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� Explores Applications of Enzymatic
catalysis.

� Enzymes destabilize in harsh
conditions which increase their
bioprocess cost.

� Enzyme immobilization enhances the
biocatalytic performance of enzymes.

� Nanomaterials are intriguing
supporting matrices for enzyme
immobilization.

� Discussed enzyme immobilization on
multifunctional magnetic
nanomaterials (MNPs).

� Biomedical applications and future
prospects of enzyme coated MNPs are
summed up.
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Background: Enzymes based bio-catalysis has wide range of applications in various chemical and biolo-
gical processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active
and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified mag-
netic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme
immobilization.
Aim of review: This review spotlights recent progress in the immobilization of various enzymes onto sur-
face-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for
multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of
research which are helpful to expand the application prospects of these materials are also given with sui-
table examples.
Key scientific concepts of review: Nanostructured materials, including surface-coated magnetic nanoparti-
cles have recently gained immense significance as suitable support materials for enzyme immobilization,
due to their large surface area, unique functionalities, and high chemical andmechanical stability. Besides,
magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their
easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic
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Table 1
Synthesis methods for magnetic nanoparticles.

Name of synthesis method Merits

Chemical co-precipitation Simple and effi

Microemulsion Good homogen
particle size

Hydrothermal reactions Easy to control

Thermal decomposition High yield and
Sol-gel reactions Good control o
Electrochemical method Easy control of
Vapor phase method Greater yield
Bio-based method Nontoxic, cost

solvents, enviro
room temperat
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nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage
and thermal stabilities. So far, several studies have documented the application of a variety of surfacemod-
ification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nano-
particles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability,
enhance mechanical and physicochemical properties, upgrade the surface activity and also increases
enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges
still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials
require consistent research from multidisciplinary scientists to realize its practical applications.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction bohydrates, auxins, flavonoids) [20,21]. The biobased procedures
Magnetic nanoparticles (MNPs) have recently emerged as
fascinating nanomaterials that have garnered extensive research
attention among the scientific community and researchers owing
to their broad-spectrum applications in numerous fields including
nano-biomedicine [1], environmental protection [2], catalysis [3],
electronic communication [4], magnetic fluids [5], data storage
[6], etc. In addition to some special magnetic features, i.e., super-
paramagnetism, magnetic nanomaterials also exhibit exceptional
physical attributes, stability, and biocompatibility [7]. Amongst
various kinds of MNPs, including iron oxides (Fe3O4 and c-Fe2O3),
alloy-based (CoPt3 and FePt), pure metal (Fe and Co), and spinel-
type ferromagnet (MgFe2O4, MnFe2O4, and CoFe2O4) MNPs, mag-
netite iron oxide (Fe3O4) nanoparticles are of paramount impor-
tance and gained popularity in biomedicine and biocatalysis due
to facile fabrication, low toxicity, and acquiescence to surface func-
tionalization [8–12]. Many literature reports have revealed the fre-
quent use of magnetic Fe3O4 nanoparticles as a drug vehicle in
cancer theranostics, protein purification, gene delivery, MRI agents,
cell labeling, bioseparation, immunoassays, biosensors, and hyper-
thermia treatment [13–17].

Different attributes such as morphology, shape, size, and dis-
persibility of the Fe3O4 nanoparticles might have an influence on
their application in different fields [18]. Thus, researchers have
adopted multiple routes to develop MNPs for controlling their
shape, size, and morphology with requisite and tailorable features.
To date, a large number of fabrication approaches, including
microemulsion, co-precipitation, thermal decomposition,
hydrothermal, laser pyrolysis, electrochemical deposition, sono-
chemical and solvothermal methods, microwave-driven method,
aerosol pyrolysis, chemical vapor deposition and biobased meth-
ods have been proposed for the development of magnetic Fe3O4

nanoparticles [7]. The biobased synthesis method has been
emerged as a promising alternative for obtaining MNPs [19]. These
methods are generally executed under the conditions of tempera-
ture and pressure close to those of the environment, and utilizing
biomolecules extracted from plant extracts or biological entities
(e.g., alkaloids, terpenoids, polyphenols, exopolysaccharides, car-
cient

eous nature Precise control of

particle Shape and size

good control of size and shapes
f size and structure
size

effective, cheap materials and
nmentally friendly, and synthesis
ure and atmosphere

158
entail low energy requirements and safer reagents compared to
traditional co-precipitation or reduction by agents with adverse
impacts. Thus, this biosynthetic approach is recognized as one
the most interesting options to advance trans-materialization and
energy efficiency processes in the nanotechnology perspective
[22,23]. Table 1 depicts notable synthesis procedures along with
their merits and demerits. In this report, we elaborate on recent
progress in the surface coating strategies and immobilization of
various enzymes on the surface-functionalized magnetic nanos-
tructured materials and their derived nanocomposites.

Surface modification/functionalization of MNPs for enzyme
immobilization

It is demonstrated that Fe3O4 nanoparticles are prone to aggre-
gate due to their high surface energies, reactivity, and considerably
high specific surface area. Moreover, the pristine form of Fe3O4 NPs
exhibits high chemical activity and tend to oxidize in the air result-
ing in the loss of dispersibility and magnetic properties [24,25].
Due to these factors, the efficiency of magnetic-driven separation
is reduced, and consequently, limited the capability of bare Fe3O4

NPs for direct immobilization of biomolecules and enzymes. In this
avenue, surface modification and functionalization is a necessary
step to circumvent the aggregation and oxidation of these
nanoparticles. Fig. 1 represents the surface functionalization
strategies of MNPs to improve their properties for efficient enzyme
immobilization. Four major purposes of surface engineering of
MNPs are; 1) improve the dispersion stability of MNPs 2) modify
the mechanical and physicochemical properties, 3) upgrade the
surface activity of MNPs, and (4) enhance the biocompatibility of
MNPs. Taking into account many strategies, researchers have made
efforts to fabricate various kinds of magnetic iron oxide nanocom-
posites as shown in Fig. 2 [26].

Silica-coated MNPs for enzyme immobilization

Silica coating, in which silica shells are formed on the surface of
magnetic cores, is a persuasive technique to functionalize Fe3O4
Demerits

poor crystallinity, size distribution, and aggregation Not appropriate to
prepare highly pure, accurate stoichiometric phase
time laborious, requirement of large amounts of solvent and poor yield

High pressure, prolonged reaction duration and high reaction
temperature
Elevated reaction temperature
Prolonged reaction time and cost expensive
Reproducibility
High temperatures

at
Scale up limitations, Reproducibility, tedious purification, and poor
understanding of the explicit mechanism.
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Fig. 1. Surface functionalization strategies of MNPs to improve their properties for enzyme immobilization.

Fig. 2. Typical morphologies of magnetic composite nanomaterials. Reprinted from Ref. [26] with permission under the terms of the Creative Commons Attribution 3.0
license. IONPs—iron oxide nanoparticles.
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NPs. The formation of silica shells is likely to augment the chemical
steadiness by providing protection to magnetic cores both from
oxidation and aggregation. It can also increase the biocompatibility
and hydrophilicity. Insertion of a vast number of silanol groups on
the magnetic core’s surface by modification process affords the
underlying foundation for additional functionalization with
reagents for enzymes attachment. Fe3O4 NPs can be directly func-
tionalized with silica shells by a well-characterized sol–gel proce-
dure [27], in which tetraethoxysilane is hydrolyzed under alkaline
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environments to form silica shells on the surface of magnetic cores
yielding core–shell Fe3O4@SiO2 NPs. The resultant core–shell
Fe3O4@SiO2 NPs are first coated with amino silane [28], or epoxy
silane coupling agents [29] to insert amine or epoxy moieties on
the surfaces of carrier support, respectively, for effective attach-
ment of enzymes. Afterward, enzymes can be integrated on the
surface of the amino group bearing Fe3O4@SiO2 NPs based on Schiff
base linkages by using bifunctional reagent glutaraldehyde.
Whereas, epoxy-functionalized support matrices can be applied
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to direct enzyme immobilization via the reaction between epoxy
groups of support material and amino groups of enzymes. With
reference to amino-functionalized silica-coated magnetite
nanoparticles, epoxy-functionalized Fe3O4@SiO2 NPs do not neces-
sitate any additional linkage for enzyme immobilization. However,
the immobilization procedure is time-consuming and ineffective
due to the slow reactions between epoxy and amino groups, by vir-
tue of steric hindrance associated with the dimensions of the
macromolecule [30]. Amino and carboxyl group incorporated
MNPs were prepared to gain an insight into whether the basic or
acidic modification was more effective for the immobilization of
L-asparaginase (ASNase) enzyme. The prepared nanoparticles were
characterized by Fourier-transform infrared spectroscopy (FTIR),
scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDAX), X-ray diffraction (XRD), and vibrating-
sample magnetometer (VSM). In comparison to the free state of
the enzyme, the nanocarriers-supported ASNases were more stable
in a broad range of temperature and pH values under the optimum
reaction conditions. Likewise, the nanobiocatalysts presented high
stability at a raised temperature of 50 �C for 3 h. Free form of the
enzyme showed only 30% of its original activity after preserving
at 4 �C for 1 month, whereas Fe3O4/SiO2/COOH and Fe3O4/SiO2/
NH2 ASNase preserved above 56.5% and 78.9% of their preliminary
activities, respectively, under identical conditions. Both of the engi-
neered ASNase revealed outstanding functioning stability after 17
consecutive batch cycles [31]. The MNPs surface was functional-
ized with aminopropyltriethoxysilane (APTES) and polyami-
doamine (PAMAM) dendrimer to comprehend the covalent
binding of cholesterol oxidase and esterase for the development
of cholesterol biosensor [32].

