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Abstract

Motivation: Processing of transcripts at the 30-end involves cleavage at a polyadenylation site fol-

lowed by the addition of a poly(A)-tail. By selecting which site is cleaved, the process of alternative

polyadenylation enables genes to produce transcript isoforms with different 30-ends. To facilitate

the identification and treatment of disease-causing mutations that affect polyadenylation and to

understand the sequence determinants underlying this regulatory process, a computational model

that can accurately predict polyadenylation patterns from genomic features is desirable.

Results: Previous works have focused on identifying candidate polyadenylation sites and classify-

ing tissue-specific sites. By training on how multiple sites in genes are competitively selected for

polyadenylation from 30-end sequencing data, we developed a deep learning model that can

predict the tissue-specific strength of a polyadenylation site in the 30 untranslated region of the

human genome given only its genomic sequence. We demonstrate the model’s broad utility on

multiple tasks, without any application-specific training. The model can be used to predict which

polyadenylation site is more likely to be selected in genes with multiple sites. It can be used to scan

the 30 untranslated region to find candidate polyadenylation sites. It can be used to classify the

pathogenicity of variants near annotated polyadenylation sites in ClinVar. It can also be used to an-

ticipate the effect of antisense oligonucleotide experiments to redirect polyadenylation. We provide

analysis on how different features affect the model’s predictive performance and a method to iden-

tify sensitive regions of the genome at the single-based resolution that can affect polyadenylation

regulation.

Contact: frey@psi.toronto.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Polyadenylation is a pervasive mechanism responsible for regulating

mRNA function, stability, localization and translation efficiency. As

much as 70% of human genes are subject to alternative polyadenyla-

tion (APA) and wide-spread mechanisms have been found which in-

fluence its regulation (Elkon et al., 2013). By selecting which

polyadenylation site (PAS) is cleaved, different transcript isoforms

that vary either in their coding sequences or in their 30 untranslated

region (30-UTR) can be produced. Transcripts differentially cleaved

can influence how they are regulated. For example, longer variants

can harbor additional destabilization elements that alter a

transcript’s stability (Shaw and Kamen, 1986), and shortened var-

iants can escape regulation from microRNAs, which have been

observed in various cancers (Lin et al., 2012; Di Giammartino et al.,

2011). Furthermore, APA can be tissue-dependent, so a single gene

can generate different transcripts, for instance, based on the tissue in

which it is expressed (Tian and Manley, 2017). One mechanism of

APA regulation occurs at the level of the sequences of the transcript.

The presence or absence of certain regulatory elements can influence

which PAS is selected. PAS selection is also influenced by a site’s

position relative to other sites. A computational model that can ac-

curately predict how polyadenylation is affected by genomic features

VC The Author(s) 2018. Published by Oxford University Press. 2889

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(17), 2018, 2889–2898

doi: 10.1093/bioinformatics/bty211

Advance Access Publication Date: 10 April 2018

Original Paper

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty211#supplementary-data
Deleted Text: 2
Deleted Text: ,
Deleted Text: '
Deleted Text: &hx2019;
Deleted Text: 6
https://academic.oup.com/


as well as cellular context is highly desirable to understand this

widespread phenomenon. Moreover, several inherited diseases have

been linked to errors in 30-end processing (Danckwardt et al., 2008).

Such model would enable the exploration of the effects of genetic

variations on polyadenylation and their implications for disease.

Here, we present the polyadenylation code, a computational

model that can predict alternative polyadenylation patterns from

transcript sequences. While there have been previous works in classi-

fying whether a stretch of sequence contains a PAS (Akhtar et al.,

2010; Chang et al., 2011; Cheng et al., 2006; Ho et al., 2013;

Kalkatawi et al., 2012; Xie et al., 2013), or characterizing whether a

PAS is tissue-specific (Hafez et al., 2013; Weng et al., 2016), many

of them are aimed at improving gene annotations and understanding

which features are involved in APA regulation, and do not address

the question of predicting how APA sites are variably selected. Here,

we tackle this question by developing a model that can predict a

score, which we refer to as PAS strength (Shi, 2012), that describes

the efficiency in which a PAS is recognized by 30-end processing ma-

chinery for cleavage and polyadenylation. The ability to predict PAS

strength enables this model to generalize to multiple prediction

tasks, even though it is not explicitly trained for them. For example,

the model can be applied to a gene with multiple PAS to determine

the relative transcript isoforms that would be produced, in a tissue-

specific manner. The model can predict the consequence of nucleo-

tide substitutions on PAS strength, which can be used to prioritize

genetic variants that affect polyadenylation. It can be used to assess

the effects of anti-sense oligonucleotides to alter transcript abun-

dance. It can also scan the 30-UTR of the human genome to find po-

tential PAS. We demonstrate examples of these applications in this

work, and provide analysis on how different features affect the pre-

dictions of the model.

2 Materials and methods

2.1 Inferring the strength of a polyadenylation site
The goal of this work is to infer a score that describes the strength of

a PAS, or the efficiency in which it is recognized by the 30-end proc-

essing machinery. The problem would be straightforward if this tar-

get variable is directly measurable. However, current sequencing

protocols only provide a measurement of the relative transcript

abundance from APA. Various approaches exist in the literature

which attempt to quantify the strength of a PAS. For example, nor-

malized read counts are often used, but quantification can be

affected by factors such as sequencing biases, transcript length and

RNA decay (Gallego Romero et al., 2014; Oshlack and Wakefield,

2009). Some studies classify PAS strength based on whether a ca-

nonical polyadenylation signal or other known sequence elements

are present near the PAS (Akhtar et al., 2010). We believe a more

principled approach to predict a quantitative description of the

strength of a PAS is to model it as a hidden variable, and infer it

from data. Moreover, the position of a PAS relative to neighboring

sites affects its selection. Some biological processes and tissues tend

to favor PAS at the distal end, whereas cells under disease states

tend to utilize PAS that are more proximal (Elkon et al., 2013).

