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Abstract: Accurate predictions of COVID-19 epidemic dynamics may enable timely organizational
interventions in high-risk regions. We exploited the interconnection of the Fresenius Medical Care
(FMC) European dialysis clinic network to develop a sentinel surveillance system for outbreak
prediction. We developed an artificial intelligence-based model considering the information related
to all clinics belonging to the European Nephrocare Network. The prediction tool provides risk
scores of the occurrence of a COVID-19 outbreak in each dialysis center within a 2-week forecasting
horizon. The model input variables include information related to the epidemic status and trends in
clinical practice patterns of the target clinic, regional epidemic metrics, and the distance-weighted
risk estimates of adjacent dialysis units. On the validation dates, there were 30 (5.09%), 39 (6.52%),
and 218 (36.03%) clinics with two or more patients with COVID-19 infection during the 2-week
prediction window. The performance of the model was suitable in all testing windows: AUC = 0.77,
0.80, and 0.81, respectively. The occurrence of new cases in a clinic propagates distance-weighted
risk estimates to proximal dialysis units. Our machine learning sentinel surveillance system may
allow for a prompt risk assessment and timely response to COVID-19 surges throughout networked
European clinics.

Keywords: SARS-CoV-2; COVID-19; sentinel surveillance system; outbreak prediction; machine
learning; artificial intelligence

1. Introduction

Due to its unique characteristics, the Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) pandemic has posed unprecedented challenges to clinics providing life-
saving services to patients suffering from chronic illnesses, including chronic kidney
disease (CKD). In fact, non-specific clinical manifestations of Coronavirus disease 2019
(COVID-19) [1] as well as the viral transmission from asymptomatic or pre-symptomatic
individuals [2–4] make the early recognition of newly infected cases extremely difficult.
Moreover, the occurrence of superspreading events (SSEV), during which few individuals
are able to infect many people [5], hampers infection control measures [6,7].

Social distancing, preventive quarantine, and the isolation of infected subjects still
represents the most effective means to reduce the risk of SARS-CoV-2 human-to-human
transmission [8,9]. However, patients with end-stage kidney disease (ESKD) need to
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undergo in-center dialysis three times per week for 4 h per session, which makes phys-
ical distancing more difficult to achieve due to repeated, prolonged interactions with
other patients and healthcare staff [10–13]. Unfortunately, ESKD individuals also show a
higher risk of complications following SARS-CoV-2 infection due to weakened immune re-
sponse [14–17] and to the occurrence of many of the risk factors commonly associated with
development of severe COVID-19 [18,19], including older age and comorbidities [20,21].
Moreover, because of compromised host immunity, a vaccine may not exhibit the same
efficacy on hemodialysis patients as it does in immunocompetent individuals [13].

Therefore, the reduction of the contagion risk within dialysis clinics while preserving
clinical operations is a key challenge for healthcare systems during this pandemic. To
help anticipate local epidemic dynamics and adjust non-pharmacological interventions
to the changing background of infection risk, we sought to develop an advanced sentinel
surveillance system supported by a machine learning (ML) prediction model, where the
occurrence of COVID-19 cases in a clinic propagates distance-weighted risk estimates to
adjacent dialysis units. The present study describes the derivation and validation of the
prediction model, as well as the strategies adopted to monitor its performance throughout
the pandemic period.

2. Materials and Methods
2.1. Design and Setting

All dialysis clinics belonging to the Fresenius Medical Care (FMC) European Nephro-
care Network confer clinical data to a centralized data-repository, namely the European
Clinical Database (EuCliD®, Fresenius Medical Care, Deutschland GmbH, Vaiano Cre-
masco, Italy) [22,23]. Since April 2020, all SARS-CoV-2 infections (suspected and confirmed
cases as well as initial symptoms), diagnostic procedures, and clinical endpoints are re-
ported in the treatment incident report (TIR) module in EuCLiD®. We used aggregated data
abstracted from the TIR, open source data describing epidemic dynamics in European coun-
tries, as well as aggregated data on biochemical assays prescriptions and results to estimate
outbreak risk in dialysis clinics belonging to the FMC European Nephrocare Network.