Silica-encapsulated MNPs synthesized by microemulsion tech-
niques were deemed as a good support matrix for immobilizing
glucose oxidase (GOD). The binding of GOD onto the support was
confirmed by the FTIR spectra. Immobilized bioconjugate prepara-
tion maintained over 95% and 90% of its primary activity after stor-
age for 45 days, and 12 consecutive reaction cycles. Substantial
improvements in thermal stability profiles were also recorded at
high temperatures up to 80 �C. Moreover, the immobilized biocat-
alyst was less likely to be affected by alterations in pH values [33].
Correa et al. (2020) tested three different types of immobilization
methods for covalent bonding of b-Glucuronidases on MNPs and
three catalysts for Si particle deposition [34]. Among the nine dif-
ferent immobilized micron-sized biocatalytic preparations, only
two showed insignificant activity. All the preparations had supe-
rior thermal, storage, and functional stability than the free enzyme.
Different bioconjugates with MNPs and Si maintained 40% of their
original activities at a high temperature of 80 �C after 6 h, while the
free form of enzyme dropped over 90% of its activity within 10 min.
Polymer-modified MNPs for enzyme immobilization

Generally, ex-situ and in-situ modification are two methods,
which are involved in the functionalization of MNPs with organic
polymers [35–38]. The in-situ modification method entails the
inclusion of organic polymers in the precursor solution as a stabi-
lizer to generate Fe3O4 NPs, whereas, in the ex-situ modification
approach, the monomers are polymerized on the surface of Fe3O4

NPs. The generation of effective steric repulsion forces from
polymer coatings weakens the magnetic and Van der Waals inter-
actions of Fe3O4 NPs that subsequently prevent aggregation and
augment their stability and dispersibility attributes. In the last
few years, a plethora of polymers has been proposed as adequate
coating materials to functionalize Fe3O4 NPs for efficient enzyme
immobilization. Many of these polymers have been found suitable
agents, such as starch, alginate, albumin, chitosan, polyvinyl alco-
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hol (PVA), polyethyleneimine (PEI), polydopamine, polyethylene
glycol (PEG), and different polyoxamines for MNPs development
because of their desired biodegradable and biocompatible proper-
ties [36–41]. Chitosan-modified MNPs are largely synthesized by
the in-situ modification approach [42]. Dextran is among the
choice coating polymers that are used for MNPs functionalization
due to non-toxicity, biocompatibility, and degradability by dex-
tranase [43,44]. It is demonstrated that MNPs coating with dextran
can ameliorate their attributes for colloidal stability, and drug
delivery, and thus seemed a useful approach in fabricating MNPs
[45,46]. Indeed, dextran is a hydrophilic polymer that is composed
of numerous glucose monomers linked together by a-1, 6-
glycosidic bonds. This polymer is physically adsorbed onto MNPs
by non-covalent linkages in alkaline solutions. The utilization of
carboxymethyl dextran (CMD), a derivative of dextran, to fabricate
MNPs provides hydroxyl as well as carboxyl functional moieties,
which render easy chemical modification. CMD is endowed with
excellent biocompatibility, biodegradability, and high-water solu-
bility [47]. Vasić et al. (2020) inspected the influence of different
concentrations of CMD on the properties of CMD-wrapped MNPs
[48]. The surface morphology and functional groups of
CMD-MNPs were monitored by SEM FTIR. The as-synthesized
CMD-coated MNPs were then employed as support carriers for
immobilizing alcohol dehydrogenase (ADH). Coating of CMD onto
MNPs imparts preferable structural and magnetic properties and
can thus be applied as a nanocarrier for enzyme immobilization.
In contrast to the free form of ADH that dropped 70% of its original
activity at 20 �C, and complete loss of its activity at 40 �C after 24 h.
The nanoimmobilized biocatalyst retained more than 50%, and 75%
of its remaining activity at 20 �C and 40 �C, respectively, under the
same incubation period of 24 h.

Francolini et al. (2020) prepared polymer-coated MNPs showing
long alkyl chains, either hexadecyl (C16) or octyl (C8) to immobi-
lize Candida rugosa lipase (CRL) [49]. Among the nanocarrier sup-
ports tested, the one displaying the longest alkyl chains deliver
the most promising efficacies for immobilized enzyme. The
nanoimmobilized biocatalytic system with the longest alkyl chains
also presented superior tolerance to high temperature (ranging
from 25 to 70 �C) than the soluble lipase. It also showed good recy-
clability in four successive cycles and conveniently recovered by a
simple magnetic separation. Lipase enzyme from Thermomyces
lanuginosus (TLL) was covalently attached to PEI-coated new heter-
obifunctional support, divinyl sulfone (DVS) superparamagnetic
nanoparticles (SPMNs) and characterized. PEI is an organic
polymer with the highest positive charge density, which provides
colloidal stabilization to the protein molecules even at a high con-
centration of salt [50–52]. Moreover, as a smart polymer, PEI can
respond to various external stimuli like pH, temperature, etc.
[53]. Therefore, PEI can be utilized as a multipurpose agent to
develop biocatalysts by simple adsorption or multipoint covalent
coupling [52]. Its unique chemical structure can confer stabiliza-
tion to multiple subunits of enzymes and provide stability against
various organic solvents. Further, it is used for the
co-immobilization of cofactors and enzymes, PEI-functionalized
supports for enzyme immobilization might produce inter- and
intra-molecular crosslinking, imparting a greater extent of homo-
geneity of activated amino groups [54]. Thermal inactivation pro-
file at different pH values revealed that the immobilized TLL
bioconjugates exhibited the most robust stability at an immobi-
lization pH of 5.0. The nanobiocatalytic preparation obtained at
pH 5.0 and blocked with ethanolamine (ETA) and ethylenediamine
(EDA) for hydrolyzing racemic methyl mandelate. It achieved
excellent enantioselectivity of 72% and 68%, respectively together
with greater biocatalytic efficiencies in the reaction system at a
neutral pH of 7.0. The engineered system had impressive opera-



M. Bilal, Hafiz M.N. Iqbal, Syed Farooq Adil et al. Journal of Advanced Research 38 (2022) 157–177
tional stability retaining over 60% of conversion efficiency after
seven repeated cycles.

Chitosan is a linear polysaccharide consisting of glucosamine
with varying degrees of deacetylation. It can be utilized for the dec-
oration of the magnetic nanocomposite’s surface. In addition to
impart stability to nanocarrier supports, it provides functional
groups (–NH2 and –OH groups), which are involved in chemical
connection with biomolecules. Since the amine groups of chitosan
have pKa value near 6.5, it possesses a coiled structure and can be
more soluble in acidic solution. A set of desirable characteristics
like bio-renewability, hydrophilicity, biodegradability, and bio-
compatibility [55,56], the chitosan-induced chemical modifica-
tions do not alter the basic network of carrier support and even
exert some advantageous activities such as adsorption, chelation,
bacteriostatic properties activities [57,58]. Due to its renewable
nature (derived from shells of shellfish: krills, crabs, shrimps, and
lobsters, and from the fishing industry waste), chitosan is poten-
tially considered an inexpensive coating agent that additionally
play a role in the development of competitive biocatalysts [59]. A
novel type of magnetic nanobiocatalyst was designed by efficient
immobilization of Trichoderma reesei cellulase onto chitosan mod-
ified Fe3O4/graphene oxide nanocomposite (Fe3O4/GO/CS). Using a
covalent coupling method using glutaraldehyde as a cross-linker,
cellulase was covalently attached to this nanocomposite. Trans-
mission electron microscopy (TEM), SEM and FTIR confirmed the
successful immobilization of cellulase with Fe3O4/GO/CS. With
regard to the soluble enzyme, the nanobiocatalytic system showed
highly enhanced bioactivity and retained over 75% of its actual
activity. After the immobilization process, a substantial widening
in pH, storage, and thermal stability were obtained. The immobi-
lized cellulolytic enzyme was capable of maintaining a high degree
of its original activity after repeatedly using for 8 cycles [60]. Cova-
lent attachment of Lipase B from C. antarctica onto sebacoyl-
modified chitosan-decorated MNPs constitutes a robust nanobio-
catalyst to catalyze enzyme-assisted kinetic resolution of various
racemic heteroarylethanols. It showed activity up to 10 repeated
catalytic cycles under the optimized conditions (n-hexane, vinyl
acetate, 45 �C) [61]. Manganese peroxidase isolated from Anthraco-
phyllum discolor was immobilized to chitosan/magnetic Fe3O4 bio-
composite to eliminate reactive orange 16 and methylene blue dye
pollutants. The nanobioconjugate preparation retained its activity
and demonstrated recycling ability in 5 consecutive reaction cycles
[62]. Alnadari and coworkers (2020) investigated the comparative
use of chitin, chitosan, and sodium alginate as biocompatible poly-
mers to functionalize MNPs for immobilization of b-glucosidase
from T. maritima (Tm-b-Glu) [63]. This exclusive technology entails
a novel thermally resistant chitin-binding domain (Tt-ChBD),
which was found desirable for larger-scale applications. Character-
ization indicated that chitin-coated MNPs exhibited the maximum
enzyme loafing capability and galactooligosaccharides (GOS)
biosynthesis from lactose among all the immobilization methods
for Tm-b-Glu-Tt-ChBD, in comparison to the free form of the
enzyme. Chitin represented the most robust binding capacity by
combining target proteins with Tt-ChBD. Fascinatingly, magnetic
separation enables the reusability of the nanobiocatalytic system
in several successive batches for GOS synthesis without a substan-
tial loss of enzyme activity. After the immobilization process, the
immobilized enzyme showed operational stability under varying
pH, temperature, storage, and thermal conditions.