Therefore, the model should include a variable that accounts for the

distance between neighboring sites during training. Even though the

position of a PAS is modeled, a desirable characteristic of the pre-

dictor is that during inference, positional information should be op-

tional. This can be useful in regions of the genome where there are

insufficient annotation sources to ascertain the distance to a nearby

PAS. This would also enable one to apply this model to any DNA se-

quence associated with a site, optionally modify the bases within,

and see the predicted effect on polyadenylation regulation. To deter-

mine which PAS in a gene with multiple sites is more likely to be

selected, the model can be applied to each PAS separately to com-

pare their relative strengths. Optionally, their positions can be fac-

tored in to the model’s prediction if annotation sources are available

in order to get a better estimate.

2.2 The polyadenylation code
The polyadenylation code is a model that can infer tissue-specific

PAS strength scores from sequence, and optionally account for the

influence of position if it is provided. It takes as input a sequence of

length 200 bases centered on a PAS. We benchmark two models

which operate on the sequence differently.

The first model is built on hand-crafted features. The genomic se-

quence is processed by a feature extraction pipeline, which divides the

sequence into four regions relative to the PAS (Supplementary Material

Section S1) (Hu, 2005). Some feature are limited to specific regions,

namely the polyadenylation signals in the 50–50 and 50–30 regions, and

hexamers defined in Hu (2005). Other features are computed in all

regions, including counts of RNA-binding protein (RBP) motifs that

may be involved in polyadenylation, all possible 1–4 n-mers counts and

nucleosome positioning features from van der Heijden et al. (2012).

The feature vector is mapped to a fully connected neural network. We

will refer to this model as the Feature-Net.

The second model directly learns from the genomic sequence,

using a convolutional neural network (Conv-Net) architecture

(LeCun et al., 1998), which can efficiently discover sequence pat-

terns without prior knowledge even when the location of the pat-

terns is unknown. The Conv-Net comprises of tunable motif filters

which are free to adapt to the input sequence to optimize the pre-

dictive performance of the model. It also contains pooling opera-

tions that enable the model to focus on select locations in the input

sequence whose composition maximally activates the motif filters.

The use of convolutional neural networks to learn from raw genom-

ic sequences have been successfully applied in other areas of biology

(Alipanahi et al., 2015; Angermueller et al., 2017; Kelley et al.,

2016; Zhou and Troyanskaya, 2015).

To account for the positional preference of PAS, the log distance

between sites is also an input feature for both models. Given two

sites, the proximal (50) site has a position feature of 0, whereas the

distal (30) site has a position feature that is equal to the logarithm of

the distance between the distal and proximal site.

Figure 1 shows a schematic of both models. After the sequences

are transformed by the Feature-Net and Conv-Net into a hidden rep-

resentation, it is processed by separate fully connected hidden layers

to make tissue-specific predictions. The architecture therefore factors

predictions into two components: a score that describes the tissue-

specific PAS strength, followed by predictions that represent the rela-

tive abundance of transcripts from RNA-Seq experiments between

two competing PAS. The parameters of the fully connected layers

model the cell state of tissues, which describes the steady-state envir-

onment of the cell, such as the protein concentrations in the cytosol,

that can affect transcriptional modifications. We do not explicitly de-

fine what these cell state parameters consist of or how they factor in

the predictions, but rather simply model them as hidden variables and

learn them from data. A similar approach has been described in the

splicing regulatory model by Xiong et al. (2014).

Seven distinct tissue types are available in the dataset used to

train the models. Since there are two sets of sequencing reads for the

naı̈ve B-cells obtained from different donors (Lianoglou et al.,

2013), we treat them as separate tissues, and so our models have

2890 M.K.K.Leung et al.

Deleted Text: &hx2019;
Deleted Text: Cheng <italic>et<?A3B2 show $146#?>al.</italic>, 2006; 
Deleted Text: ; Ho <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: 2 Methods
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: ; Gallego Romero <italic>et<?A3B2 show $146#?>al.</italic>, 2014
Deleted Text: 4 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty211#supplementary-data
Deleted Text: &hx2019;
Deleted Text: -
Deleted Text: &hx2019;
Deleted Text: &hx2019;-
Deleted Text: &hx2019;
Deleted Text: (
Deleted Text:  to 
Deleted Text: ,
Deleted Text: (
Deleted Text: -
Deleted Text: ; Kelley <italic>et<?A3B2 show $146#?>al.</italic>, 2016; Angermueller <italic>et<?A3B2 show $146#?>al.</italic>, 2017
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: -


eight polyadenylation strength prediction outputs. We choose not to

rely on evolutionary conservation to force the models to learn pat-

terns from the genome itself (Leung et al., 2016). We also do not

want to make use of additional data sources such as conservation

tracks or expression data as input. For our model to be widely ap-

plicable to multiple tasks, it is beneficial for the input to be easily

obtainable, such as sequences. Requiring anything beyond sequences

makes a model more difficult to apply across diverse problem

domains.

