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Abstract: Benzene, toluene, and xylene, commonly known as BTX, are hazardous aromatic organic
vapors with high toxicity towards living organisms. Many techniques are being developed to provide
the community with portable, cost effective, and high performance BTX sensing devices in order
to effectively monitor the quality of air. In this paper, we study the effect of decorating graphene
with tin oxide (SnO2) or tungsten oxide (WO3) nanoparticles on its performance as a chemoresistive
material for detecting BTX vapors. Transmission electron microscopy and environmental scanning
electron microscopy are used as morphological characterization techniques. SnO2-decorated graphene
displayed high sensitivity towards benzene, toluene, and xylene with the lowest tested concentrations
of 2 ppm, 1.5 ppm, and 0.2 ppm, respectively. In addition, we found that, by employing these
nanomaterials, the observed response could provide a unique double signal confirmation to identify
the presence of benzene vapors for monitoring occupational exposure in the textiles, painting,
and adhesives industries or in fuel stations.

Keywords: aromatic VOC; sensor array; graphene; metal oxide nanoparticles; tin oxide; tungsten
oxide; BTX

1. Introduction

Industrial and human developments have been steadily increasing the production and the emission
towards the environment of toxic and hazardous gases. Among the various types of pollutants, aromatic
volatile organic compound vapors like benzene, toluene, and xylenes are widely used in numerous
fields, most notably by the petrochemical and textile industries. According to the World Health
Organization (WHO), a long-duration exposure to such compounds, especially to benzene, leads to
life-threatening diseases [1]. As those vapors are harmful to both human health and the environment,
the European parliament has stated via a council directive that the limit value for exposure to benzene [2]
is 1.6 ppb. In addition, the US Occupational Safety and Health Administration has set permissible
exposure limits (PLE), eight-hour time weighted average (TWA) concentrations for toluene and xylene,
which are 10 ppm and 100 ppm, respectively [3,4]. Even though the human olfactory system can
identify the characteristic odor of aromatic volatile compounds, the olfactory threshold in humans is
well above the exposure limits described above. Furthermore, the olfactory system fails at correctly
identifying the type of aromatic compound that may be present in a given environment. Taken together,
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these arguments support the idea that it is crucial to develop efficient ways for the accurate detection
and monitoring of these vapors in terms of high sensitivity, good selectivity, low power consumption,
low cost, and reversibility [5].

Optical based sensors, multisensor arrays, and chemoresistive sensors are among the most studied
approaches for the detection of volatile organic compounds (VOCs) in general, as well as benzene,
toluene, and xylene (BTX) in particular [6–8]. They offer suitable alternatives to the classical, expensive,
bulky, and time-consuming BT detection techniques like chromatography and mass spectrometry [9].
Despite the research efforts made, inexpensive sensors still suffer from selectivity and power issues,
which have hampered the development of reliable, portable, and in-field applicable BTX detectors.

Chemoresistive devices detect and identify gases by converting a gas volume fraction into an
analog electrical resistance change, resulting from the charge transfer between the surface of the sensing
film and the adsorbed gas molecules [10].

Nanomaterials, such as metal oxides, carbon nanotubes along with graphene and its derivatives,
are among the most studied materials for the development of chemoresistive gas sensors [11–13].

Graphene was discovered by Novoselov and Geim [14] and over the last two decades it has been
used in many applications such as electronic devices, aerospace applications, energy storage [15,16],
and more. Recently, it has received much attention as gas sensitive nanomaterial due to its unique and
outstanding properties such as high charge carrier mobility, low noise, and high surface to volume
ratio [17–20]. Its surface can be easily modified by grafting functional groups, thus enhancing its
potential as gas sensing material. However, graphene nanomaterials have also some shortcomings in
gas sensing applications such as low selectivity and rather long response and recovery times [21].

To overcome these, the decoration of graphene with metal or metal oxide nanoparticles or by
grafting functional groups to its surface has been explored in order to improve the performance of
graphene gas sensors [22].