Polyethylene glycol (PEG) is a hydrophilic polymer of ethylene
oxide that can improve the stability of MNPs. Inimitable attributes
including water solubility, biocompatibility, flexibility, non-
toxicity, and non-antigenic behavior render PEG a suitable coating
material in various biotechnological applications. PEG-wrapped
MNPs are found to be chemically stable and more dispersible than
their pristine form of nanoparticles [64]. In a recent study, PEG-
161
grafted MNPs were applied to covalent immobilization of pectinase
via trichlorotriazine crosslinking. The MNPs-PEG were prepared
under alkaline conditions by a chemical co-precipitation of FeCl3
and FeCl2 solutions using PEG as a coating agent. The prepared
MNP-PEG nanosupport was then cross-linked with cyanuric chlo-
ride to introduce active groups on their surface facilitating the
covalent attachment of pectinase enzyme. The resulted modified
MNPs were allowed to react with pectinase solution yielding active
MNP/PEG/CC-pectinase biocatalytic system (Fig. 3). In addition to
high loading capacity, PEG-grafted MNPs immobilized enzyme pre-
sented improved satisfactory operational stability, improved cat-
alytic efficiency, and easily recyclability in multiple cycles. pH
and thermal stability profile revealed augmented enzyme perfor-
mance even at extreme values than the free enzyme. Immobilized
preparation was able to retain up to 94% and 55% of its actual activ-
ity after storage for 125 days at 25 �C, and 10 repeated catalytic
runs, respectively. A prominent reduction in turbidity of pineapple
juice (up to 59%) after treatment with the immobilized enzyme
suggest its application in food-processing sectors [65].
MNPs and carbon based nanocomposites for enzyme
immobilization

MNPs and carbon based nanocomposites that integrates the
useful magnetic attributes of the core (high saturation magnetiza-
tion) and excellent physicochemical properties of carbonaceous
materials have been well documented in the scientific literature
[66,67]. The integration of MNPs and carbonaceous materials
including CNTs and graphene into nanocomposites has recently
become a hot topic of research due to their new and/or enhanced
functionalities that cannot be achieved by either component alone,
and therefore holds great promise for a wide variety of applications
in catalysis, optoeletronic materials, surface enhanced Raman
Scattering, biomedical fields, and so on [68]. In comparison to iron
oxides, the applications of the carbon-coated MNPs have been
revealed in semi-heterogeneous catalysis, electrode supercapaci-
tors, lithium-ion batteries, and blood and water purification
[69–71]. Uniform coating of carbon on the surface of MNPs could
protect from air oxidation and increase its stability, biocompatibil-
ity, and dispersible properties. For biocatalysis application, the
aptitude of enzyme connection with the nanosupport by an ade-
quate organic chemistry-based protocol is particularly alluring
because it enables better enzyme reusability and negligible protein
side-products in the final reaction mixture. Owing to high mag-
netic saturation, larger surface area, and tunable surface function-
alities, carbon-coated MNPs have emerged as attractive choices of
nanosupports for enzyme immobilization. Zlateski et al. have used
chemically functionalized (diazonium chemistry) carbon-coated
cobalt NPs, which is activated for bioconjugation (N,N-
disuccinimidyl carbonate) and used for enzyme immobilization
[72]. Three different kinds of enzymes including a-chymotrypsin,
lipase B, and b-glucosidase were covalently attached to this mag-
netic nanosupport. After immobilization, the resultant enzyme–
particle conjugates showed good stability and catalytic perfor-
mance and could be recyclable from milliliter to liter volumes in
short recycling durations. Magnetic carbon-coated NPs have been
used for horseradish peroxidase (HRP) immobilization in combina-
tion with chitosan and cross-linking of glutaraldehyde and applied
to constitute an enzyme-based novel amperometric electrode for
H2O2 sensing [73].

Carbon nanotubes (CNTs) are one-dimensional nanostructured
materials, which are prepared by the coiling of one or more layers
of graphite sheets around a central axis. Many studies have focused
on functionalization (or coating) of CNTs (i.e., with magnetic or
superparamagnetic nanoparticles) or filling their cavity with mag-



Fig. 3. Schematic representation of the synthesis of 1,3,5-triazine-functionalized PEG-coated Fe3O4 nanoparticles and immobilization of pectinase. Reprinted from Ref. [65]
with permission from Elsevier. License Number: 5092320806715.
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netic molecules to obtain versatile systems for biomedical applica-
tions [74]. CNTs have recently drawn much interest in the fabrica-
tion of many nanocomposites for enzyme immobilization due to
high mechanical stability, porous structure, large surface area,
metal–semiconductor feature, and exceptional adsorption capabil-
ity [75,76]. In a report, PAMAM dendrimer coated magnetic multi-
walled carbon nanotubes (m-MWCNTs) were used for oriented
immobilization of Rhizomucor miehei lipase (RML). Results
revealed that the m-MWCNTs-PAMAM matrix immobilized lipase
showed recovery activity as high as 2808% with a 27-fold higher
esterification activity than the free form. Under the optimal condi-
tions, the biodiesel conversion by immobilized enzyme reached
94% from waste vegetable oil in a tert-butanol solvent system.
Furthermore, m-MWCNTs-PAMAM bound lipase was easily recov-
erable without loss of any significant reduction in conversion effi-
ciency even after 10 repeated conversion runs [77]. Magnetic
graphene nanocomposites have also been the subject of growing
attention in recent years [78]. A set of fascinating properties,
including easy surface amendment, magnetic response, simple fab-
rication, high enzyme loading, and noticeable reusability have ren-
dered them useful in many application such as catalysis, sensors
development, lithium batteries, dye and ion removal, microwave
absorption, supercapacitor electrodes, etc. [79–81]. For the first
time, hyaluronic acid-coated MNPs-functionalized graphene oxide
composites (GO-MNPs) for the immobilization of lipase B from
C. antarctica (Fig. 4). With reference to the free biocatalyst, the
storage stability of lipase-GO-MNPs was substantially improved.
GO-MNPs immobilized lipase showed activity at elevated temper-
atures retaining over 90% of its recovered activity at 60 �C, whereas
162
the soluble enzyme could preserve only 45% of its activity [82].
Rouhani et al. (2020) immobilized laccase from T. versicolor onto
magnetic-graphene nanocomposites via glutaraldehyde crosslink-
ing for the green preparation of sulfa drugs [83]. For this, magnetic
GO nanocomposite was first fabricated by in situ co-precipitation
method and then functionalized with APTES followed by cross-
linking with glutaraldehyde. The performance of the immobilized
nanobiocatalyst was markedly increased than that to free laccase
in terms of stability and activity under the optimal conditions. It
retained about 70% of its relative activity after incubating at
55 �C for 2 h, while only 48% of activity was recorded by the free
laccase under identical time duration. Furthermore, the nanobio-
conjugate preserved higher than 85% of its activity after 20 days
and possessed satisfactory recycling efficiency exhibiting 85% of
its initial activity after eight recurrent runs.