A training example consists of two PAS from the same gene, and

requires the model to predict their relative strengths, which can be

interpreted as the probability that each site would be selected for

cleavage and polyadenylation. The relative strength is measured by

the read counts from RNA-Seq that have been mapped to each site.

As shown in Figure 1, a softmax function is used to squash the real-

valued predictions from the PAS strength predictor into a normal-

ized score that can be interpreted as the probability that one PAS is

chosen over the other. The predictions are penalized against training

targets of the relative abundances of transcripts for these PAS, which

is measured from the sequencing experiment. Most of the results

presented in this work are based on the predictions from the PAS

strength predictor (i.e. the logits) instead of the relative strength pre-

dictions that follows the softmax.

In this work, we apply the predictive model to multiple tasks,

even though it is trained only to the task of modeling competing site

selection. All the predictions for these other tasks are evaluated

without any additional task-specific training or data augmentation

to demonstrate the general applicability of this model.

2.3 Assembling the polyadenylation atlas
Analysis of human polyadenylation events is confined to the

30-UTR, where PAS are most frequently located. To identify the

30-UTR regions of the human genome, 30-UTR annotations from

UCSC (Kent et al., 2002), GENCODE (Harrow et al., 2012),

RefSeq (Pruitt, 2004) and Ensembl (Yates et al., 2016) are com-

bined, where overlapping regions are merged, and each 30-UTR seg-

ment is further extended by 500 bases to capture potential

uncharacterized regions. Then, to generate a comprehensive atlas of

PAS, multiple polyadenylation annotations and reads from different

30-end sequencing experiments are mapped to the 30-UTR to gener-

ate an atlas of human PAS. The polyadenylation annotations used

include PolyA_DB 2 (Lee et al., 2007), GENCODE (Harrow et al.,

2012) and APADB (Müller et al., 2014). Mapped reads that lie in

the 30-UTR from PolyA-Seq (Derti et al., 2012) and 30-Seq

(Lianoglou et al., 2013) are also used to expand the repertoire of

PAS, where the genomic positions of reads from these sequencing

experiments are used to mark the locations of PAS in the genome.

PAS from different sources largely overlap, but some sites can be

unique to one study due to the differences in cell lines or tissue types

as well as sequencing protocol. Due to the inexact nature of 30-end

processing (Proudfoot, 2011), PAS that are within 50 bases of each

other are clustered, and the resulting peak marked as the location of

the PAS. The final PAS atlas contains 19 320 30-UTR regions with

two or more PAS from genes in the hg19 assembly for a total of 92

218 sites.

2.4 Quantifying relative polyadenylation site usage
The model is trained from the relative abundance of transcripts

from a 30-end sequencing experiment of seven distinct human tis-

sues, including the brain, breast, embryonic stem (ES) cells, ovary,

skeletal muscle, testis and two samples of naı̈ve B cells (Lianoglou

et al., 2013). Other cell lines are also available in the dataset, but

they are not used. The version of aligned reads which have been

processed through the studies’ computational pipeline is used, which

Fig. 1. (Left) A schematic of the components of the neural network that represent the polyadenylation model. The genomic sequence surrounding a polyadenyla-

tion site is an input to the strength predictor, which outputs eight tissue-specific scores describing the efficiency of the site for cleavage and polyadenylation. The

model is trained from the relative strength between pairs of competing sites. (Right) Two architectures are compared for the sequence model, a convolutional

neural network that operates directly on sequences and a fully connected neural network that takes in a feature vector processed by a feature extraction pipeline
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include removal of internally primed and antisense reads, as well as

application of minimum expression requirements to reduce sequenc-

ing noise. These reads are assigned to our PAS atlas, resulting in

read counts associated with each PAS (Supplementary Data).

To quantify the relative PAS usage for each gene which acts as the

target to train the model, we adopted the Beta model derived from

Bayesian inference described in Xiong et al. (2016), treating the per-

cent read counts of one site relative to another site as the parameter of

a Bernoulli distribution. With this model, the relative PAS usage of

one site relative to another, referred to as U, is p(U)¼Beta(1þNsite1,

1þNsite2), where Nsite1 and Nsite2 are the number of reads from two

different sites. We use the mean of this distribution as the target to

train the model, that is, the PAS usage of site 1 relative to site 2 is

(1þNsite1)/(2þNsite1þNsite2). For 30-UTR regions with more than 2

PAS, different combinations of pairs of sites are generated as training

targets and quantified as above. The assumption is that the relative

strength of neighboring PAS can be described by the relative read

counts at those sites, even if there are other sites present in the same

gene. This assumption simplifies the architecture of the computational

model and quantification of relative strength between sites.

2.5 Training the neural networks
The model is constructed and trained in Python using the

TensorFlow library (Abadi et al., 2015; Rampasek and Goldenberg,

2016). All hidden units of the neural network consists of rectified

linear activation units (Glorot et al., 2011). For the Feature-Net, the

feature vectors are normalized with mean zero and standard devi-

ation of one. For the Conv-Net, the input uses a one-hot encoding

representation for each of the 4 nucleotides. For a sequence of length

n, the dimension of the input would be 4 � n. Padding is inserted at

both ends of the input so that the motif filters can be applied to each

position of the sequence from beginning to end. For a motif filter of

length m, the additional padding on each side of the sequence would

be 4 � (m - 1), where these additional padding would be filled with

the value 0.25, equivalent to an N nucleotide in IUPAC notation.

This is similar to what is done in Alipanahi et al. (2015).