Moreover, other researchers worked on the improvement of gas sensors performance such
as selectivity and sensitivity with the possibility of small scale integration [23–27]. For instance,
Shi et al. [28] developed cross-reactive arrays composed of metal oxide semiconductor and graphene
sensors able to discriminate similar chemical vapors (methylene, o-xylene, and toluene). Quite recently,
different authors have reported tungsten or tin oxide nanoparticle-loaded graphene (or graphene
derivatives such as graphene oxide or reduced graphene oxide) for enhancing the response towards
different gaseous species. Tungsten oxide-loaded graphene has been found useful at detecting
alcohols [29], triethylamine [30], and aniline [31]. Tin oxide-loaded graphene has been reported for the
detection of, mainly, nitrogen dioxide [32–36], but also of formaldehyde [37,38], acethylene [39], and
acetone [40].

Chemoresistive gas sensors for detecting BTX aromatic volatile compounds (benzene, toluene,
xylenes) are challenging devices due to the relatively low chemical reactivity of BTX vapors [3]. In this
paper, we report the response of modified graphene sensors to BTX vapors and we study the effect of
the decoration of graphene with tin and tungsten oxide nanoparticles on sensitivity and selectivity.
To the best of our knowledge, the presented research has not been studied before.

2. Materials and Methods

2.1. Materials

The graphene used was purchased from Strem Chemicals Inc. (Newburyport, MA, USA), with
reference no. 06-0235. This material consists of graphene nanoplatelets with an average thickness
of 5–10 nanometers (3.35A between sheets) and sub-micron size (a few hundreds of nanometers).
In addition, its surface area is 750 m2/g. Commercially available nanopowders of tungsten oxide (WO3)
and tin oxide (SnO2) were purchased from Sigma Aldrich (Saint Louis, MO, USA). The carrier gas
was nitrogen U (N2 purer than 99.995%) and was bought from Air Liquide (Tunis, Tunisia). All these
products were of analytical grade and used without further purification.
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2.2. Sensing Layer Preparation

The graphene to be used as a sensing material was prepared by chemical impregnation. In the
first step, a graphene suspension was produced with ethanol (10 mg of graphene were added to 10 mL
of ethanol). Then the suspension was ultrasonicated (Bandelin electronic GmbH, Berlin, Germany) for
one hour in order to have a homogenous dispersion of the graphene platelets in the ethanol solution,
avoiding the agglomeration of graphene. In the second step, other independent dispersions in ethanol
with metal oxide nanoparticles, tin oxide (SnO2) and tungsten (WO3), were prepared (0.5 mg of SnO2

or WO3 nanoparticles were dispersed in 10 mL of ethanol). Subsequently, the suspension with the
de-agglomerated graphene was placed on a hot plate while agitated vigorously at 50◦ and then a
metal oxide NP suspension was added drop-by-drop. The stirring at 50◦ was kept up to half an hour
after the last drop of the NP suspension was incorporated. This was done to favor the homogeneous
attachment of the metal oxide nanoparticles onto the graphene surface. The loading with metal
oxide NPs of graphene was adjusted to 5% in weight. In the final step, the dissolution of graphene
decorated with metal oxide nanoparticles was deposited on the interdigitated gold electrodes (alumina
substrate) by the airbrushing technique at a temperature between 80 ◦C and 90 ◦C degrees (see Figure 1).
The room-temperature resistance of the deposited graphene, SnO2/graphene, and WO3/graphene
layers was typically about 1 kΩ, 11 kΩ, and 6 kΩ, respectively. For ensuring that a high reproducibility
of the deposition method is achieved, the deposition times are controlled and the device resistance is
monitored during deposition to ensure that the same typical resistances mentioned above are achieved.
The volume of graphene nanoflakes used on the electrodes was optimized on the basis of our previous
experience in the use of carbon nanomaterials [41]. A too thick graphene coating over the electrodes
results in low baseline resistance and low responsiveness. In addition, the desorption of gas molecules
from a thick layer during the recovery phases becomes more difficult. Conversely, the use of a too low
quantity of graphene could result in non-homogeneous coatings, dramatically reducing responsiveness,
and increasing noise levels. The loading level of metal oxide nanoparticles to graphene nanoflakes was
optimized in part. Our previous experience with carbon nanotube sensors indicates that the optimal
levels of metal or metal oxide NP loading is in the units of % in weight [42]. Here we used a loading
level of 5% in weight to ensure that graphene nanoflakes could be decorated with tin or tungsten oxide
NPs avoiding the occurrence of agglomerations of the metal oxide on the graphene surface.
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Figure 1. Sensor configuration: A film consisting of a random organization of few layer graphene
flakes, decorated with metal oxide nanoparticle coats, and interdigitated electrodes screen-printed onto
an alumina substrate. The resistance of the film is measured between the two contact pads printed on
the substrate. The substrate includes a printed platinum heating meander on its backside that can be
used to raise the operating temperature of the sensor above the ambient temperature.
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2.3. Characterization Techniques