Small molecules and surfactants coating for enzyme
immobilization

A number of small organic molecules such as gallic acid, citric
acid, amino acids, tannic acid (TA), cyclodextrin, vitamins, lauric
acid, and dopamine are often employed for the modification of
MNPs surface following various strategies to enhance the biocom-
patibility, and stability of these MNPs [84–87]. One of the
approaches is the direct inclusion of small organic molecules dur-
ing fabrication. Tannic acid is a hydrophilic polyphenolic com-
pound with wide applications in the production of resin, leather,
and as polymer flocculants or coagulants for water remediation
[88]. Tannic acid can be used in combination with Fe(III) for the



Fig. 4. The diagram of the lipase-GO-MNPs-CLEAs assembly process. Reprinted from Ref. [82] with permission from Elsevier. License Number: 5092320991917. CLEAs-cross-
linked enzyme aggregates.
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modification of MNPs [89,90]. During the use of tannic acid as a
cross-linker, three galloyl groups from the tannic acid molecule
react with each of Fe III ion forming an octahedral complex [91].
The tannin-metal complex formation is significantly influenced
by the initial pH value. A tannin-metal mono-complex is generated
at pH below 2, whereas a pH of 3–6 yields a bis-complex, and a
stable tris-complex is formed at a pH of above 7. At ambient tem-
perature, the intermingling of TA and Fe III with each other in
water results in film formation. It is demonstrated that protein
molecules with open and random coil-like conformations display
a high affinity towards polyphenols compared with tightly folded
structures [92]. Tannic acid-coated MNPs were applied as a sup-
port material to the immobilization of b-agarase, which exhibited
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greater pH and thermal resistance as well as appreciable recycling
ability compared with the free counterpart. In addition, the immo-
bilized b-agarase-TA-MNPs system was applied to prepare
neoagaro-oligosaccharides with varying degrees of polymerization
and antioxidant activities [93]. Atacan and coworkers adopted a
solvothermal method to prepare MNPs and modified with tannic
acid by a novel binding process for covalent immobilization of
trypsin (Fig. 5) [94]. The trypsin was attached to tannin-modified
MNPs by generating Michael-type addition or Schiff-base reaction
among the quinone moieties present on the tannin NPS, which are
produced by of pH-driven oxidation of pyrogallol groups of tannin,
and the amino groups of the trypsin (Fig. 6). Thus, efficient immo-
bilization was demonstrated by carrying out a novel process.



Fig. 5. The illustration of modification and immobilization process on magnetic iron oxide nanoparticles for efficient BSA digestion. Reprinted from Ref. [94] with permission
from Elsevier. License Number: 5092321139781.
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Finally, the trypsin bound to tannin-coated MNPs was applied to
successful enzymatic digestion of bovine serum albumin (BSA),
where it showed a satisfactory digestion performance for BSA
and egg white proteins.

As a natural molecule, gum arabic (GA) has demonstrated the
ability to improve the colloidal stability of magnetic nanomaterials
because of non-specific adsorption [95]. Coating with GA increases
colloidal stability as well as incorporates reactive functionalities
that aid in the coupling of biomolecules or enzymes. Mahmood
et al. used GA as a coating agent to circumvent MNPs agglomera-
tion and augment their biocompatibility making it an attractive
carrier for CRL immobilization [96]. GA-coated MNPs (GA-MNPs)
were fabricated by chemical co-precipitation technique and func-
tionalized with glutaraldehyde for effective attachment of lipase
enzyme onto this magnetic support. Before immobilization, the
lipase surface was covered with different surfactants for stabiliza-
tion of enzyme in its open form. The resulted surfactant-coated
immobilized lipase bio-system was applied to produce ethyl iso-
valerate, a flavor ester. Among the different surfactants tested,
non-ionic surfactants showed better contribution with the reten-
tion of 80% esterification yield in 48 h than that to corresponding
anionic/cationic surfactants. Such improvement in activity might
be ascribed to the interfacial activation of immobilized non-ionic
surfactant-coated lipase conjugate. Moreover, surfactant-coated
forms of the magnetic nanobiocatalyst preserved good catalytic
activity after seven consecutive reuse cycles. In another report,
the surface of MNPs was coated with gallic acid biomolecule. The
phenolic moieties in gallic acid are attractive to nucleophiles, such
as primary amines, making them capable of immobilizing enzyme
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molecules [97]. Furthermore, gallic acid presents the benefits of
low cost, abundant availability, and biocompatibility. Trypsin (EC
3.4.21.4) was efficiently immobilized on the surface of easily fabri-
cated gallic acid-coated MNPs, which offers a decent support
matrix due to high accessible surface area and facile separation
properties. As compared to the free enzyme, the immobilized form
of trypsin presented high stability and retained high enzyme rela-
tive activity in alkaline pH conditions (pH range of 6 to 10.5) and a
temperature range of 45 to 55 �C. It also showed appreciable stor-
age stability retaining over 90% of activity after four months at 4 �C,
while 60% of activity was recorded using the free enzyme under
comparable conditions. After 8 continuous reuse times, the activity
of the immobilized enzyme was found to 54.5% of its primary
activity. It was capable of hydrolyzing BSA that manifests its appli-
cation in the field of diagnostics, pharmaceuticals, food, and waste
treatments [98].
Metal-chelated MNPs for enzyme immobilization

Surface functionalization of MNPs with metal elements may
furnish an inert layer, which explicitly displays a core-satellite,
core–shell, or dumbbell structural morphology. In addition, the
functionalization of MNPs by metallic coatings results in improved
compatibility and stability [99]. Loading of metal ions directly on
the surface of support and chelation with enzyme molecules often
display retention of high enzyme capacity and biocatalytic perfor-
mance following the immobilization process [100]. Moreover, the
metal-chelated affinity immobilization process is facile, fairly mild,



Fig. 6. The chemical structure of pH-catalyzed oxidation of pyrogallol groups of tannin and subsequent binding reactions with the amines on trypsin. Reprinted from Ref. [94]
with permission from Elsevier. License Number: 5092321139781.
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and easy to perform, and the support could be recycled after des-
orption of the used enzyme. Hence, the metal-coated MNPs, inte-
grating the benefits of paramagnetic property and immobilized
metal ion affinity interaction, might have an incredible perspective
for enzyme immobilization. Chen et al. (2014) synthesized
agarose-coupled novel MNPs using by co-precipitation method
under alkaline conditions [101]. MNPs were first coated with imin-
odiacetate using an epichlorohydrin agent followed by chelation
with metal ions. The morphology and chemical properties of pre-
pared support was analyzed by SEM, XRD, VSM, and FTIR. Among
different metals ascertained, the Co2+-chelated agarose MNPs
exhibited the highest b-glucosidase loading ability of 1.81 mg/g
MNPs and attained the maximum recovered activity (117% per
protein gram) for b-glucosidase immobilization. Immobilized
bioconjugate displayed high operational and thermal stability
and preserved over 90% of its preliminary activity after repeatedly
using for 15 runs. A novel metal-chelating ligand,
5-aminoisophthalic acid (5-AIPA), was effectively coated onto
MNPs, which were pre-decorated with (3-Glycidoxypropyl) tri-
methoxy silane (GOPTS) for Co2+-chelated affinity immobilization
of lipase from P. fluorescens [102]. Covalent coating of support sur-
face with GOPTS was initially used to link MNPs beads containing
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hydroxy to create reactive epoxy groups for additional functional-
ization. Afterward, the condensation of GOPTS-coated MNPs with
5-AIPA caused the epoxy group to react with the amine group of
aromatic carboxylic acid. Finally, Co2+-chelated AGMNPs were
applied to immobilize lipase from Pseudomonas fluorescens, and
adsorption–desorption of lipase enzyme achieved cyclic use of this
support matrix (Fig. 7). Under the optimal environment, the resul-
tant immobilized lipase possessed 95% conversion efficiency to
synthesize biodiesel from waste cooking oil. It also retained higher
than 80% of biodiesel yield after 10 repeated conversion cycles that
demonstrate excellent operational performance. The designed sup-
port was readily regeneratable after the desorption of the inacti-
vated enzyme and can be re-chelated with the Co(II) ions [102].

Wang et al. [87] prepared Ni2+-functionalized silica-coated
MNPs (SiMNPs) using isocyanatopropyltriethoxysilane as a
metal-chelating ligand to immobilize prolidase from Escherichia
coli [103]. To this end, water-soluble nanocrystallites of iron oxide
were first produced by the co-precipitation synthetic method,
which was subsequently wrapped with a silica shell by reacting
with tetraethoxysilane (TEOS) in aqueous ammonia. Further cou-
pling of silica shell iron oxide nanoparticles with the chelating
agent 3-(triethoxysilyl)propyl isocyanate-nitrilotriacetic acid



Fig. 7. Schematic diagram of Co2+-chelated MNP preparation for use in reversible immobilization of lipase. Reprinted from Ref. [102] with permission from Elsevier. License
Number: 5092321359009.
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(ICPTES-NTA) and NiCl2 results in the formation of fully-armed
Ni2+-functionalized silica-wrapped MNPs (NiNTASiMNPs). The
resultant synthesized NiNTASiMNPs were employed as
an affinity probe to adsorb His6-EcPepQ. Characterization of
native and NiNTASiMNPs-bound enzyme revealed that
His6-EcPepQ@NiNTASiMNPs enzyme showed greatly improved
activity at elevated temperature of 70 �C and a wider pH range of
5.5 to 10 than that to free counter form. It also displayed enhanced
stability when stored for 2 months and reusable for over 20 cycles
by retaining 80% of its original activity. Moreover, the immobilized
magnetic nanobiocatalyst was applied to degrade organophospho-
rus compounds, including diethyl p-nitrophenyl phosphate (ethyl
paraoxon) and dimethyl p-nitrophenyl phosphate (methyl para-
oxon). Results demonstrated dimethyl p-nitrophenyl phosphate
as a preferred substrate for degradation by immobilized prolidase.
Mesoporous material-modified MNPs for enzyme
immobilization