2.2. Outcome Variable

The model forecasts the risk of a COVID-19 outbreak in each dialysis clinic in a 2-week
horizon. Clinic outbreak is defined as the occurrence of two or more COVID-19-confirmed
cases in a given clinic. Therefore, for each clinic registered in the Nephrocare network,
the model estimates the probability of COVID-19 outbreak (2 or more PCR confirmed
cases within a 2-week horizon) as a function of a vector of input variables. Study design is
represented in Figure 1.
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For illustrative purposes, we established 3 risk categories: (1) low (L), when outbreak
risk is less than or equal to 1.5%; (2) medium (M), risk greater than 1.5% and less than or
equal to 12.5%; (3) high (H), if risk is greater than 12.5%. For this purpose, the action thresh-
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old defining the low risk class has been chosen to select a subpopulation of clinics where
the risk of outbreak is very small so that non-pharmacological interventions to prevent the
spread of COVID-19 can be temporarily and partially mitigated. In this context, a costly
error would be to assign to the Low Risk class a clinic which will experience an outbreak in
the following two weeks. Such threshold would be useful when a sufficiently large share of
clinics (i.e., P(Class = L)) could be found, so that P(Class = L|Outbreak = No) is high and
P(Outbreak = Yes|Class = L) is, conversely, very small. On the other hand of the spectrum,
we selected a more specific action threshold, which defines a High-Risk Class of clinics. In
this risk group, additional non-pharmacological intervention should be initiated including,
for example, the formal testing of temperature and thorough physical examination admin-
istered to each patient before entering the clinic or even periodical screening test (i.e., once-
weekly). Since the intervention would require intensive resources, may be constraint by
procurement difficulties, and would unduly overburden patients with unnecessary testing,
the High Risk threshold should ideally define a group where P(Outbreak = Yes|Class = H)
is high and both P(Class = H|Outbreak = No) and P(Outbreak = Yes|Class 6= H) are low.
It is important to remark that the choice and number of the action thresholds depends on
the intended use of the risk score, the set of interventions available to the organization,
the price cost of each intervention, and ultimately by the value function ranking the desir-
ability/undesirability of different health outcomes. Therefore, the thresholds presented
in this paper should not be considered generalizable per se: different institutions may
choose different thresholds (or no thresholds at all) depending on the availability, cost,
and expected outcomes of COVID-19-related interventions (i.e., email alerts to medical
directors, shipments of medical equipment such as face masks or diagnostics kits, delivery
of health education modules, PCR screening, etc.,). Therefore, the problem is not diagnostic
in nature, yet reduces to optimal ranking (and longitudinal stability of such ranking of
risk) in order to efficiently allocate limited resources and minimize risk for the patients
throughout a continuously changing epidemic landscape.

2.3. Input Variables

The model is computed using aggregated data provided by all the dialysis centers
(min: 545; max: 611) located in one of the 23 countries of the FMC European Nephrocare
Network. The final model incorporates 74 variables belonging to one of the following
categories (Appendix A):

1. Open Source Data [24];
2. Epidemic status in the clinical country/region (prefix: RG): 15 parameters;
3. Aggregated Data abstracted from EuCLiD®:

a. Epidemic status in the target clinic (prefix: CL): 5 variables;
b. Distance-weighted information of the adjacent clinics (prefix: CLS); 5 variables.

Adjacent clinics were defined as the 3 centers with shorter distance in terms of
both latitude and longitude to the target clinic. Measures of the adjacent clinics,
including cases and trends, were computed as the average value weighted for
the inverse of the distance to the target clinic;

c. Other parameters related to the target clinic (prefix: CL): 49 parameters.

As detailed in Appendix A, each variable can be calculated/collected over different
timeframes of the ascertainment period, i.e., the last 7 days (d), previous 7 d, last 14 d,
previous 14 d, and previous 28 d.

2.4. Statistical Analysis
2.4.1. Model Derivation

We used XG Boost, a scalable ML system for tree boosting [25]. We used the available
open source package [26] for Python, Version 3.7.4 (Python Software Foundation, Delaware,
DE, United States) [27].

The first release of the model was trained using data related to 1st April 2020 (training
dataset index date), while the second and the third versions were derived using data
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related to 15th July 2020 and 1st November 2020, respectively. We considered all the clinics
delivering services to at least one patient on the index date as well as over the week before
index date.

2.4.2. Model Accuracy and Feature Importance

Prediction accuracy of each release was tested every first and fifteenth day (validation
dataset index dates). Therefore, development and validation datasets can include the same
set of clinics/patients every two weeks.