The tested graphene sensors were characterized by transmission electron microscopy (TEM)
and an Environmental Scanning Electron Microscope (ESEM). The TEM morphology investigation
was undertaken with a JEOL JEM 2100F (Tokyo, Japan) TEM, at 200 kV operating voltage.
The Environmental Scanning Electron Microscope was realized by Carl Zeiss AG—ULTRA 55
(Oberkochen, Germany) ESEM.

2.4. Vapor Sensing Experimental Setup

The graphene, SnO2/graphene, and WO3/graphene sensors were tested for the detection of BTX
VOCs. The sensor chamber (35 cm3 in volume) can house up to six sensors at a time and measurements
were performed on two replicate devices for the three different sensitive nanomaterials studied, thus
ensuring that the differences in response recorded were consistent. The vapors were produced by a
dilution bench consisting of a chemical solvent vaporization cell and two flowmeters (with a flow rate
of 200 sccm). Sensor resistance was measured via an Agilent HP 34972A Multimeter (Santa Clara, CA,
USA) at a fixed operating frequency of 50 Hz. Due to the system configuration, the lowest achievable
vapor concentrations were 2, 0.4, and 0.2 ppm for benzene, toluene, and xylene, respectively.

The target vapors were injected in the sensor chamber using nitrogen as carrier gas. The response of
the sensors was calculated according to the normalized resistance variation, presented in Equation (1).

∆R/R0 (%) = [(Rg − R0)/R0] × 100, (1)

where R0 and Rg are the resistance under the carrier gas and the aromatic VOC, respectively.

3. Results

3.1. Material Characterizations

3.1.1. TEM Characterization

A transmission electron microscopy (TEM) analysis, performed in order to characterize the pristine
graphene layers, is displayed in Figure 2.
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Figure 2. TEM image showing an example of the graphene flakes. Flakes consist of few graphene layers.

Figure 2 shows a typical example of the 2-D graphene nanoplatelets used. They consist of few-layer
graphene sheets (four layers for the sample in Figure 2) with a diameter of about a few hundreds of
nanometers. This platelet shape offers a very high surface area (more than 100 m2/g) for its decoration
with metal oxide nanoparticles and interaction with the chemical environment. Additionally, graphene
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has a small content of oxygen functional groups (less than 8% wt.) derived from their synthesis.
Nevertheless, these oxygen groups can easily interact with metal oxide nanoparticles, enhancing the
decoration of graphene.

3.1.2. ESEM Characterization

Additionally, ESEM images were obtained for pristine and graphene decorated with WO3 and
SnO2. Figure 3a,b shows the ESEM images of graphene once it was deposited onto the substrate
to be employed as a gas sensor at two different scales. In addition, in Figure 3c,e, the graphene
decorated with WO3 and SnO2 are observed. In Figure 3d,f, a back-scattered electron detector (BSE)
was used showing the graphene (black background) decorated with the metal oxide nanoparticles,
which correspond to the bright spots. These images reveal a quite homogeneous distribution of WO3

and SnO2 metal oxide nanoparticles on the graphene surface.
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Figure 3. Environmental Scanning Electron Microscope (ESEM) images showing the sensor surface
composed by (a) bare graphene (5 µm scale), (b) bare graphene (1 µm scale), (c) graphene decorated with
tungsten oxide (WO3), (d) graphene decorated with WO3 recorded with back-scattered electron (BSE)
detector, showing the graphene (black background) decorated with WO3 (bright spots). (e) Graphene
decorated with tin oxide (SnO2), (f) graphene decorated with SnO2 recorded with back-scattered
electron (BSE) detector, showing the graphene (black background) decorated with SnO2.

3.2. Vapor Detection

The sensing performances of the pristine graphene, SnO2/graphene, and WO3/graphene were
examined for aromatic vapors: benzene (C6H6, dipolar moment µ = 0), toluene (C6H7, dipolar moment
µ = 0.43), and o-xylene (C8H10, dipolar moment µ = 0.62). The vapor concentration was controlled by
changing the mixing ratio of nitrogen and nitrogen balanced analyte vapor using mass flow controllers.