Mesoporous materials have been recognized as prodigious car-
riers for enzyme immobilization due to a set of desired features
including designable pore size, huge surface area, non-toxicity,
greater pore volume, and thermo-chemical strength [104].
Enzymes can be attached on the surface or trapped within the
pores of mesoporous matrices by covalent coupling, cross-
linking, or simple physical adsorption. A large number of various
organosilanes are utilized to insert cyano, amino, epoxy, or sulfhy-
dryl functionalities on the surface of mesoporous materials for effi-
cient enzyme attachment [105]. The introduction of these
functional groups generates many reactive sites to bind biomole-
cules and thus enhance the loading capacities. Furthermore, the
penetration of organic groups into the mesoporous channel
reduces the pore volume or size, resulting in the prevention of
enzyme leaching. Likewise, Muñoz-Pina and coworkers (2018) also
examined the polyphenol oxidase (PPO) immobilizing ability of
many thiol-modified mesoporous silica materials with diverse geo-
metrical shapes, structures, and pore sizes. UVM-7 is a silica-based
166
mesoporous material that comprises of both mesopores and textu-
ral pores. It also has shown potential for enzyme immobilization
such as polyphenol oxidase in both real and model systems
[106]. More recently, the same group fabricated five different
nanostructured materials to inspect their capability to increase
the activity of the PPO enzyme. All these materials were based
on a mesoporous silica material (UVM-7 support) and introduced
with different functionalities (i.e. amine, alkane, isocyanate, pyri-
dine, and carboxylic acid) to evaluate PPO immobilization capacity.
Except for the carboxylic acid-modified nanomaterial, all other
functionalized nanosupports offered high enzyme loading abilities
and the immobilization rate increases with functionalization.
Interestingly, amine-carrying support material captured not only
the PPO enzyme but also sequestrated the resultant oxidation
products. This nanomaterial was corroborated by reacting with
fresh apple juice in which no browning occur even after exposure
to 1.5 h in the presence of oxygen [106]. Furthermore, the modifi-
cation of MNPs with mesoporous materials including silica helps in
efficient encapsulation/adsorption of enzymes, due to various rea-
sons including the presence of hollow spheres with mesoporous
walls, ability of forming unique core/shell system etc [107]. For
instance, khorshidi et al., reported the successfull immobilization
of cross-linked cellulase aggregates (CLEA) on the amine-
functionalized Fe3O4@silica core–shell magnetic nanoparticles
(MNPs) [108]. In another study, Wang et al., have exploited the
mesoporous properties of silica nanoparticles to fabricate worm-
hole framework structured mesoporous silica-magnetite
nanocomposites [109]. The magnetic nanocomposites were pre-
pared by using tetraethyl orthosilicate as the silica source and
amine terminated Jeffamine surfactants as template. The
nanocomposites were modified by chelating with copper to further
enhance the adsorption capacity. The Cu2+ chelated magnetic
nanocomposite showed higher adsorption capacity of 98.1 mg g�1

-particles and activity recovery of 92.5% for laccase via metal affin-
ity adsorption. More recently, core � shell structured magnetic
mesoporous silica microspheres with ultra-large mesopores were
developed using a controllable solvent evaporation induced
solution-phase interface co-assembly approach [110]. For this pur-
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pose. large-molecular-weight amphiphilic block copolymers poly
(ethylene oxide)-blockpoly(methyl methacrylate) (PEO-b-PMMA)
and small surfactant cetyltrimethylammonium bromide were
employed as co-templates, which co-assembled with silica source
in tetrahydrofuran/water solutions. The as-prepared composite
was used to immobilize trypsin, which demonstrated a high load-
ing capacity of 80 lg/mg. In another study, mesoporous yolk–shell
nanoparticles with a movable Fe3O4 core inside the hollow cap-
sules, with two different morphologies were fabricated using a
template-assistant selectively etching method [111]. The compos-
ites were applied as carriers for Candida rugosa lipase (CRL)
immobilization.
MOF-modified MNPs for enzyme immobilization

Amongst nanostructured materials, MOFs are considered an
inspiring group of support materials for enzymes encapsulation
owing to their exceptionally larger surface area, pore size unifor-
mity, tunable surface and porosity, easy recovery, functional and
structural versatility, and high thermal and chemical stability
[112,113]. Surface adsorption, co-precipitation, and pore encapsu-
lation are three notable immobilization strategies that can be used
to embed enzymes onto MOFs. Co-precipitation strategy can pro-
tect enzyme molecules from thermal, biological, and chemical
degradation by embedding enzyme molecules within MOFs, and
resultantly, generate immobilized enzyme with improved stability
[114]. The use of MNPs-MOF nanocomposites produced by inte-
grating features of both Fe3O4 NPs and MOFs have emerged as
novel platforms for immobilizing a diverse array of enzymes
[115,116]. Generally, MNPs-MOF nanocomposites are produced
by the reaction between metal ions and organic ligands using car-
boxylated Fe3O4 NPs. Wang et al. (2016) introduced an efficient,
facile, and environmentally-responsive approach for the prepara-
tion of magnetic MOF nanocomposite [117], Fe3O4@MIL-100(Fe).
For this, carboxyl-modified Fe3O4 nanorods were incorporated
with three-dimensional MIL-100(Fe) nanocrystals. The as-
prepared composite microsphere showed the substantial surface
area and strong magnetic properties, which make them attractive
contenders for enzyme immobilization. The CRL was immobilized
onto Fe3O4@MOF core–shell microspheres by covalent attachment
(strategy I) and metal-ion affinity interfaces (strategy II). The
immobilized nanobiocatalytic system reserved 65% of its prelimi-
nary activity at 65 �C for the hydrolysis of olive oil over 6 h. It
retained over 60% of remaining activity after 10 reiterated catalytic
runs and presented a significant improvement in biocatalytic activ-
ities at broader temperature and pH ranges than that to the free
enzyme. High enzyme loading capacity was ascribed to large pore
size and surface area combined with the occurrence of free car-
boxyl groups and unsaturated metal sites in MOFs.

A novel magnetically active Ni-based MOF composite was pre-
pared for efficient separation and immobilization of enzymes
[118]. For this, a facile one-pot hydrothermal method was adopted
to develop Ni-based MOF nanorods (Fe3O4/Ni-BTC) with a good
magnetic response by the entrapment of citric acid-coated MNPs
on Ni-BTC. Characterization revealed that these nanocomposites
were fabricated in the form of nanorods, which contained MNPs
on their surface. A variety of different interactions played a key role
in enzyme immobilization, such as hydrogen bonding, electrostatic
attraction, hydrophobic forces, and affinity between histidine tags
and Ni2+. Based on the mechanistic understanding of these
nanocomposites, a new approach was proposed for the immobi-
lization of S-adenosylmethionine synthetase (SAMS), which
showed high stability against extreme pHs and elevated tempera-
ture, and showed noteworthy repeatability profile after immobi-
lization process [118].
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Laccase from white-rot fungi was immobilized, for the first
time, onto amino-functionalized magnetic MOF, Fe3O4-NH2@MIL-
101(Cr) [119]. Immobilized laccase prepared by the covalent bond-
ing and adsorption method revealed high immobilization yield, lar-
gely recovered activity, and better endurance to low pH and
elevated temperature regimes. It also showed excellent storage
stability holding over 85% of its initial bioactivity after storage of
28 days. At an extreme temperature of 85 �C, Fe3O4-NH2@MIL-
101(Cr) bound biocatalyst presented about 50% of the remaining
activity even after heating for 6 h. The tolerance of immobilized
laccase was greatly improved in organic solvents like methanol.
Finally, Fe3O4-NH2@MIL-101(Cr)-based biocatalytic system led to
the rapid removal of 2,4-dichlorophenol, reaching the removal effi-
ciency to 87%. After the reaction, laccase can be easily recovered by
the mean of a magnet from the complex reaction solution. All these
features make MOF-based MNPs nanocomposite a novel nanoplat-
form for immobilizing an array of enzymes with high catalytic
activity and great biotechnological potential [119]. Table 2 por-
trays a current summary of the use of surface-engineered magnetic
nanoparticles as novel paradigms for enzyme immobilization.
Biomedical applications of surface coated MNPs.