Each training example consists of a pair of PAS from a gene,

where the input is the two sites’ genomic sequences, and the target is

their relative read counts computed as described in Section 2.4. For

genes with more than two PAS, different combinations of pairs of

sites are generated as examples. Only examples with more than 10

reads are kept. This resulted in a dataset of 64 572 examples, which

is split for training and testing.

The parameters of the neural network are initialized according to

Glorot and Bengio (2010), and trained with stochastic gradient des-

cent with momentum and dropout (Hinton et al., 2012). Predictions

from each softmax output are penalized by the cross-entropy func-

tion, and its sum across all tissue types is backpropagated to update

the parameters of the neural network. Training and testing of the

model are performed in a similar fashion as described in Leung et al.

(2014). Briefly, data is split into approximately five equal folds at ran-

dom for cross validation. Each fold contains a unique set of genes that

are not found in any of the other folds. Three of the folds are used for

training, one is used for validation, and one is held out for testing. By

selecting which fold is held out for testing, five models are trained.

The prediction of these five models on their corresponding test set is

used for performance assessment, as well as to estimate variances, for

all the tasks analyzed in this work.

The validation set is used for hyperparameters selection. The

selected hyperparameters for our models can be found in

(Supplementary Material Section S6). A graphics processing unit is

used to accelerate training and hyperparameter selection by random-

ly sampling the hyperparameter space.

3 Results

3.1 Polyadenylation site selection
The performance of the model to predict the likelihood that a PAS is

selected for cleavage and polyadenylation against a competing site

in the same gene is shown in Table 1. These are the tissue-specific

relative strength predictions for pairs of PAS that’s shown in

Figure 1. Performance is assessed using the area under the receiver-

operator characteristic (ROC) curve (AUC) metric on held-out test

data. To compare the models’ performance against a baseline, we

also trained a logistic regression (LR) classifier, which is essentially

the Feature-Net with hidden layers removed. Predictions from the

model based on the Conv-Net architecture are consistently the best

performer. There is sizable performance gain from using the neural

network models compared to the logistic regression classifier.

For the more general task of predicting which PAS would be

selected in a gene with multiple sites, the model is applied to all PAS

in the 30-UTR of each gene. A score for each site is computed from

the logits (the output of the PAS strength predictor shown in Fig. 1),

where a larger value suggests that the site is more likely to be

selected. The target is defined by the PAS in each gene which has the

most measured reads in the 30-Seq data. The metric we report here is

the prediction accuracy, or the percentage of genes in which the

model has correctly predicted the PAS that has the most reads. This

is shown in Table 2 for genes with two to six sites, averaged across

all tissues. The number of genes used in this evaluation is 2270,

2043, 1745, 1364 and 1163, respectively, where a gene is included

only if at least one of its sites has more than 10 reads.

3.2 Pathogenicity prediction of polyadenylation variants
An advantage of our model is that the PAS strength predictor can be

used to characterize individual sites based only on the input

Table 1. PAS selection performance between competing sites in

different tissues

Tissue Type AUC

LR Feature-Net Conv-Net

Brain 0.826 6 0.010 0.869 6 0.007 0.895 6 0.005

Breast 0.825 6 0.006 0.862 6 0.003 0.886 6 0.004

ES cells 0.849 6 0.006 0.898 6 0.002 0.911 6 0.006

Ovary 0.830 6 0.009 0.873 6 0.006 0.895 6 0.003

Skel. Muscle 0.828 6 0.006 0.872 6 0.005 0.893 6 0.004

Testis 0.787 6 0.007 0.828 6 0.005 0.856 6 0.007

B cells 1 0.838 6 0.005 0.880 6 0.005 0.896 6 0.004

B cells 2 0.832 6 0.004 0.880 6 0.008 0.893 6 0.007

All 0.824 6 0.005 0.866 6 0.004 0.889 6 0.003

Table 2. PAS selection performance in genes with 2–6 sites

Number of sites Accuracy (%)

LR Feature-Net Conv-Net

2 79.6 82.5 83.5

3 68.3 73.0 75.5

4 58.9 64.4 69.8

5 55.6 62.8 64.0

6 48.5 56.4 59.7
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sequence. We evaluate whether this model can be used for pathogen-

icity predictions. The basic approach involves applying the model to

the 200 nucleotides sequence associated with a PAS from the refer-

ence genome to first generate a prediction of its strength, and then

performing another prediction when one or more nucleotides in the

sequence is altered. A difference is then computed between the refer-

ence and variant predictions. Since there are eight predictions, one

for each tissue, we take the largest difference as the score to assess

pathogenicity. A similar approach has been applied to splicing var-

iants (Xiong et al., 2014). The postulate is that if a variant causes a

large change to the strength of a PAS, this can change the relative

abundance of differentially 30-UTR terminated transcripts that devi-

ates from normal, potentially indicating disease associations.

To evaluate the efficacy of this approach, we extracted variants

that overlap with our PAS atlas (within 100 bases on either side of

an annotated PAS) from the ClinVar database (Landrum et al.,

2014). Some of these variants overlap with the terminal exon (e.g.

missense mutations) and are removed. There are 12 variants that are

labeled as pathogenic (CLNSIG¼5) and 48 that are labeled as be-

nign (CLNSIG¼2) (Supplementary Material Section S2). Figure 2

shows the ROC curve for this classification task. The model can pre-

dict pathogenic variants from benign ones with an AUC of

0.98 6 0.02 and 0.97 6 0.02, for the Conv-Net and Feature-Net re-

spectively, both with a P-value of <1 � 10�8. Even though the

AUC’s are essentially identical for both models, there is clear advan-

tage in the performance characteristic of the Conv-Net: it outper-

forms in the low false positive rate region where variant

classification matters. For these predictions, we used an input of

zero for the position feature of the strength model, since each vari-

ant is not analyzed with respect to neighboring sites. However, in

general, it may be advantageous to incorporate this information. For

example, a variant may cause a large change to a nearby PAS, but if

there is a much stronger neighboring PAS in the same gene, the

effects of the variant may be dwarfed by this neighbor, and therefore

not have any significant mechanistic effects.