3.2.1. Graphene Sensing Response to Aromatic VOCs

The vapors sensing performances at room temperature of the pristine graphene-based sensor
towards the aromatic vapors benzene, toluene, and xylene are presented in Figure 4.

The observed response of the graphene-based sensor shows an increase of the sensor resistance
with the increase in the injected vapor concentration either for benzene, toluene, or xylene. A good
repeatability was observed (Figure 4b,c) at room temperature. The mechanisms behind the responses
registered are probably based on electrostatic interactions. Thereby, even though π–π interactions
cannot be ruled out, the room-temperature desorption of gas molecules indicates that the formation of
H-bonds is probably the most predominant interaction.

A baseline drift was observed for the higher concentration tested. Due to the highly stable and
reversible responses recorded for the lowest concentrations tested, this effect can be attributed to VOC
molecules remaining adsorbed at the graphene surface at the end of a cleaning phase, preventing
a complete baseline recovery. In fact, a short heating pulse of a few seconds at 70 ◦C is enough for
completely desorbing all vapor molecules and fully regaining the baseline (see the inset in Figure 4b).
This heating was obtained by applying an external voltage (one volt) to a heating element printed on
the backside of the sensor substrate and helps desorbing vapor molecules from the graphene surface.
The same behavior has been observed in a previous research in which carbon nanotubes were used [43].
This strategy of heating was applied only once to show its effect, but all the measurements shown in
Figure 4 were performed at room temperature and no heating was used to help regain the baseline.
The lowest concentration tested were 2 ppm, 0.4 ppm, and 0.2 ppm for benzene, toluene, and xylene,
respectively, which, combined to the very low noise levels observed in these responses (0.2% at room
temperature), indicates that the lower detection limit is in a range of about 200 ppb for benzene and
toluene and about 50 ppb for xylene. This estimation of the limit of detection (LOD) considers that
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a meaningful response signal should be at least three times higher than the noise level experienced.
The calibration curves presented in Figure 4d reveal a better sensitivity (i.e., slope of the calibrations
curves) for xylene compared to benzene and toluene. The error bars in the calibration curves shown
were calculated as the mean +/− the standard deviation over replicate measurements performed with
two replicate bare graphene sensors.

It is noteworthy to stress that the best graphene sensor performance, either from its sensitivity or
its baseline stability, was observed when operated at room temperature. Additional measurements
performed at operating temperatures above the ambient indicate that the response decreases when
graphene is heated. This decrease in responsiveness is probably due to the fact that heating promotes
desorption of the weakly physisorbed VOC molecules from the graphene surface. Such results are
presented in the Supplementary Materials file, Figure S1 and Table S1.
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3.2.2. Sensing Response to Aromatic VOCs of Metal Oxide Nanoparticle-Decorated Graphene

It is well known that semiconductor metal oxide materials such as tin or tungsten oxides can be
used as sensitive materials for the detection of vapors and gases [44–46]. Here we studied the effect of
decorating graphene with nanoparticles of either tungsten or tin oxide for tuning gas sensing properties.
First, an optimization of the sensor operating temperature was conducted by characterizing sensor
response at different temperatures ranging from room temperature to 300 ◦C. It was observed that the
response of WO3/graphene and SnO2/graphene sensors towards the VOCs tested increased when the
working temperature was raised up to 250 ◦C and then decreased again at 300 ◦C. The substantial increase
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in the optimal operating temperature of hybrid sensors in comparison to the one of bare graphene
is because metal oxide nanoparticles need such high temperatures for activating the chemisorption
and reaction of VOCs. However, a too high operating temperature hinders the adsorption of gas
molecules and results in decreased responsiveness [47]. The results on the performance of metal
oxide-decorated graphene sensors as a function of the operating temperature can be found in the
Supplementary Materials file, Figures S2–S6 and Tables S2 and S3. The following sub-sections show
the results obtained when sensors were operated at their optimal working temperature of 250 ◦C.

Response of Tungsten Oxide Nanoparticle-Decorated Graphene

The responses of the WO3/graphene-based sensor operated at 250 ◦C towards the vapors of
benzene, toluene, and xylene are presented in Figure 5.
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c, a linear baseline correction has been implemented (see Supplementary Materials for more details).