Detection, diagnostics and therapy

MNPs have often been widely used in several biomedical appli-
cations such as, biosensing, medical diagnostics, drug delivery,
gene transfer etc. [135]. Among various extraordinary physico-
chemical properties of MNPs including fluorescence, photoacoustic
effects, hyperthermia, magnetism, and photothermal properties
[136,137]. Particularly, enzyme-like catalytic properties of MNPs,
such as peroxidase-like activity of iron oxide NPs, have received
immense interest in the field of biomedicine [138]. Due to these
enzymatic properties, in some cases modified MNPs are referred
as nanoenzymes (enzyme mimetic MNPs), which are artificial
enzymes with highly effective enzyme-like properties [139,140].
Recently, these materials have gained considerable interests as
they are easy to prepare, controllable in size and adjustable in
function [141]. Besides, they offer stability and multifunctionality
when compare to conventional enzymes and thus offer versatile
applications in the field of biomedicine [138]. Enzyme mimetic
MNPs demonstrate high stability even under harsh conditions
including high temperatures, high acidic and basic environments.
For example, Fe3O4 NPs stabilized with peroxidase-like casein
showed excellent stability in wide range of pH between 1 and
12, and temperatures from 4 to 90 �C [142]. The as-prepared
casein-MNPs were applied to catalyze the oxidation of a peroxi-
dase substrate 3,30,5,50-tetramethylbenzidine (TMB) by H2O2 to
the oxidized colored product which provides a colorimetric detec-
tion of H2O2. Contrarily, HRP enzyme did not exhibit any activity
after treatment at lower pH (less than 5) and rapidly lost its activ-
ity as the temperature increased to 40 �C. Due to the smaller size of
NPs and high surface area enzyme mimetic MNPs also offer excel-
lent biocatalytic activity which can be further tuned by controlling
the size and morphology of nanoparticles. This phenomenon has
been successfully demonstrated by Gao et al., who has developed
a novel immunoassay involving antibody-modified magnetite
nanoparticles for the successful capturing, and separation of
wastes in the treatment of wastewater. The small sized enzyme
mimetic MNPs have exhibited highest catalytic activity in the
order 30 nm greater than 150 nm greater than 300 nm [143]. In
addition, the enzymatic activity of enzyme mimetic MNPs also
dependent on the shape of NPs. Different shapes of iron oxide
nanostructures like octahedral, spheres, and triangular plates have
showed different peroxidase-like activities [144]. Apart from



Table 2
Some examples of surface-coated magnetic nanoparticles as support materials for enzyme immobilization and their applications.

Magnetic nanocarrier Enzyme Functional reagent Improved properties Application References

MNPs Pseudomonas
fluorescens lipase

Co2+ Immobilized lipase possessed 95%
conversion efficiency to synthesize biodiesel
from waste cooking oil.
Excellent operational performance retained
higher than 80% of biodiesel yield after 10
repeated conversion cycles.

Biodiesel production [102]

Fe3O4-NH2@MIL-101(Cr) Laccase from white rot
fungi

MIL-101 High recovered activity, and better
endurance to low pH and elevated
temperature regimes.
Excellent storage stability retaining over 85%
of its original bioactivity after storage of
28 days.
At an extreme temperature of 85 �C, Fe3O4-
NH2@MIL-101(Cr) bound biocatalyst
presented about 50% of the remaining
activity even after heating for 6 h.
Rapid removal of 2,4-dichlorophenol,
reaching the removal efficiency to 87%.

Removal of phenolic
compounds

[119]

Agarose-coupled novel
MNPs

b-glucosidase from
sweet almond

Co2+ Immobilized bioconjugate displayed high
operational and thermal stability, and
preserved over 90% of its preliminary activity
after repeatedly using for 15 runs.

Production of aromatic
compounds
Ethanol from cellulosic
agricultural residues

[101]

MNPs-functionalized
graphene oxide
composites

Lipase B from Candida
antarctica

Hyaluronic acid As compared to the free enzyme, the storage
stability of lipase-GO-MNPs was
substantially improved.
GO-MNPs immobilized lipase showed
activity at elevated temperatures retaining
over 90% of its recovered activity at 60 �C,
whereas the free enzyme retained only 45%
of its activity under the same temperature
conditions.

Biodiesel production,
pharmaceuticals and
cosmetic industry

[82]

MNPs Porcine pancreatic
lipase and penicillin G
acylase

Cellulose Improved catalytic activity and stability of
immobilized enzymes.
Easy separation of immobilized enzymes
from the reaction system.

Enzyme immobilization [120]

MNPs b-agarase Tannic acid Immobilized b-agarase, exhibited greater pH
and thermal resistance as well as appreciable
recycling ability compared with the free
counterpart.
The immobilized b-agarase-TA-MNPs system
was applied to prepare neoagaro-
oligosaccharides with varying degrees of
polymerization and antioxidant activities

Preparation of bioactive
neoagaro-oligosaccharide

[93]

Trichlorotriazine-
functionalized MNPs

Pectinase Polyethylene
glycol

Immobilized enzyme presented improved
satisfactory operational stability, improved
catalytic efficiency, and easily recyclability in
multiple cycles.
Augmented pH and thermal stability profile
than the free enzyme.
Retained up to 94% and 55% of its actual
activity after storage for 125 days at 25 �C,
and 10 repeated catalytic runs, respectively.
A prominent reduction in turbidity of
pineapple juice (up to 59%) after treatment
with the immobilized enzyme.

Fruit juice clarification [65]

Fe3O4@MIL-100(Fe) Candida rugosa lipase MIL-100(Fe) Immobilized nanobiocatalytic system
retained more than 65% of its original activity
at 65 �C for the hydrolysis of olive oil in 6 h.
It retained over 60% of residual activity still
after 10 repeated catalytic runs.
Presented a significant improvement in
biocatalytic activities at broader temperature
and pH ranges than that to the free enzyme.

Transesterification and
synthesis of esters

[117]

MNPs Cholesterol oxidase Silica In contrast to the soluble enzyme, the
covalent immobilization of biocatalyst was
able to retain about 50% of its activity.

Development of
biosensing components

[121]

MNPs Glucose oxidase Silica Immobilized bioconjugate preparation
maintained over 95% and 90% of its original
activity after storage for 45 days, and 12
consecutive reaction cycles.
Substantial improvements in thermal
stability profiles were also recorded at high
temperatures up to 80 �C. Moreover, the
immobilized biocatalyst was less likely to be
affected by alterations in pH values

Biomedical applications [33]
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Table 2 (continued)

Magnetic nanocarrier Enzyme Functional reagent Improved properties Application References

MNPs Phospholipase D Silica Increased tolerance of immobilized enzyme
to high temperature. Catalytic activity of the
immobilized biocatalyst retained to be 40%
after eight recycles.

Synthesis of
functional
phosphatidylserine

[122]

MNPs film Horseradish
peroxidase
from horseradish cv.
Balady

Polymethyl
methacrylate

Excellent reusability retaining 78.5% of its
initial activity after 10 repeated cycles.
High stability of the immobilized HRP against
metal ions, a high urea concentration,
isopropanol, and Triton X-100.
Efficient removal of phenol in the presence of
hydrogen peroxide.

Removal of wastewater
aromatic pollutants

[123]

Fe3O4–graphene
nanocomposite

Trametes Versicolor
laccase

APTES Stability and activity of the immobilized
nanobiocatalyst was markedly increased
than that to free laccase.
Retained about 70% of its relative activity
after incubating at 55 �C for 2 h, while only
48% of activity was recorded by the free
laccase under identical time duration.
Nanobioconjugate preserved higher than 85%
of its activity after 20 days of storage and
possessed satisfactory recycling efficiency
exhibiting 85% of its original activity after
eight repeated cycles.

Green preparation of sulfa
drugs

[83]

Biomimetic silica-MNPs
hybrid nanocomposite

b-glucuronidase from
Patella vulgata limpets

silica Superior storage, thermal, and operational
stability of the enzyme immobilized in the
composite material.
Different bioconjugates with MNPs and Si
maintained 40% of their original activities at
a high temperature of 80 �C after 6 h, while
the free form of enzyme dropped over 90% of
its activity within 10 min.

Pharmaceutical and food
industry

[34]

Fe3O4/Ni-BTC S-adenosylmethionine
synthetase from
Thermus thermophilus
HB27

Citric acid Iimmobilized enzyme was more stable
against temperature variation (by nearly 8-
fold in an
80 �C water bath after 2 h) and extreme pH
(by nearly 1.3-fold at pH 3).
Excellent reusability after immobilization
with high efficiency and stability.

Biosynthesis of S-
adenosylmethionine

[118]

Amino-functionalized
MNPs

Alkaline protease from
Bacillus licheniformis

APTES Excellent operational stability retaining
50.1% of its initial activity after 10 cycles.
Efficient catalytic hydrolysis of oat bran into
oat polypeptides.

Preparation of oat
polypeptides

[124]

Ni2+-functionalized MNPs Prolidase from
Escherichia coli

Silica Improved activity at elevated temperature of
70 �C and a wider pH range of 5.5 to 10 than
that to free counter form.
Enhanced stability at storage for 2 months
and reusable for over 20 cycles by retaining
80% of its original activity. Degradation
efficiency for organophosphorus compounds.

Hydrolysis of
organophosphorus
compounds

[103]

MNPs Candida rugosa lipase Alkyl silane Increased catalytic activities of lipases after
immobilization.
Good stability and recycling ability retained
65% of its initial activity after seven repeated
cycles.

Enzyme immobilization [125]

NPs Horseradish
peroxidase
from horseradish cv.
Balady

Carbon Enzyme-based novel amperometric electrode H2O2 sensing [73]

MNPs Lipase from
Thermomyces
lanuginosus

Polydopamine A broader pH and temperature adaptability
as compared to the free enzyme.
Improved pH, thermal, and solvent tolerance
stabilities compared to the free enzyme.

Biodiesel production,
organic synthesis, and
environmental protection

[126]

MNPs Cellulase from
Aspergillus fumigatus

– Immobilized enzyme retained 56.87% of its
maximal activity after 6 h of incubation at
60 �C.
Efficient hydrolysis of pre-treated rice straw
with saccharification efficiency of 52.67%.
Reutilization for up to four saccharification
cycles with retention of 50.34% activity.