We further evaluate how the model compares with four phylo-

genetic conservation scoring methods: Genomic Evolutionary Rate

Profiling (GERP) (Cooper et al., 2005), phastCons (Siepel et al.,

2005), phyloP (Pollard et al., 2010) and the 46 species multiple

alignment track from the UCSC genome browser (Blanchette,

2004). We also compare the predictions with Combined

Annotation-Dependent Depletion (CADD), a tool which scores the

deleteriousness of variants (Kircher et al., 2014). Overall, as shown

in Figure 2, the pathogenicity score from our model compares favor-

ably, even though it has not been explicitly trained for this task. It is

worth noting that although the model performed well for this

ClinVar dataset, in general, a large difference in PAS strength does

not necessarily imply pathogenicity, which is a phenotype that can

be many steps downstream of 30-end processing (Manning and

Cooper, 2016).

The model can also be used to search for potential variants that

would affect the regulation of polyadenylation. To visualize this ap-

proach, we applied the model and generated a mutation map

(Alipanahi et al., 2015) to a 100 nucleotide sequence in the human

genome, where a ClinVar mutation that affect the polyadenylation

signal is associated with b-thalassemia (Rund et al., 1992). As

shown in Figure 3, the polyadenylation signal is identified as an im-

portant region relative to other bases in the sequence.

3.3 Polyadenylation site discovery
The model is trained by centering the input sequence around a PAS

at the cleavage site. If a PAS is off-center of the 200 nucleotides in-

put sequence, or when no PAS is present, it stands to reason that the

predicted PAS strength of the sequence would be small, due to the

lack of sequence elements necessary for cleavage and polyadenyla-

tion. Alternatively, if the output of the PAS strength predictor is

large, it would suggest that a PAS is present and is positioned near

the center of the input sequence. Naturally, we ask whether the

model can be translated across the genome to find potential PAS.

While there have been previous works on this task (Akhtar et al.,

2010; Chang et al., 2011; Cheng et al., 2006), our model is not ex-

plicitly trained for this.

To illustrate an example of a predicted PAS track, we selected a

section of the human genome and applied the Conv-Net strength

model to it in a base-by-base manner (Supplementary Material

Section S3). The average strength prediction from all eight tissues,

without application of any filtering or thresholding, is shown. For

this example, we chose a region of the genome with multiple PAS,

and where there are differences between annotation sources.

The set of predicted peaks labeled region A are present in all an-

notation sources. It is not a single sharp peak, indicating that various

PAS are possible in that region. This agrees with the GENCODE

Poly(A) track, which indicates that there are two peaks in this re-

gion, as well as 30-Seq, which shows that there are RNA-Seq reads

that map across a broad region for various tissues. As mentioned

earlier, the location for cleavage and polyadenylation is not exact.

Region B is less well-defined, is weaker, and approximately aligns

Fig. 2. Classification performance of ClinVar variants near polyadenylation

sites. (Left) ROC curves comparing the variant classification performance of

the Conv-Net and the Feature-Net. The shaded region shows the one stand-

ard deviation zone computed by bootstrapping. (Right) ROC curves compar-

ing our model’s performance against other predictors. AUC values are shown

in the figure legend

Fig. 3. A mutation map of the genomic region chr11: 5,246,678–5,246,777. Each square represents a change in the model’s score if the original base is substituted.

The substituted base is represented in each row in the order ‘ACGT’. Red/blue denote a mutation that would increase/decrease the likelihood of the PAS for cleav-

age and polyadenylation
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with the predicted positions from another PAS predictor (Cheng

et al., 2006), as well as the muscle track from PolyA-Seq (in light

gray). Finally, a small peak is observed in Region C, predicted to be

a very weak PAS, which is present in PolyA-Seq. Note that the

model is trained only from 30-Seq reads and has no knowledge of

RNA-Seq information from other datasets or other annotation

sources.

To assess the model’s ability in discovering PAS, we created a

dataset with positive and negative examples to assess its classifica-

tion performance. There is no general consensus from previous

works on what constitutes a proper criteria to construct negative

sequences or a standardized dataset for this task (Ji et al., 2015). We

therefore defined the evaluation dataset based on our annotations

and reads from 30-Seq. Positive targets consist of annotated PAS in

the 30-UTR that has 10 or more reads. Since it is generally not ap-

propriate to simply use random genomic sequences or locations for

the negative set, we extracted the two immediately adjacent genomic

regions near a PAS to ensure that both the negative and positive

sequences have similar compositions (Supplementary Material

Section S4). Each sequence is fed as input into the strength predictor,

and the output from all tissues is averaged into a single value which

is used for classification. The positional information of the sequence

is not used (i.e. it has a position feature of zero). The AUC to classify

sequences with PAS from negative sequences for the LR, Feature-

Net and the Conv-Net are respectively 0.887 6 0.003,

0.895 6 0.004 and 0.907 6 0.004. It is worth mentioning that of the

negative sequences, 19% contain one of the two canonical polyade-

nylation signals (AAUAAA and AUUAAA), and 74% contain at

least one of the known polyadenylation signals (Supplementary

Material Section S1), meaning the model can distinguish real PAS

from background. It does not simply look for the presence of polya-

denylation signals to detect PAS in the genome.