To evaluate model performance, we measured the area under the curve (AUC) of the
receiver operating characteristics (ROC) curve in the testing datasets [28] using Python,
Version 3.7.4 (Python Software Foundation, Delaware, DE, United States) [27]. The AUC
provides an aggregate measure of performance as the ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR) at all classification thresholds. Model
discrimination ability over time was monitored by visual inspection of AUC trends.
For illustrative purposes, we also reported the classification performance in terms of
P(Outbreak|Class) (i.e., probability of outbreak (Yes/No) given the assigned risk class
(L/M/H)) and P(Class|Outbreak) (i.e., probability of the assigned risk class given the
outbreak) for the two action-thresholds chosen (0.015 and 0.125). In order to calculate
P(Outbreak|Class) and P(Class|Outbreak) we artificially treated our problem as a binary
decision for each threshold. We computed average probability values across the whole
study period.

Feature importance was computed using the SHapley Additive exPlanations (SHAP)
method [29]. This analysis enables intuitive model explainability via an accurate and
efficient estimation of the contribution to risk of each input variable.

2.4.3. Descriptive Statistics

For both the training and validation datasets, we analyzed the number of active
clinics, frequency and incidence of a COVID-19 outbreak, the distribution of clinics in each
prediction level of risk (low, medium, high), as well as the relative risk compared to clinics
in low-risk groups with Python, Version 3.7.4.

3. Results
3.1. Dialysis Clinic Characteristics

Model version 1, 2, and 3 were trained using a dataset related to 1st April 2020,
15th July 2020, and 1st November 2020, respectively. On these dates, active clinics were 589,
597, 603, while 34 (5.77%), 44 (7.37%), and 233 (38.64%) clinics had two or more patients
with COVID-19 infection in the fortnight after the index date.

The surveillance system stratifies clinics by their risk of new local outbreak within two
weeks. To facilitate the interpretation of the results, we established three risk categories:
(1) Low, when outbreak risk is less than or equal to 1.5%; (2) Medium, risk greater than
1.5% and less than or equal to 12.5%; (3) High, if risk is greater than 12.5%. Risk thresholds
depend both on the incidence of pandemic and on the ability of any given clinic to imple-
ment containment measures. Figure 2 reports the share of active dialysis clinics in different
risk classes at each testing date.

The actual outbreak incidence in the dialysis clinics during the validation period is
reported in Figure 3.
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Figure 2. Number of dialysis clinics at the validation dates. Colors denote risk categories: Red, high > 12.5%; Yellow,
medium 1.5% < x ≤ 12.5%; Green, low ≤ 1.5%.

Figure 3. Model Performance and Incidence of Clinics with Outbreaks: the plot reports data related to the 1 year observa-
tion period.

3.2. Model Performance

All versions of the model showed a good performance over the validation period.
Figure 3 shows trends in AUC values of the three model versions over a 1-year observation
period. Variability in prediction accuracy decreased as retraining was applied: version 1’s
average AUC was 0.73 (95% CI 0.55–0.91), AUC of version 2 was 0.75 (95% CI 0.65–0.86),
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while version 3 had a more stable performance with an average AUC of 0.79 (0.74–0.85).
The ROC-AUC diagram for the three model versions have been reported in Figure 4.

Figure 4. Cont.
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Figure 4. Panel (a–c) respectively contain the ROC-AUC plot related to Model 1, Model 2, and Model
3 evaluated on the following dates: 15 April 2020, 1 August 2020, and 15 November 2020.

In order to demonstrate the potential use of the model, we geographically mapped
the risk on a few exemplary dates, i.e., the 2 August 2020, 4 October 2020, 1 November
2020, and 3 January 2020 (Figure 5). The graphical representation visually highlights clinic
clusters according to the risk of a COVID-19 outbreak occurrence within 2 weeks (Figure 5,
left panels, colored circles denote the low, medium, and high-risk categories). There was
substantial correlation between the predicted risk (Figure 5, left panels) and the actual
outcome (Figure 5, right panels) on all of the validation dates.

Figure 5. Cont.
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Figure 5. COVID-19 outbreak risk mapping in European clinics of the Nephrocare network. Geographical risk maps were
built considering epidemic data related to the following exemplary dates: (a) 2 August 2020, (b) 4 October 2020, (c) 1
November 2020, and (d) 3 January 2020. Panels on the left show clinic clusters according to the risk of a COVID-19 outbreak
occurrence within 2 weeks: Red circles: risk > 12.5%; Yellow, 1.5% < risk ≤ 12.5%; Green, risk ≤ 1.5%. Panels on the right
report the actual incidence of COVID-19 outbreaks in the forecasting period.
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Tables 1 and 2 report the classification performance in terms of P(Outbreak|Class)
(i.e., probability of outbreak (Yes/No) given the assigned risk class (L/M/H)) and P(Class
|Outbreak) (i.e., probability of the assigned risk class given the outbreak) for the two
action-thresholds chosen (0.015 and 0.125). In order to calculate P(Outbreak|Class) and
P(Class|Outbreak), we artificially treated our problem as a binary decision for each thresh-
old. We computed average probability values across the whole study period.