Enzymatic
saccharification of rice
straw

[127]

Magnetic carbon nanotubes Glucoamylase from
Aspergillus niger

Poly(amidoamine) superior stability and reusability, without
compromising the
substrate specificity of free glucoamylase

Starch
processing and glucose
production

[128]

(continued on next page)
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Table 2 (continued)

Magnetic nanocarrier Enzyme Functional reagent Improved properties Application References

Metallic nanomagnets a-chymotrypsin,
lipase B, and b-
glucosidase

Carbon Immobilized bioconjugate preparations
showed good stability and catalytic
performance and could be recyclable from
milliliter to liter volumes in short recycling
durations.

Analytical
immunoprecipitation and
cell separation

[72]

MNPs with long alkyl chains Candida rugosa lipase poly-
N,N
diethylaminoethyl-
acrylamide

Nanoimmobilized biocatalytic system with
the longest alkyl chains presented superior
tolerance to high temperature (ranging from
25 to 70 �C) than that to the free form of
lipase.
It also showed good recyclability in four
successive cycles and conveniently recovered
by a simple magnetic separation.

Biodiesel production, food
processing , cosmetic and
pharmaceutical industry

[49]

Divinyl
sulfone
superparamagnetic
nanoparticles

Lipase from
Thermomyces
lanuginosus

Polyethyleneimine Good enantioselectivities with high catalytic
activities in the reaction medium at pH 7.0.
Excellent operational stability in the
esterification reaction obtaining up to 61 %
conversion after the seventh reaction cycle.

Biodiesel production, food
processing , cosmetic and
pharmaceutical industry

[129]

Superparamagnetic
nanoparticles (Fe3O4)

Lipase from
Thermomyces
lanuginosus

Polyethylenimine,
APTES, and
Glutaraldehyde

The SPMN (superparamagnetic nanoparticle)
@APTES covalent preparation had around
450 min of half-life time at pH 7.0 and 70 �C
while that of the free enzyme was 46 min.
The conversion attained was 50% and the
enantiomeric excess of the product was 99%.

Recovery of the
biocatalyst

[130]

MNPs Alcohol
dehydrogenase

Carboxymethyl
dextran

In contrast to the free form of ADH that
dropped 70% of its original activity at 20 �C,
and complete loss of its activity at 40 �C after
24 h.
Nanoimmobilized biocatalyst retained more
than 50%, and 75% of its remaining activity at
20 �C and 40 �C, respectively, under the same
incubation period of 24 h.

Chemical industries [48]

Fe3O4/SiO2/NH2 L-asparaginase APTES, and
Glutaraldehyde

ASNases were more stable in a wide range of
pH and temperature values under the
optimum reaction conditions.
High stability at an elevated temperature of
50 �C for 3 h.
Free form of enzyme showed only 30% of its
original activity after preserving at 4 �C for
1 month, whereas Fe3O4/SiO2/NH2 ASNase
preserved above 78.9% of its preliminary
activities.
Outstanding functioning stability after 17
consecutive batch cycles.

Anti-leukemia
chemotherapy

[31]

Fe3O4/SiO2/COOH L-asparaginase APTES, and
Glutaraldehyde

High stability in a wide range of pH and
temperature values.
Preservation of 56.5% of its initial activity.
Outstanding operational stability in several
consecutive cycles.

Anti-leukemia
chemotherapy

[31]

Magnetic graphene
nanocomposite

Trichoderma reesei
cellulase

Chitosan With regard to the soluble enzyme, the
nanobiocatalytic system showed highly
enhanced bioactivity and retained over 75%
of its actual activity.
After the immobilization process, a
substantial widening in pH, storage, and
thermal stability were obtained.
The immobilized cellulolytic enzyme was
capable of maintaining a high degree of its
original activity after repeatedly using for 8
cycles.

Saccharification of
microcrystalline cellulose

[60]

Sebacoyl-modified MNPs Lipase B from Candida
antarctica

Chitosan High activity up to 10 repeated catalytic
cycles under the optimized conditions (n-
hexane, vinyl acetate, 45 �C).

Enzymatic
Kinetic Resolution of
Racemic
Heteroarylethanols

[61]

MNPs b-glucosidase from
Thermotoga maritima

Chitin, chitosan,
and sodium
alginate

Marked reusability of the nanobiocatalytic
system in several successive batches for GOS
synthesis without a substantial loss of
enzyme activity.
Immobilized enzyme showed operational
stability under varying pH, temperature,
storage, and thermal conditions.

Galacto-oligosaccharide
production

[63]
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Table 2 (continued)

Magnetic nanocarrier Enzyme Functional reagent Improved properties Application References

Iron oxide magnetic
nanocomposite

Manganese peroxidase
from Anthracophyllum
discolor

Chitosan The nanobioconjugate preparation retained
its activity and demonstrated recycling
ability in 5 consecutive reaction cycles.

Decolorization of textile
wastewater

[62]

Fe3O4@SiO2_EDTA-TMS Laccase EDTA-Cu (II) Good operational stability of the
immobilized enzyme presenting 73% of its
initial activity after five sequential reactive
cycles. Successfully applied to the
degradation of Indigo
Carmine dye

Biocatalysis and
biosensors

[131]

MNPs Tyrosine Tannic acid Enzymatic digestion of bovine serum
albumin

Protein digestion [94]

MNPs Tyrosine Gallic acid Immobilized trypsin presented high stability
and retained high enzyme relative activity in
alkaline pH conditions (pH range of 6 to 10.5)
and a temperature range of 45 to 55 �C.
It also showed appreciable storage stability
retaining over 90% of its original activity after
storage for 4 months at 4 �C.
After 8 continuous reuse times, the activity of
the immobilized enzyme was found to 54.5%
of its primary activity.

Diagnostics,
pharmaceuticals, food,
and waste treatments

[98]

MNPs Candida rugosa lipase Gallic acid Improved esterification activity.
Surfactant-coated forms of the magnetic
nanobiocatalyst preserved good catalytic
activity after seven consecutive reuse cycles.

Production of multicycle
ethyl isovalerate

[96]

Fe3O4@silica
yolk-shell
nanospheres

Catalase from bovine
liver

TMOS, APTES Enhanced recycling efficiency and high
resistance to heat, proteolytic agent, and
denaturants.

Enzyme shielding [132]

Fe3+-TA@
Fe3O4/SiO2-catalase

Catalase from bovine
liver

TMOS, APTES Improved stability and efficient recycling
ability

Shielding effect to protect
enzymes from thermal,
biological, and chemical
degradation

[133]

Fe3O4@mSiO2 Nitrile hydratase Glutaraldehyde Improved pH, thermal, mechanical and
storage
stability

Catalysis production of
nicotinamide

[134]

CA-Fe3O4 NPs Lipase Citric acid Excellent long-term storage stability and
increased activity at high temperature and
pH

Enzyme immobilization [4]

MNPs—Magnetic nanoparticles; TMOS— Tetramethyl orthosilicate.
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enzyme-like activity, iron oxide based enzyme mimetic MNPs also
possess excellent superparamagnetism properties which can be
exploited for multipurpose performances. For examples, the
enzyme like activities of MNPs can be utilized to replicate peroxi-
dase and catalase activities at acidic and neutral pH, respectively.
Chen et al., have demonstrated the process of controlling the abil-
ity of free radicals under intracellular microenvironment through
pH-dependent peroxidase-like and catalase-like activities of iron
oxide NPs [145]. They have investigated the interaction of nanoen-
zyme with H2O2 within cells, the results revealed a concentration-
dependent cytotoxicity on human glioma U251 cells, and they
could dramatically enhance H2O2-induced cell damage. This pH
controlled enzyme like activity can be effectively utilized under
special circumstances like tumors or biofilms. Similarly, the
enzyme mimetic MNPs offers great opportunity in other biomedi-
cal applications. Mostly, the peroxidase like activity of these mate-
rials have been utilized to enhance the signal detection during
colorimetric reactions and generate free radicals to kill bacteria
and cells or interfere ROS level. One of the primary applications
of enzyme mimetic MNPs is the replacement of horseradish perox-
idase (HRP) in enzyme-linked immunosorbent assay (ELISA) and
other HRP-related molecular detection. Such as the development
of MNPs based immunosorbent assay by Gao et al., using
chitosan-modified magnetite nanoparticles to replace enzymes in
conventional ELISA configurations [35].

Besides, these enzyme mimetic MNPs based novel immunoas-
says have also been used to detect various antigens or pathogens
including human chorionic gonadotropin (HCG), IgG and epider-
mal growth factor receptor (EGFR) [138]. Apart from detections,
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enzyme mimetic MNPs have also been used for tumor diagnosis
and therapy. Such as, magneto-ferritin nanoparticles (M�HFn)
which targeted and visualized affected tissues (tumor) without
using any targeting ligands or contrast agents [146]. In addition,
these materials have also been used for the direct elimination
of tumors. Particularly, iron oxide NPs have been very useful in
this regard, they facilitate the generation of toxic radicals by cat-
alyzing which affect tumor viability. However, in many cases the
amount of H2O2 is not sufficient to initiate toxicity [147]. To
enhance this, H2O2 is directly injected into the body or combine
with an enzyme to generate H2O2 using in vivo substance as sub-
strate. Indeed, the later process is more suitable compare to the
direct injection of H2O2, which may cause unwanted damage to
local tissues.