It is interesting to observe that there is a relatively smaller differ-

ence in the AUC’s for all models, especially between the Conv-Net

and the logistic regression model, compared to previous tasks, which

differed more drastically in performance. Identification of PAS from

the genome is a simpler problem, characterized by the presence of

features that are generally well-documented in the literature (Tian

and Manley, 2017). For this, a logistic regression classifier may be

sufficient. On the other hand, predicting the strength of a PAS given

its sequence is arguably more complex. Instead of a binary classifica-

tion problem, a strength predictor must quantify a PAS by integrat-

ing its genomic signature, and predict how it compares with another

site, which may also contain all the core polyadenylation signatures,

but differ in other ways with respect to its sequence. This

observation is supported by the larger differences in the models’ per-

formance to the PAS selection problems in Tables 1 and 2, which re-

quire strength quantification.

3.4 Predicting the effect on oligonucleotide treatment
Anti-sense oligonucleotides therapies involve targeting RNAs via

complementary base pairing, and can modulate RNA function by

blocking the access of cellular machinery to the RNA (Kole et al.,

2012). Application of this approach was demonstrated by Vickers

et al. in the 30-UTR, where oligonucleotides targeting polyadenyla-

tion signals and sites modulated the abundance of an mRNA

(Vickers et al., 2001). Based on this, we show the utility of our

model to provide an in-silico evaluation of oligonucleotides target-

ing regions near the PAS.

Three distinct forms of the transcript, Type 1, 2 and 3 are

described in the study. A schematic of the E-selectin mRNA and the

position of the polyadenylation signal, along with the targeted re-

gion of the oligonucleotides used is shown in Figure 4. All three

forms harbor the canonical polyadenylation signal AAUAAA.

A non-canonical polyadenylation signal AGUAAA is also present

between the Type 1 and Type 2 cleavage site, which is selected when

the corresponding signals from Type 1 and Type 2 are blocked.

Here, it is referred to as the Type 4 form of the transcript.

According to the study, Type 3 is by far the dominant form of

the transcript, followed by Type 1 and Type 2 (no differentiation is

reported between them). Type 4 is the least common. Using the

model, the predicted strengths for the corresponding PAS for Type 1

to 4 transcripts are respectively: -0.242, -0.420, 0.020, -0.765.

These values do not account for the position of the PAS. If the rela-

tive positions of the 4 PAS are provided to the model, then the

strengths become: -0.242, -0.170, 0.606, -0.584 (where Type 1 is

assumed to be in position zero). These predictions match the

observed abundances of the mRNA from the study.

The Vickers study performed a non-quantitative RT-PCR to as-

sess the abundance of isoforms by administering different combina-

tions of oligonucleotides targeting select regions of the transcript.

To simulate this, we blocked the same regions of the input sequence

complementary to the oligonucleotides by replacing the nucleotides

with an N base, and predicted the resulting strengths of each PAS.

The results are depicted in Figure 4, where the predicted values are

arranged in an image to match the gel from the original paper. Each

column is scaled such that the sum of the intensities of each column

is constant, but otherwise, no additional processing is performed.

The original paper does not provide values from RT-PCR that

Fig. 4. Predicting the effect of an antisense oligonucleotide experiment. (Left) Schematic of human E-selectin 30-UTR and the possible transcripts from polyadeny-

lation site selection, reproduced from Vickers et al. (2001). The regions targeted by the oligonucleotides are shown. (Right) Predicted PAS strength, simulating the

effects of blocked nucleotides due to oligonucleotide treatment. (Center) The figure from the original paper is reproduced here for ease of comparison. The oligo-

nucleotides applied are shown on top of each column
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would permit quantitatively comparison with the output of our

model, but qualitatively, patterns of polyadenylation are generally

captured. Note that the original paper mentions that Type 1 and 2

transcripts are shorter and therefore more efficiently amplified by

PCR, and thus appear brighter than expected compared to Type 3.

This experimental bias does not affect our simulated RT-PCR results

in Figure 4.

3.5 Effect of genomic features on the model’s

predictions
To understand how different features contribute to performance, we

train models using only individual feature groups. Table 3 shows each

model’s classification performance. Even though the polyadenylation

signals are generally considered to be a main signature of PAS, they

only partially account for the predictive performance for PAS selec-

tion compared to the full feature set. Overall, n-mers features are

major contributors to the Feature-Net’s performance, which is suffi-

ciently rich to capture many motif patterns. It should be noted that

each feature group has a different number of features (Supplementary

Material Section S1), and therefore individual features in the larger

feature groups may contribute only weakly, but as a whole affect pre-

dictions considerably. Position alone have very poor predictive cap-

ability, even though it was suggested to be a key feature in

determining whether a PAS is used for tissue-specific regulation

(Weng et al., 2016). We also conducted an investigation on the

uniqueness of each feature group, by training models with all features

minus each feature group from Table 3. Removing the polyadenyla-

tion signals from the feature set reduces the performance from

0.866 6 0.004 to 0.840 6 0.008. All other groups, when removed, do

not significantly reduce the performance of the model compared to

the full feature set. This suggests that many features are redundant,

and if removed, can be compensated by features in another group.