The observed response of the WO3/graphene-based sensor shows an increase in the sensor
resistance with the increase of the injected vapor concentration, for any of the aromatic VOCs tested.
A good repeatability was observed (Figure 5c) at 250 degrees. The mechanisms behind the responses
correspond to an overall p-type semiconductor behavior of the gas sensitive film. The chemisorption of
aromatic VOCs onto the tungsten oxide nanoparticles transfers electrons from the adsorbed molecule
towards the conduction band of tungsten oxide. These electrons are eventually injected to graphene,
shifting the Fermi level of graphene towards the conduction band. As a result, the number of holes
in graphene decreases and the overall resistance increases [48]. The calibration curves presented



Sensors 2020, 20, 3413 9 of 15

in Figure 5d reveal a better sensitivity for xylene compared to benzene and toluene. The error
bars in the calibration curves shown were calculated as the mean +/− the standard deviation over
replicate measurements performed with two replicate WO3/graphene sensors. Once again, the lowest
concentration tested were 2 ppm, 1.5 ppm, and 0.2 ppm for benzene, toluene, and xylene, respectively,
which, combined to the very low noise levels observed in these responses, indicates that the lower
detection limit for the aromatic VOCs is about 100 ppb for benzene and toluene and about 20 ppb for
xylene. The lower detection limit was estimated in relation to the observed response noise of 0.3%
at 250 ◦C. The response signal at these low concentrations is higher (roughly two times higher) than
the one recorded with bare graphene. This implies that the limit of detection for VOCs in tungsten
oxide-decorated graphene sensors is better (i.e., lower) than in bare graphene sensors.

Response of Tin Oxide Nanoparticle-Decorated Graphene

The responses of the SnO2/graphene-based sensor operated at 250 ◦C towards the vapors of
benzene, toluene, and xylene are presented in Figure 6.
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Figure 6. SnO2/graphene sensor responses for different concentrations of injected vapors of (a)
benzene; (b) toluene; (c) xylene; and (d) associated calibration curves. A linear baseline correction was
implemented for benzene exclusively (response shown in panel a), (see Supplementary Materials for
more details).

For benzene vapors, the SnO2/graphene-based sensor shows the same p-type behavior already
observed in bare and tungsten oxide-decorated graphene. Sensor resistance increases for increasing
concentrations of benzene. However, for toluene and xylene vapors, the sensor behaves as an n-type
semiconductor, because its resistance clearly decreases for increasing concentrations of these species.
Such transitions from p-type to n-type materials have been reported before in graphene nanomaterials
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and attributed to adsorbate induced charge transfer and charge carrier scattering effects [49,50]. These
response inversion effects appear at different operating temperatures for tin oxide and tungsten
oxide-decorated graphene, and the dipole moment (DM) of the molecule detected plays an important
role. Indeed, for SnO2/graphene-based sensors, while this effect is not seen for benzene (DM = 0),
it is observed for toluene and o-xylene, which have increasing DM. For ethanol vapors, a molecule
with even higher DM, this response inversion effect appears not only in SnO2/graphene but also in
WO3/graphene operated at 300 ◦C (these results are summarized in the Supplementary Materials).

The calibration curves presented in Figure 6d reveal a better sensitivity for xylene compared to
benzene and toluene. The error bars in the calibration curves shown were calculated as the mean +/−

the standard deviation over replicate measurements performed with two replicate SnO2/graphene
sensors. Once more, the very low noise levels observed in the responses indicate that the lower
detection limit for the aromatic VOCs lies in the range of a few hundred of ppb (i.e., about 100 ppb
for benzene and toluene and about 20 ppb for xylene). The lower detection limit was estimated
in relation to the observed response noise of 0.3% at 250 ◦C. A good repeatability was observed
(see Figure 6c) at 250 degrees. The mechanism behind the response signals at these low concentrations
is even higher than the one recorded with WO3/graphene. This implies that the limit of detection
for VOCs in SnO2/graphene sensors is better (i.e., lower) than in tungsten WO3/graphene and bare
graphene sensors.