Table 1. Average classification performance in terms of P(Outbreak|Class) (i.e., probability of outbreak (Yes/No) given
the assigned risk class, L) and P(Class|Outbreak) (i.e., probability of the assigned risk class given the outbreak) at the low
action-thresholds (predicted risk = 0.015).

Low Risk Group. P(Class = L) = 0.648

P(Class = L|Outbreak = Yes) P(Class 6= L|Outbreak = Yes) P(Class = L|Outbreak = No) P(Class 6= L|Outbreak = No)
0.23 0.77 0.73 0.27

P(Outbreak = Yes|Class = L) P(Outbreak = No|Class = L) P(Outbreak = Yes|Class 6= L) P(Outbreak = No|Class 6= L)
0.06 0.94 0.37 0.63

Table 2. Average classification performance in terms of P(Outbreak|Class) (i.e., probability of outbreak (Yes/No) given the
assigned risk class, H) and P(Class|Outbreak) (i.e., probability of the assigned risk class given the outbreak) at the high
action-thresholds (predicted risk = 0.125).

High Risk Group P(Class = H) = 0.197

P(Class = H|Outbreak = Yes) P(Class 6= H|Outbreak = Yes) P(Class = H|Outbreak = No) P(Class 6= H|Outbreak = No)
0.51 0.49 0.14 0.86

P(Outbreak = Yes|Class = H) P(Outbreak = No|Class = H) P(Outbreak = Yes|Class 6= H) P(Outbreak = No|Class 6= H)
0.40 0.60 0.09 0.91

Overall, the risk score was strongly associated with the likelihood of COVID-19
outbreak, as demonstrated by the relative risk of outcome occurrence in the three risk
classes over the study period (Table 3).

Table 3. Average classification performance in terms of relative risk of COVID-19 outbreak by risk
class. The relative risk is calculated as RR = P(Outbreak=Yes|Class)

P(Outbreak=Yes|Class=L) .

Risk Class RR

L −ref
M 3.45
H 5.95

3.3. Model Feature Importance

Feature analysis investigated the impact of each variable on model output (Figure 6).
Although there are some differences among the model versions, overall, the most important
variables are related to the epidemic dynamics in the clinic in the period immediately
preceding the index date for risk evaluation. Regional data on the number of COVID-19
cases and deaths were likewise ranked high. The number of COVID-19 cases in adjacent
clinics resulted in the top predictor list of all three model versions. Of note, variables
routinely measured in clinical practice, including changes in CRP and blood white cell
count over the observation period, were also strongly associated with outbreak risk.
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Figure 6. Cont.
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Figure 6. Panel (a–c) respectively contain the Shapley additive explanations (SHAP) related to Model 1, Model 2, and Model 3 evaluated
on the following dates: 15 April 2020, 1 August 2020, and 15 November 2020. SHAP plots show relative feature importance. The blue
bar represents overall SHAP values for each variable and are interpreted as relative importance of each variable to risk estimates. On
the right side, SHAP values show the direction of association between predictor and risk estimates. Each dot represents one individual
clinic from the test dataset. Higher values of the predictors are represented in red color; lower values of the predictors are represented
in blue color. The X axis represents the impact of variables on risk in terms of SHAP values. Red color in correspondence with positive
values suggests direct correlations between risk factors and the occurrence of COVID-19 outbreak, while red color in the region of
negative SHAP values suggests inverse correlation.

4. Discussion

The present study describes the development and validation of a novel sentinel
surveillance system allowing for the prompt risk assessment of a COVID-19 outbreak in a
large European network of dialysis clinics over a 2-week forecasting horizon. The model
had a stable accuracy over time and was able to consistently discriminate outbreak risk
in dialysis units across all European countries at every stage of the current pandemic, i.e.,
during epidemic growth and decay phases. The design of our ML prediction model enables
administrators and developers to quickly retrain this tool in case the visual inspection of
AUC values over time suggests a trend toward a decrease in its discrimination ability.