To see the contributions of individual features, we computed the

gradient of the output with respect to the input feature vector of the

neural network. This is referred to as the feature saliency of a predic-

tion, and the gradients of features with large magnitudes can be

interpreted as those that need to change the least to affect the predic-

tion the most (Simonyan et al., 2014). For this, we computed the

feature saliency of all sites in our test set, and selected the features

that on average have the largest magnitude. Table 4 shows the top

15 features computed using this method and the direction in which

the feature affects the strength of a PAS, where an up arrow indi-

cates that the effect is positive.

The top three features are consistent for all tissue types. Other

features vary slightly between tissues and are grouped together un-

ordered. As expected, the two most common canonical polyadenyla-

tion signals are the top features which increase the strength of a

PAS. The log distance between PAS is also deemed to be important.

Some features in this list are consistent with mechanisms of core ele-

ments known to be involved in cleavage and polyadenylation,

including the upstream UGUA motif which the cleavage factor Im

complex binds to, and a GU-rich sequence near the polyadenylation

site (Tian and Graber, 2012). The genomic context upstream of the

PAS appears to be more important, as most of the top features are in

either the 50–50 and 50–30 region. Interestingly, three of the features

reduce the strength of a PAS. They are the frequencies of C and AG

nucleotides in the upstream region and the CA nucleotides down-

stream of the cleavage site, the latter of which is in line with the

knowledge that the C-terminal domain of RNA polymerase II inter-

acts with CA-rich RNA sequences, and is known to play a role in

inhibiting polyadenylation (Kaneko and Manley, 2005).

3.6 Determining tissue-specific polyadenylation

features
Given that APA is used to achieve tissue-specific gene expression, we

investigate whether our model can provide insights to this phenom-

enon. Previous computational approaches to address this problem

are present in the literature. In Hafez et al., an A-rich motif was

found to be enriched in brain-specific PAS (Hafez et al., 2013). In

Weng et al., the position of a PAS relative to another PAS and its

position in the gene was found to be the strongest indicator of

whether it is tissue-specific (Weng et al., 2016). The computational

models for both these works were trained to directly classify

whether a PAS is tissue-specific. To be consistent with the method-

ology presented in this work, we will analyze our models without

re-training them.

We use the set of tissue-specific and constitutive PAS defined in

Weng et al. (2016) and apply the Feature-Net to generate predic-

tions. To determine which feature is associated with tissue-specific

PAS, we use the same gradient-based method as described in Section

3.5 to examine the top 200 most confident predictions for tissue-

specific PAS, where our model predicts that at least one of the tissue

outputs is considerably different than the rest, and for constitutive

PAS, where our model predicts that all tissue outputs do not differ

significantly. The magnitude of the gradients is then analyzed to see

which features have a statistically greater effect on tissue-specific

PAS compared to constitutive PAS. Statistical significance was

Table 3. Comparison of Feature-Net PAS selection performance be-

tween competing sites using feature subsets

Feature group AUC

All 0.866 6 0.004

Poly(A) signal 0.728 6 0.004

Position 0.553 6 0.004

Cis-elements 0.608 6 0.009

RBP motifs 0.676 6 0.009

Nucleosome occupancy 0.656 6 0.006

1-mers 0.762 6 0.004

2-mers 0.794 6 0.002

3-mers 0.817 6 0.004

4-mers 0.833 6 0.005

Table 4. Top 15 features of the Feature-Net, and the direction in

which each feature can increase (") or decrease (#) the strength of

a polyadenylation site

Rank Region Feature name Direction

1 50–30 PolyA Signal, AAUAAA "
2 — Log distance between PAS "
3 50–30 PolyA Signal, AUUAAA "
4–15 50–30 1-mer, C #

50–30 1-mer, U "
50–30 2-mer, AG #
30–50 2-mer, CA #
30–50 3-mer, AAA "
50–30 3-mer, UGU "
50–50 3-mer, UGU "
30–50 4-mer, AAAA "
50–50 Cleavage factor Im, UGUA "
50–30 PolyA signal, CAAUAA "
50–30 PolyA signal, AUAAAG "
50–50 PolyA signal, AGUAAA "
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determined by a permutation test by shuffling the predictions indi-

cating whether a PAS it tissue-specific or constitutive. Applying a

conservative P-value of 0.05/1506 (# of features)¼3 � 10�5, 15 fea-

tures were found to be associated with the model’s ability to predict

tissue-specific PAS. This is shown in Table 5. In the column indicat-

ing direction, an up arrow means the presence of the feature makes

the site more likely to be tissue-specific, and vice versa.

All but one of the entries in the table describe features that are in

the 50–50 and 30–30 region, that is, most of them are located away

from the cleavage site (Supplementary Material Section S1). Various

G/U-rich features top the list, where its position upstream suggests

the PAS is more likely to be constitutive but if downstream, tissue-

specific. Polyadenylation signals are absent from the list. No hexam-

ers other than UUUGUA was found, which was previously identified

as a feature by statistical analysis from Hu (2005). However, we

found no association of this hexamer with tissue-specific polyadeny-

lation from the literature. Given that the model only sees sequences

from 6100 bases from the cleavage site, it may be possible that

other more distal tissue-specific signatures may be present.

Alternatively, sequence signatures may not be fully predictive since

tissue-specific proteins can act by modulating core polyadenylation

proteins instead of directly binding to the transcript (MacDonald

and McMahon, 2010).

3.7 A convolution neural network model of

polyadenylation to predict the effect of genomic

variations
We initially began this work with a feature-based model, and subse-

quently added a Conv-Net for comparison expecting it to approach

the performance of the Feature-Net, not necessarily surpassing it.