Bioelectronics

In this field, advance functional bio-devices such as biosensors,
biofuel cells etc., are created by integrating biomolecules including
enzymes with electronic systems. Recent advancements in the
field of nanobiotechnology have enabled to create highly sensitive
biomedical devices with advance functionalities. Biofuel cells
involve biological materials, including proteins, microorganisms,
enzymes etc., as catalysts to convert chemical energy into electrical
power. The enzyme based biofuel cells typically consist of isolated
enzymes as catalysts, anode, cathode and electrolyte materials
[148]. So far, various oxidoreductase enzymes such as glucose
dehydrogenase, aldehyde dehydrogenase, glucose oxidase etc.,
have been used in different types of enzymatic biofuel cells which
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have been applied as a power source for portable or implantable
electronics, including pacemaker etc. For example, a ternary
conducting nanocomposite, involving Fe3O4 MNPs, carbon nan-
otubes (CNT), gold nanoparticles (Au) and a conducting polymer
polypyrrole (PPy), was developed and applied as the electrode sup-
port for the immobilization of glucose oxidase (GOD) [149]. The
resulting composite improved the bioelectrocatalysis of the
enzyme towards oxidation of glucose. In another study, magnetic
carbon-encapsulated iron nanoparticles (CEINs) immobilized with
laccase (Lc) and 1,4-naphthoquinone (NQ) and fructose dehydroge-
nase (FDH) were used for the fabrication of bioelectrodes in a bio-
battery and a biofuel cell [150]. In the device, the glassy carbon
bioanode was coated with carbon-encapsulated iron nanoparticles,
1,4-naphthoquinone, fructose dehydrogenase, and Nafion, while
the cathode was modified with carbon-encapsulated magnetic
nanoparticles and laccase in the Nafion layer. A maximum power
of 78 mW/cm2 at the voltage of 0.33 V and under 20 kX resistance,
and the open-circuit voltage was 0.49 V was used. These enzymes
worked effectively in the biofuel cell, and laccase also effectively
worked in the biobattery.

Another application of enzyme coated MNPs are the fabrication
of biosensors involving sensitive biological entities like antibodies,
cell receptors, enzymes, transducers and, detectors associated with
signal processing and electronics [32]. Commonly used MNPs and
enzymes-based biosensors are glucose sensor for blood-sugar tests.
Particularly, the process of enzyme immobilization is crucial to
improve the sensitivity of the biosensors, which has been consider-
ably progressed due to the advancement in the field of nanobio-
catalysis [151]. Recently, Pakapongpan et al., have successfully
immobilized glucose oxidase (GOD) on reduced graphene oxide
(RGO), which is covalently conjugated to magnetic nanoparticles
(Fe3O4 NPs) to obtain highly selective and stable glucose biosensor
[152]. The proposed biosensor showed fast amperometric response
(3 s) to glucose with a wide linear range from 0.05 to 1 mM, a low
detection limit of 0.1 lM at a signal to noise ratio of 3 (S/N = 3) and
good sensitivity (5.9 lA/mM). Similarly, a biosensor based on
nanomagnet-silica core–shell conjugated to organophosphorous
hydrolase (OPH) enzyme was designed for detection of paraoxon
[153]. In another study, a novel core–shell Fe3O4@poly(dopamine)
MNPs hybrid was fabricated using an in situ self-polymerization
method [38]. The as-prepared nanohybrid was used as a solid sup-
port for the covalent immobilization of horseradish peroxidase
(HRP), and the resulting biofunctionalized MNPS were employed
to fabricate an amperometric biosensor for H2O2. The enzyme
biosensor showed a high sensitivity of 442.14 mA M�1 cm�2, a
low limit of detection of 182 nM, a wide linear range from
6.0 � 10�7 to 8.0 � 10�4 M and high stability for 1 month.

Proteomics

This field involve proteins analyses which maybe play a signif-
icant role in the field of biomarkers, drug treatment, medical diag-
nostics etc. Recently, this field has progressed due to the
advancement of technologies in mass spectrometry analysis, pro-
tein quantification and bioinformatics data analysis. Particularly,
Mass spectrometry plays a crucial role in large-scale protein anal-
ysis, but the downstream proteome analysis is typically effected by
the cumbersome sample preparation methods [154]. This is typi-
cally simplified by the process of protein digestion in-solution
using proteolytic enzymes such as trypsin. Trypsin (Try) is typi-
cally immobilized on a solid support including MNPs to make it
more friendly for the mass spectrometric analysis [155,156]. A
method of combining trypsin-immobilized MNPs and
microwave-assisted protein digestion is reported to study the pro-
teins of human lens tissue, which were identified by liquid chro-
matography and mass spectrometry [157]. But, unprotected
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MNPs are very unstable and can be readily oxidize in atmospheric
conditions [158]. Therefore, MNPs are often functionalized to pro-
tect them against oxidation and to facilitate enzyme immobiliza-
tion using various stabilizing agents including polymers or other
compounds containing amino (–NH2), hydroxide (–OH), carboxylic
acid (–COOH) and phosphate groups [159,160]. For example,
polyaniline-coated nano-Fe3O4/carbon nanotube composite exhib-
ited enhanced digestion efficiency of Try due to the high surface
area-to-volume ratio of nanoparticles, which increased interaction
between Try and the substrates (proteins) [161]. In another study,
MNPs were stabilized with polyvinyl alcohol and activated with
glutaraldehyde for trypsin immobilization [162]. Pristine (without
MNPs) and immobilized trypsin on MNPs showed optimum activ-
ity at pH 6.0, 30 �C and pH 7.0, 40 �C, respectively, while trypsin
immobilized MNPs was more stable than the free enzyme at
40 �C. Indeed, a recent study has demonstrated that trypsin immo-
bilized on MNPs at the nano-scale performs better than the com-
mercially available macroparticles counterpart [154].

A quantitative proteomics method based on liquid chromatog-
raphy coupled to mass spectrometry has been widely used in aller-
gen analysis, but it often requires long period of digestion which
limits its application [163]. In this context, Qi et al., have applied
a novel MNPs based hybrid material i.e., Try immobilized on hairy
polymer-chain hybrid MNPs to shorten the digestion time and
enhance the digestion efficiency [164]. Rapid digestion method
based on as-prepared nanohybrid was used to detect milk aller-
gens in baked food by ultrahigh-performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS). Due
to this technique, immobilized Try was digested in a short period
of time (15 min), with higher or equal sequence coverage com-
pared to conventional free trypsin, which required 12–16 h for
digestion. Furthermore, Try immobilized MNPs have also been
used for continuous hydrolysis of casein, which is the main protein
in milk, and known to produce several bioactive peptides after
hydrolysis [98]. Atacan et al., covalently immobilized Try on tannic
acid (TA) coated Fe3O4 MNPs to investigate the digestion of casein
from bovine milk [165]. Digestion efficiency of casein was investi-
gated using liquid chromatography–mass spectrometry (LC–MS/
MS) technique, which confirmed the efficient digestion of casein
by immobilized Try compared to free Try due to prevention of
autohydrolysis.
Conclusive remarks, challenges, and future directions

This review examines the prospects of surface-coated/
functionalized magnetic nanostructured materials and their
derived nanocomposites as exciting support candidates for the
immobilization of various enzymes. It was observed that the sur-
face coating/functionalization by inorganic materials (carbon, sili-
con groups, metal and metal oxides) and organic molecules
(surfactants, small molecules, polymers, MOFs) can enhance the
stability, and biocompatibility of MNPs, which consequently mag-
nifies the application of these nanostructures for effective immobi-
lization of enzymes. Although extensive research progress has been
dedicated to the surface engineering of magnetic nanoparticles, a
series of challenges still need to be addressed. For instance, a pre-
cise control over the size distribution and surface-coated shape of
MNPs must be considered in future studies. Moreover, it is also
important to address the issue of long-term stability of functional-
ized MNPs. Considering the future perspective, most of the applica-
tions, in particular, clinical aspects are still in the hypothetical
phase necessitating consistent research investigations from multi-
disciplinary areas to realize its practical applications. Therefore, in
addition to optimize the fabrication routes to synthesize magnetic
nanostructures with better properties, the development of efficient,



M. Bilal, Hafiz M.N. Iqbal, Syed Farooq Adil et al. Journal of Advanced Research 38 (2022) 157–177
environmentally-friendlier, and stable surface-modification are
also important. We envision that with sustained development, fab-
rication, and surface engineering strategies, numerous possibilities
will arise to construct more and more multifunctional nanomateri-
als in the future to design immobilized biocatalytic systems for
expanding the real-time application scope. Moreover, enzyme
coatedMNPs using the concepts of nanobiocatalysis also offer great
potential in the field of biomedical applications including bioelec-
tronics, bioconversion, and proteomics.
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