Nosocomial transmission has greatly contributed to an increase in the global burden
of COVID-19 pandemic by extremely affecting the capacity of the health system, not only
to provide medical support to patients, but also to protect healthcare professionals [30,31].
Dialysis centers are particularly vulnerable to outbreak development [11,12,32] in that
mitigation strategies are not entirely feasible due to the necessity of in-person encounters
to provide a life-saving treatment such as hemodialysis [11]. Considering the peculiar
frailty of ESKD patients, all scientific nephrology societies have provided guidance on
COVID-19 transmission prevention in dialysis facilities [33–35]. In this regard, surveillance
and early contagion detection are essential to reduce the risk of local outbreaks developing
into epidemics.
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Clinics of the FMC European Nephrocare Network have implemented multiple non-
pharmacological interventions to limit viral spreading among the CKD community, includ-
ing stringent hygiene procedures, social distancing, and the identification and isolation
of suspected cases. In addition, dialysis facilities have established recording pathways to
report any infection event in the EuCliD® TIR System. Such data are used to monitor the
effectiveness of non-pharmacological intervention and to detect high-risk patients needing
special attention [36–38].

One important feature of our modeling strategy entailed the combined use of open
source and clinical data collected in standard clinical practice. In fact, we exploited the
interconnection of the European Nephrocare clinics to augment background epidemic data
with a surveillance system based on incident reports and practice pattern variation at each
dialysis unit. Information about local epidemic status in a given clinic was then propagated
through distance-weighting metrics to the surrounding facilities. An ML method was used
to integrate all information into a summary score metric. Remarkably, variables related to
the epidemic dynamics in the clinic and to the regional epidemic status, as well as to the
risk proxies propagated from adjacent clinics, were all important predictors of outbreak
occurrence. Such an approach is particularly relevant because it enabled us to capture
local disease spread beyond the registry data compiled for the general population, which
does not capture the heterogeneity of viral transmission in a setting where frequent and
multiple human interactions necessarily occur. Indeed, as the basic reproduction index (R0)
is a function of both the transmissibility of a disease and the contact patterns that underlie
transmission [39], the regional/provincial R0 cannot be translated in dialysis facilities in
that ESKD patients’ biological and socio-behavioral factors significantly differ from those
of the general population [40]. The occurrence of SSEVs further complicates the picture,
making generalizations of regional epidemic trends that are not entirely appropriate for
the reliable prediction of viral spreading in healthcare settings [41,42].

The interconnection of the FMC network allows for the collection and subsequent
central integration of a bulk of information provided by facilities distributed throughout
European countries. This particular setting offers the advantage to perform the real-time
monitoring of sentinel sensors that are likely to provide timely and accurate indications
of epidemic activity [43], while considering the heterogeneity underlying transmission
dynamics. Sentinel surveillance in outpatient settings was previously shown to provide
a robust approach to oversee SARS-CoV-2 spreading [44]. In general, the monitoring of
community transmission in nodes distributed across different regions was reported to
ensure efficient disease detection in networked populations [45]. It is important to highlight
that the analytic strategy adopted in this study is general and can be applied to any
epidemic communicable disease, as all naturally occurring, clustering units where social
promiscuity, density, and duration of interactions are substantially different compared to
the general population. Henceforth, this method may be applied to social contexts with a
high risk of outbreak generation, including schools, hospitals, and workplaces from which
the provided infection data are promptly captured and conferred to a central database,
even in aggregated form. Monitoring of the pandemic situation within the network allows
for the timely implementation of infection control procedures in the adjacent networked
unit and efficiently anticipates resource needs.

Finally, variable importance analysis has indicated that trends in clinical practice
patterns are among the top predictors. This observation indicates that the tracking of
physicians’ prescription behavior can provide valuable information to assess epidemic
dynamics also during explosive growth, when surveillance and laboratory resources are
limited and COVID-19 cases may be recorded with some delay due to the emergency
situation [46].

5. Conclusions

Our sentinel surveillance system allows for a prompt risk assessment and timely
response to the challenges posed by the COVID-19 epidemic throughout FMC European
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dialysis clinics. This tool can have significant implications for public health practice in that it
represents a robust strategy to assess the level of community transmission of COVID-19 and
to guide the selection and implementation of mitigation measures. The same framework can
be applied in other networked settings, such as healthcare facilities or schools to improve
early detection and forecasting of SARS-CoV-2 transmission. Finally, the implementation
of our surveillance system can guide preparedness efforts for future pandemics.
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Appendix A

Table A1. Variables included in the model.