Given that the polyadenylation features were derived from many

publications and multiple research groups, the prior work that went

into obtaining the feature-based models, which include the logistic

regression classifier used as a baseline in this work, should not be

underestimated. The fact that the Conv-Net could learn a better

model absent any insights or hypotheses about mechanism is an

interesting result on its own. This is surprising at first, but perhaps

not so if viewed in the context of other applications of machine

learning like computer vision, where hand-crafted features have

been largely superseded by models which learn directly from image

pixels (LeCun et al., 2015).

On top of this, the Conv-Net has additional advantages that are

not available in feature-based models. For instance, it is completely

free to discover novel sequence elements that may be relevant for pol-

yadenylation regulation from data. An example set of filters from the

Conv-Net model is shown in (Supplementary Material Section S5). It

also has the potential to be more computationally efficient. Feature

extraction from sequences can be the most computational intensive

aspect of a model during inference. This is not required for models

that directly operate on sequences. There are additional operations

that are required in the Conv-Net, but these computations can be sig-

nificantly sped up by graphics processing units, which can be import-

ant for application of the model to entire genomes.

Since the Conv-Net operates directly on the genomic sequence, it

also enables one to perform analysis at the single-base resolution

more naturally. By analyzing the flow of gradients, the Conv-Net

can determine how each base in the input sequence changes the out-

put of the model. If a model requires feature extraction, such as the

Feature-Net, the output must be analyzed relative to each feature.

Furthermore, in the Feature-Net, many features are derived in dis-

crete sections of the genome (four in this case, see Supplementary

Material Section S1) to reduce the dimensionality of the input. The

Conv-Net on the other hand, is more efficient at sharing model

parameters, thereby enabling the motif filters to be applied at much

finer spatial steps across a genomic sequence (a stride of 1 is used,

see “Materials and methods” section), while still make overfitting

manageable during training. By computing the gradients (Simonyan

et al., 2014), analysis regarding the magnitude and direction of the

effect of each base on the model’s output can be performed. This has

the potential to offer a prescription to the design of oligonucleotides

for anti-sense therapies. Figure 5 shows the saliency map of a region

of the oligo-targeted mRNA examined in the Section 3.4, which

spans the first three polyadenylation signals. This is different than

the previous mutation map approach, which visualizes the change in

the model’s predictions between the reference genome and mutation

at each base for the alternate nucleotides. Here, the gradient of each

base relative to the model’s prediction is shown, which includes the

reference genomic sequence. It is also computed differently, involv-

ing a single backpropagation step in the Conv-Net. This operation is

not readily available in the Feature-Net, where the genomic se-

quence is separated from the model by a feature extraction pipeline,

and therefore dependent on the complexity and choices in the pipe-

line. This saliency map can be generated for large stretches of the

genome to look for potential sensitive regions to alter polyadenyla-

tion for therapeutic purposes.

Fig. 5. Saliency map from the Conv-Net of a section of the oligo-targeted mRNA from Vickers et al. (2001). The base is represented in each row in the order

‘ACGT’. Red means the base increases the likelihood of the sequence for cleavage and polyadenylation. Blue is the reverse. The sum of the magnitude of the gra-

dient is shown above the saliency map to suggest how sensitive the nucleotide is to the strength of the polyadenylation site. The position of the oligonucleotide

used in the study is shown at the top. The Type 4 Poly(A) signal is labeled also, but was not targeted in the original study

Table 5. Features associated with prediction of tissue-specific poly-

adenylation sites, and whether the presence of the feature makes a

polyadenylation site more (") or less (#) tissue-specific

Region Feature name P-value Direction

50–50 4-mer, UUGU 8.0 � 10�11 #
30–30 3-mer, UUG 9.9 � 10�09 "
30–30 4-mer, CCCC 5.7 � 10�08 #
50–50 3-mer, UGU 6.8 � 10�08 #
30–30 4-mer, UCCC 1.1 � 10�07 #
50–30 4-mer, CGGC 1.0 � 10�06 #
50–50 Cis-element, UUUGUA 1.7 � 10�06 #
50–50 Cleavage Factor Im, UGUA 2.2 � 10�06 #
50–50 3-mer, UUG 3.4 � 10�06 #
50–50 3-mer, AUC 7.4 � 10�06 "
30–30 3-mer, UCC 1.2 � 10�05 #
50–50 2-mer, UC 1.7 � 10�05 "
50–50 4-mer, AUCC 1.9 � 10�05 "
50–50 2-mer, UU 2.0 � 10�05 #
30–30 3-mer, CCU 2.1 � 10�05 #
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4 Conclusion

Regulation of polyadenylation is a crucial step in gene expression,

and mutations in DNA elements that control polyadenylation can

lead to diseases. Accurate, predictive models of polyadenylation will

enable a deeper understanding of the sequence determinants of gene

regulation and provide an important new approach to detecting and

treating damaging genetic variations. We have presented here the

polyadenylation code, a versatile model that can predict alternative

polyadenylation patterns from transcript sequences and can general-

ize to multiple tasks that it was not trained on. Beyond its original

trained usage to predict PAS selection from competing sites, it can

classify variants near PAS and can be used for PAS discovery. We

provided analysis of what sequences increase and decrease the

strength of a PAS, and identified features that are associated with

tissue-specific and constitutive PAS. We also illustrate the potential

of our model to infer, and design for, the effects of antisense oligo-

nucleotide treatment in the 30-UTR.
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