7 days (Spencer et al.,); we take the base value of a�1 ¼ 7 days in
our model. Recovery from COVID-19 has a wide variation (1.5e30 days) among different patients (Spencer et al.,; Centers for
Disease Control and Prevention; World Health Organization; WHO), depending on their severity, age and overall health. In
our model, disease recovery occurs in exposed, infected and hospitalized individuals. Those recover directly from the exposed
state typically exhibit no symptoms and have a fast recovery; we set their average recovery period as 5 days in our model,
which leads to g1 ¼ 1/5 per day. The majority of the infected individuals, with minor or moderate symptoms, may recover
without going to a hospital; we set their average recovery period as 14 days, which leads to g1¼1/14 per day. The hospitalized
individuals, though typically with more severe conditions, receive intensive medical treatment which may help them to
recover faster than those who are not admitted into a hospital; we set their average recovery period as 7 days, which leads to
g3 ¼ 1/7 per day. Members of the coronavirus family can survive in the environment from a few hours to several days (Geller,
Varbanov, & Duval, 2012; (Kampf et al., 2020); van Doremalen et al., 2020) and we take the value of 2 days, which results in a
virus removal rate s ¼ 1/2 per day. We assume that the population migration rates into and out of the region are the same so
that we may express the influx rate of susceptible individuals as L ¼ mN, where N is the size of the total population in the
region. Since the time period in our study is relatively short, we also assume that the natural birth and death rates are both
equal to m. We take the values of virus shedding rates for exposed and infected individuals from (Yang & Wang, 2020). Since
hospitalized individuals are strictly isolated, we assume that the virus shedding rate from the hospitalized individuals to the
environment is zero; i.e., x3 ¼ 0. Among individuals who have tested positive, the portion of severe infections (which would
lead to hospital admission) ranges from 5% to 20% (WHO), and we take the base value of p¼ 10% in our model. Meanwhile, we
assume that among those infected individuals with minor or moderate symptoms, a very small portion q would require
hospital care at some point and we take the base value of q ¼ 0.01 in this study. Other parameter values, especially those
related to the transmission rates, are determined through model fitting based on the reported data in Hamilton County
(COVID-19 in Hamilton County,).
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Table A1
Model parameters and their base values (p ¼ person, d ¼ day)
Parameter
 Description
209
Value
 Source
N
 Population size in Hamilton County
 367804 p
 (Data USA, )

m
 Natural birth and death rate
 2.74 � 10�5/d
 (Hamilton County Health Department)

a
 Reciprocal of the incubation period
 1/7/d
 Spencer et al.

w
 Disease-induced death rate
 0.01/d
 World Health Organization,

s
 Environmental removal rate of virus
 0.5/d
 van Doremalen et al. (2020)

g1
 Recovery rate of exposed individuals
 1/5/d
 WHO,

g2
 Recovery rate of infected individuals
 1/14/d
 WHO,

g3
 Recovery rate of hospitalized individuals
 1/7/d
 Spencer et al.

x1
 Virus shedding rate by exposed individuals
 2.3/ml/p/d
 Yang and Wang (2020)

x2
 Virus shedding rate by infected individuals
 1.15/ml/p/d
 Yang and Wang (2020)

x3
 Virus shedding rate by hospitalized individuals
 0
 Assumed

p
 Rate of hospitalization due to severe infections
 10%
 WHO,

q
 Rate of hospitalization due to minor infections
 0.01/d
 Assumed

bE
 Transmission rate between classes S and E
 fitting by data
 e
bI
 Transmission rate between classes S and I
 fitting by data
 e
bV
 Transmission rate between classes S and V
 fitting by data
 e
bH
 Transmission rate between classes S and H
 0
 Assumed
A3. Equilibrium analysis

When the model (2.1) is an autonomous system (in Period 1 and Period 3), we are able to conduct a detailed equilibrium
analysis to investigate its main dynamical properties. Let (S, E, I, H, R, V) be an equilibrium of system (2.1). By solving the
following system

8>>>>>><
>>>>>>:

L� bEðIÞSE � bIðIÞSI � bHðIÞSH � bV ðIÞSV � mS ¼ 0;
bEðIÞSE þ bIðIÞSI þ bHðIÞSH þ bV ðIÞSV � ðaþ g1 þ mÞE ¼ 0;

að1� pÞE � ðqþ g2 þ mÞI ¼ 0;
apE þ qI � ðwþ g3 þ mÞH ¼ 0;
g1E þ g2I þ g3H � mR ¼ 0;
x1E þ x2I þ x3H � sV ¼ 0;

(A3.1)

one can verify that there is a unique positive endemic equilibrium (EE)
X* ¼ ðS*; E*; I*;H*;R*;V*Þ
if and only if R0 >1, where S* ¼ S0R0

, E* ¼ L�mS*
u1

; I* ¼ að1�pÞE*
u2

, H* ¼ apE*þqI*
u3

, and V* ¼ x1E*þx2I*
s . Thus, we have
Theorem A3.1. System (2.1) has at most two equilibria, the DFE and EE.