3.3. Sensitivity to Aromatic VOCs

To calculate the sensitivities of the fabricated sensors to all the tested vapors, the calibration curves
were fitted using a linear regression model. The sensitivity (slopes of the calibration curves) for pristine
graphene, WO3/graphene, and SnO2/graphene sensors are presented in Table 1.

Table 1. Sensor sensitivity (10−2
× ppm−1) for aromatic vapors.

Graphene WO3/Graphene SnO2/Graphene

Benzene 19.2 22.7 25.5
Toluene 91 96.9 456.4
Xylene 213.6 391.2 2081.8

The best performance is observed for the SnO2/graphene sensor for benzene, toluene, and xylene
vapors. These differences can be related to the different dipolar moments of the aromatic VOCs
tested and the different activation energy of the gas-sensitive materials. The higher sensitivity for tin
oxide-decorated graphene could also be due to a better matching between the work function of graphene
(near 4.6 eV) and that of tin oxide (near 4.5 eV) as compared to tungsten oxide (near 5 eV) [51–53].
Results on the long-term stability of sensors are shown in the Supplementary Materials. A 20% drop
in sensitivity was observed after one month of operation under humid conditions. The sensitivity
towards non-aromatic VOCs was tested by measuring ethanol (see Figure S6, Tables S2 and S3,
Supplementary Materials). Ethanol sensitivity was found to be comparable to the one for benzene but
significantly lower than the one for toluene (3-fold lower) or xylene (10-fold lower). There are very few
reports in the literature about the detection of aromatic VOCs using carbon nanomaterials. Table 2
summarizes a comparison between the performance in the detection of BTX vapors reported here
and previously published results. The normalized response of our metal oxide-decorated graphene
sensors show higher values for xylene and toluene vapors than those reported in previously published
results [3,41–43,54]. Mirzaei and co-workers report in their review [3] a ZnO nanowire sensor modified
with small amounts of reduced graphene oxide (rGO) with a remarkably high response to benzene
vapors. This differs from our approach in which graphene is modified with small amounts of metal
oxides. However, the rGO-loaded metal oxide sensor reported operates at rather high temperatures
and is loaded with Pd [3]. At such temperatures, Pd acts as a catalyst and high cross-sensitivity to
hydrogen, carbon monoxide, alcohols, or hydrocarbons can be foreseen.
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Table 2. Comparison of the normalized responses (NR) expressed as response % × ppm−1 (where
response % is defined as Rg/R0 (%)) for benzene, toluene, and xylene for different carbon nanomaterial
gas sensors. Other parameters such as the limit of detection (LOD) expressed in ppb, operating
temperature (◦C), and dynamic range of concentration measured experimentally (in ppm) are given too.

Temp Benzene Toluene Xylene Dynamic
Range Ref.

(◦C) NR LOD NR LOD NR LOD (ppm)

Graphene RT 0.56 200 0.95 200 4 50 0.2–11 This research
Graphene/WO3 250 0.96 100 2 100 7 20 0.2–11 This research
Graphene/SnO2 250 1.16 100 4.25 100 28 20 0.2–11 This research

Pd-rGO-ZnO 400 460 100 * N/A N/A N/A N/A 1–5 [3]
MWCNT-PEO RT N/A N/A 0.003 55,000 * N/A N/A 72–108 [3]

MWCNT-Au-Calixarene RT 5 0.6 0.15 100 * 0.025 200 * 0.02–0.08 [41]
MWCNT-FeO RT 0.35 1400 * 0.45 1000 * N/A N/A 1.52–11.25 [42]

MWCNT-Au-HDT RT 1.5 500 * 4 250 * N/A N/A 0.5–13 [43]
MWCNT-Au-MHDA RT 0 - 0 - N/A N/A 5–20 [54]

*: estimated values for the LOD from data reported in the paper. N/A: data not available.

It is worth mentioning that the loading level of metal oxide nanoparticles on graphene could be
optimized further in order to possibly achieve an even higher sensitivity to aromatic VOCs. This would
involve checking different loading levels in a narrow range near the 5% level used here. Loading levels
below 1% do not significantly alter the properties of the bare material and loading levels higher than
10% result in the agglomeration of metal oxide nanoparticles, inhomogeneous distribution of these on
the graphene surface, and loss of sensitivity.