Category Variable Reference Time

Epidemic Status in the Country/Region (prefix: RG)
cumulative cases previous 7 days and last 7 days

number of hospitalized previous 7 days and last 7 days
number of ICU patients previous 7 days and last 7 days

cumulative fatalities previous 7 days and last 7 days
cumulative recovered previous 7 days and last 7 days

trend of cumulative cases last 7 days/previous 7 days
Category Variable Reference Time

trend of hospitalized patients last 7 days/previous 7 days
trend of ICU patients last 7 days/previous 7 days

trend of cumulative recovered in the
last week last 7 days/previous 7 days

trend of cumulative fatalities last 7 days/previous 7 days
epidemic status in the clinic (prefix: CL)

number of suspected COVID-19 cases previous 14 days, previous 7 days, and
last 7 days

change in suspected cases last 7 days–previous 7 days
change in suspected cases last 14 days–previous 14 days
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Table A1. Cont.

Category Variable Reference Time

distance-weighted information of the adjacent clinics (prefix: CL)
number of COVID-19 suspected cases

in the closest clinics
previous 14d, previous 7 days, and last

7 days
change in COVID-19 suspected cases in

the closest clinics last 7 days–previous 7 days

change in COVID-19 suspected cases in
the closest clinics last 14 days–previous 14 days

other parameters related to the clinic (prefix: CL)
change in the number of treated

patients last 28 days–last 14 days

change in the number of treatments last 28 days–last 14 days
change in the weekly dialysis frequency

per clinic last 28 days–last 14 days

change in the weekly dialysis frequency
per patient last 28 days–last 14 days

change in the number of treatments
with pre/post-BT last 28 days–last 14 days

change in the number of treatments
with pre/post-BT > 37 ◦C last 28 days–last 14 days

change in the percentage of treatments
with pre/post-BT > 37 ◦C last 28 days–last 14 days

change in the mean value of
pre/post-dialysis BT last 28 days–last 14 days

change in the number of treatments
with pre-dyalisis diastolic BP last 28 days–last 14 days

change in the mean value of
pre-dialysis diastolic BP last 28 days–last 14 days

change in the number of treatments
with dialysis time last 28 days–last 14 days

change in the mean value of dialysis
time last 28 days–last 14 days

change in the number of treatments
with IDWG last 28 days–last 14 days

change in the mean value of IDWG last 28 days–last 14 days
change in the number of treatments

with O2 sat last 28 days–last 14 days

change in the mean value of O2 sat last 28 days–last 14 days
change in the number of patients with

lab tests last 28 days–last 14 days

change in the number of lab tests last 28 days–last 14 days
change in the number of lab tests with

Albumin last 28 days–last 14 days

change in the mean value of Albumin last 28 days–last 14 days
change in the number of lab tests with

lymphocytes last 28 days–last 14 days

change in the mean value of
lymphocytes last 28 days–last 14 days

change in the number of lab tests with
monocytes last 28 days–last 14 days

change in the mean value of monocytes last 28 days–last 14 days
change in the number of lab tests with

neutrophils last 28 days–last 14 days

change in the mean value of
neutrophils last 28 days–last 14 days

change in the number of lab tests with
platelets last 28 days–last 14 days

change in the mean value of platelets last 28 days–last 14 days
change in the number of lab tests with

PDW last 28 days–last 14 days
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Table A1. Cont.

Category Variable Reference Time

change in the mean value of PDW last 28 days–last 14 days
change in the number of lab tests with

leukocytes last 28 days–last 14 days

change in the mean value of leukocytes last 28 days–last 14 days
change in the number of lab tests with

D-dimer last 28 days–last 14 days

change in the mean value of D-dimer last 28 days–last 14 days
change in the number of lab tests with

CRP last 28 days–last 14 days

change in the mean value of CRP last 28 days–last 14 days
change in the number of lab tests with

IL-6 last 28 days–last 14 days

change in the mean value of IL-6 last 28 days–last 14 days
change in the number of lab tests with

ANP last 28 days–last 14 days

change in the mean value of ANP last 28 days–last 14 days
change in the number of lab tests with

BNP last 28 days–last 14 days

change in the mean value of BNP last 28 days–last 14 days
change in the number of lab tests with

Ferritin last 28 days–last 14 days

change in the mean value of Ferritin last 28 days–last 14 days
Number of patients with at least one

hospitalization last 14 days

Number of hospitalizations last 14 days
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