(1) If R0 � 1, the DEF X0 is the only equilibrium for the model (2.1).
(2) If R0 >1, the model (2.1) admits two equilibria, the DEF X0 and the EE X*.

In what follows, we perform a study on the global stability of the DFE. By a simple comparison principle, we can assume
that 0 � S þ E þ I þ H þ R � S0, 0 � V � xS0

s , where x ¼ max{x1, x2, x3} and the biologically feasible domain is given by

U ¼
��

S; E; I;H;R;VÞ2R5
þ : Sþ E þ I þ H þ R � S0; 0 � V � xS0

s

�

Theorem A3.2. The following statements hold for the model (2.1).

(1) If R0 � 1, the DFE of system (2.1) is globally asymptotically stable in U.
(2) IfR0 >1, the DFE of system (2.1) is unstable and there exists a unique endemic equilibrium. Moreover, the disease is uniformly persistent in the interior of U,
denoted by U

̊
; namely, lim inf

t/∞
ðEðtÞ; IðtÞ;HðtÞ;VðtÞÞ> ðe; e; e; eÞ for some e > 0.

Proof. Let X ¼ (E,I,H,V)T. One can verify that

dX
dt

� ðF �VÞX;
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where the matrices F and V are given in equation (A1.2). By some algebraic manipulation, we let u ¼ (bE, bI, bH, bV). It then
follows from the factR0 ¼ rðFV�1Þ ¼ rðV�1FÞ and direct calculation that u is a left eigenvector associatedwith the eigenvalue
R0 of the matrix Ve1F; i.e., uV�1F ¼ R0u. Consider a Lyapunov function

L0 ¼ uV�1X:
Differentiating L along the solutions of (2.1), we have

dL0

dt
¼ uV�1dX

dt
� uV�1ðF �VÞX ¼ uðR0 �1ÞX: (A3.2)

dL0
If R0 <1, the equality dt ¼ 0 implies that uX ¼ 0. This leads to E ¼ I ¼ H ¼ V ¼ 0 by noting that all components of u are
positive. Hence, whenR0 <1, equations of (A3.1) yield S¼ S0, and E¼ I¼ H¼ R¼ V¼ 0. Thus, the invariant set onwhich dL0

dt ¼
0 contains only the point X0.

If R0 ¼ 1, then the equality dL0
dt ¼ 0 implies that

�
bES
S0

þ u1RI

S0
þ u1RH

S0
þ u1RV

S0
� u1

S0

�
E þ

�
S
S0

� 1
��

bI IþbHHþbVVÞ ¼ 0:

S
Obviously, S0 � 1 � 0 and

bES
S0

þ u1RI

S0
þ u1RH

S0
þ u1RV

S0
� u1

S0
� u1

S0
ðR0 �1Þ ¼ 0:
Hence, we have either E ¼ I ¼ H¼ V¼ 0, or S¼ S0. As analyzed before, each case would indicate that the DEF X0 is the only
invariant set on fðS;E; I;H;R;VÞ2U : dL0

dt ¼ 0g.
Therefore, whenR0 <1 orR0 ¼ 1, the largest invariant set onwhich dL0

dt ¼ 0 consists of the singleton X0¼ (S0, 0, 0, 0, 0). By
LaSalle’s Invariance Principle (LaSalle, 1976), the DFE is globally asymptotically stable in U if R0 � 1.

In contrast, ifR0 >1, then it follows from the continuity of vector fields that dL0
dt >0 in a neighborhood of the DFE inU

̊
. Thus

the DFE is unstable by the Lyapunov stability theory. ,

Theorem A3.2 shows that the disease will be eliminated if R0 � 1, whereas the infection will persist if R0 >1. The results
underscore the importance of reducingR0 below unity in order to contain and eventually eradicate the disease. The condition
R0 � 1 could be achieved through effective public health policies and outbreak intervention strategies, and through the
control of both the direct and indirect transmission routes.

References

Centers for Disease Control and Prevention: Coronavirus (COVID-19). Available at: https://www.cdc.gov/coronavirus/2019-ncov.
Chan, J. F.-W., Yuan, S., Kok, K.-H., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person

transmission: A study of a family cluster. Lancet, 395, 514e523.
Cheng, Z. J., & Shan, J. (2019). Novel coronavirus: Where we are and what we know. Infection, 48, 155e163, 2020.
COVID-19 in Hamilton County, TN. Available at: https://sites.google.com/view/hamiltoncounty-tn-covid19.
Data USA: Chattanooga, TN. Available at: https://datausa.io/profile/geo/chattanooga-tn/.
van Doremalen, N., Bushmaker, T., Morris, D. H., et al. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England

Journal of Medicine, 382, 1564e1567.
van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-

mission. Mathematical Biosciences, 180, 29e48.
Ellerin, T. (January 2020). The new coronavirus: What we do - and don’t - know. Harvard Health Blog, 25. Available at: https://www.health.harvard.edu/blog/

the-new-coronavirus-what-we-do-and-dont-know-2020012518747.
Geller, C., Varbanov, M., & Duval, R. E. (2012). Human coronaviruses: Insights into environmental resistance and its influence on the development of new

antiseptic strategies. Viruses, 4(11), 3044e3068.
Gralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses, 12(2), 135.
Hamilton County Health Department. Available at: http://health.hamiltontn.org.
N. Imai, A. Cori, I. Dorigatti, M. Baguelin, C.A. Donnelly, S. Riley, et al, Report 3: Transmissibility of 2019-nCoV, published online January 25, 2020. Available

at: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news–wuhan-coronavirus/.
Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. Journal

of Hospital Infection, 104(3), 246e251.
LaSalle, J. P. (1976). The stability of dynamical systems, regional conference series in applied mathematics. Philadelphia: SIAM.
Leung, K., Wu, J. T., Liu, D., & Leung, G. M. (2020). First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and

second-wave scenario planning: A modelling impact assessment. Lancet, 395, 1382e1393.
Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., et al. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus

(SARS-CoV2). Science, 368, 489e493.
J.M. Read, J.R.E. Bridgen, D.A.T. Cummings, A. Ho and C.P. Jewell, Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and

epidemic predictions, available at: medRxiv. DOI: https://doi.org/10.1101/2020.01.23.20018549.
Rothe, C., Schunk, M., Sothmann, P., et al. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of

Medicine, 382, 970e971.
Sahin, A., Erdogan, A., Agaoglu, P. M., Dineri, Y., Cakirci, A., Senel, M., et al. (2019). Novel coronavirus (COVID-19) outbreak: A review of the current literature.

Eurasian Journal of Medicine and Oncology, 4(1), 1e7, 2020.
210

https://www.cdc.gov/coronavirus/2019-ncov
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref2
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref2
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref2
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref3
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref3
https://sites.google.com/view/hamiltoncounty-tn-covid19
https://datausa.io/profile/geo/chattanooga-tn/
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref6
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref6
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref6
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref7
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref7
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref7
https://www.health.harvard.edu/blog/the-new-coronavirus-what-we-do-and-dont-know-2020012518747
https://www.health.harvard.edu/blog/the-new-coronavirus-what-we-do-and-dont-know-2020012518747
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref10
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref10
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref10
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref11
http://health.hamiltontn.org
https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref14
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref14
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref14
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref15
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref16
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref16
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref16
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref17
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref17
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref17
https://doi.org/10.1101/2020.01.23.20018549
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref20
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref20
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref20
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref21
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref21
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref21


C. Yang, J. Wang Infectious Disease Modelling 6 (2021) 195e211
J.A. Spencer, D.P. Shutt, S.K. Moser, H. Clegg, H.J. Wearing, H. Mukundan, and C.A. Manore, Epidemiological parameter review and comparative dynamics of
influenza, respiratory syncytial virus, rhinovirus, human coronavirus, and adenovirus. DOI: https://doi.org/10.1101/2020.02.04.20020404.

Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., et al. (2020). Estimation of the transmission risk of 2019-nCoV and its implication for public health
interventions. Journal of Clinical Medicine, 9(2), 462.

Wang, J. (2020). Mathematical models for COVID-19: Applications, limitations, and potentials. Journal of Public Health and Emergency, 4(9).
WHO Coronavirus disease (COVID-2019) situation reports. (Available at).
Wikipedia: United States. Available at: https://en.wikipedia.org/wiki/United_States.
World Health Organization: Coronavirus disease (COVID-19) pandemic. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
Wu, J.-T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak orig-

inating in Wuhan, China: A modelling study. Lancet, 395, 689e697.
Yang, C., & Wang, J. (2020). A mathematical model for the novel coronavirus epidemic in Wuhan, China. Mathematical Biosciences and Engineering, 17(3),

2708e2724.
Yang, C., Wang, X., Gao, D., & Wang, J. (2017). Impact of awareness programs on cholera dynamics: Two modeling approaches. Bulletin of Mathematical

Biology, 79(9), 2109e2131.
Yeo, C., Kaushal, S., & Yeo, D. (2020). Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible? The Lancet Gastroenterology

and Hepatology, 5(4), 335e337.
Zhong, H., & Wang, W. (2020). Mathematical analysis for COVID-19 resurgence in the contaminated environment. Mathematical Biosciences and Engineering,

17(6), 6909e6927.
211

https://doi.org/10.1101/2020.02.04.20020404
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref23
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref23
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref25
https://en.wikipedia.org/wiki/United_States
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref29
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref29
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref29
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref30
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref30
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref30
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref31
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref31
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref31
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref32
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref32
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref32
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref33
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref33
http://refhub.elsevier.com/S2468-0427(20)30110-X/sref33

	Modeling the transmission of COVID-19 in the US – A case study
	1. Introduction
	2. Methods
	3. Results
	3.1. Data fitting in Period 1
	3.2. Data fitting in Periods 2 and 3
	3.3. Simulation results with varied parameters

	4. Discussion
	Declaration of competing interest
	Acknowledgments
	A1. Basic reproduction number
	A2. Parameter values
	A3. Equilibrium analysis

	References