3.4. Response Time and Recovery Time

The response and recovery times of graphene, SnO2/graphene, and WO3/graphene sensors toward
aromatic vapors are presented in Tables 3 and 4, respectively. The response time was estimated as the
time required for the sensor to respond from 10% to 90% of its maximum response value. The recovery
time was estimated as the time required for the sensor signal to fall towards its baseline, from 90%
to 10% of its response value during a cleaning step. The results show faster response times for the
SnO2/graphene sensor towards toluene and xylene, roughly half a minute. These response times
compare favorably to the reported results for graphene sensors [3,48]. For benzene, the best response
time is displayed by the graphene sensor. The recovery times of the developed sensors range between
2.5 min and nearly 7 min. A rather slow return to the baseline is achieved compared to metal oxide
chemoresistors [3]. This is possibly due to the strong interaction between VOC molecules and the
surface of metal oxide-loaded graphene sensors and the lower operating temperatures used.

Table 3. Response time (s).

Graphene WO3/Graphene SnO2/Graphene

Benzene 87 275 238
Toluene 113 164 26
Xylene 136 178 35

Table 4. Recovery time (s).

Graphene WO3/Graphene SnO2/Graphene

Benzene 200 412 242
Toluene 188 285 148
Xylene 222 397 278



Sensors 2020, 20, 3413 12 of 15

4. Discussion

It is well known that the exposure to high concentrations of BTX vapors, commonly used as organic
solvents in the industrial production of paints, lacquers, adhesives, and detergents may cause serious
carcinogenic effects. The monitoring of the occupational exposure to these compounds is thus of great
importance for the preservation of workers’ health. Currently, the eight-hour TVA level for benzene
as indicated by OSHA is 1 ppm (the TVA levels for toluene and xylene are higher) [55]. The metal
oxide-loaded graphene sensors reported here are sensitive enough and show promising selectivity for
detecting BTX vapors at the relevant concentrations for monitoring occupational exposure. The results
reported here can be used to further the progress towards the development of a sensor array for the
selective detection of BTX.

In a previous research [54], we showed that a sensor employing multiwall carbon nanotubes
(MWCNTs) decorated with gold nanoparticles and functionalized with a self-assembled monolayer
of long-chain thiols (MHDA) was selective to non-aromatic vapors. This material was insensitive
to aromatic VOCs, which can be used as a negative test for confirming/ruling out the presence of
aromatic vapors in a complex environment. The three materials studied here (i.e., graphene and
the two metal oxide-decorated graphene) display different, overlapping sensitivities for aromatic
VOCs. However, the fact that tin oxide-loaded graphene shows a characteristic response inversion for
toluene and xylene vapors (and not for benzene) can be used as a confirmation test for the presence
of benzene in the environment analyzed. To illustrate this approach, a lack of response from the
MHDA-Au-MWCNT sensor combined with p-type responses from the other three sensors would be
indicative of the presence of benzene. In contrast, a lack of response from the MHDA-Au-MWCNT
sensor combined with a p-type response from the graphene and WO3/graphene sensors together with
an n-type response from the SnO2/graphene sensor would be indicative of the presence of toluene
or xylene. Finally, a response from the MHDA-Au-MWCNT sensor would indicate the presence of a
non-aromatic VOC such as methanol, ethanol, or acetone.

5. Conclusions

In this paper, we studied the effect of tin oxide (SnO2) and tungsten oxide (WO3) nanoparticles
decorating graphene on the performance of the resulting hybrid nanomaterials as chemiresistive sensors
for detecting BTX vapors. The decoration of few layer graphene flakes resulted in high sensitivity
towards benzene, toluene, and xylene vapors. The sensors could be suitable for the inexpensive
monitoring occupational exposure to BTX. In a future research, the materials developed could be used
for integrating a four-element sensor array on a single-chip MEMS configuration, and thus could
provide a unique double signal confirmation response associated with the presence of highly toxic
benzene vapors (as described in the discussion section). The fabrication of this single-chip sensor,
the fine-tuning of the loading level of graphene with metal oxide nanoparticles to maximize the
response to aromatic VOCs, and the study of the effect of ambient moisture will be the subject of our
next research.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/12/3413/s1,
Figure S1: Graphene sensor responses for different concentrations of injected benzene vapors at (a) room temperature,
(b) 50 ◦C, (c) 75 ◦C, and (d) 100 ◦C, Table S1: Graphene sensitivity (10−2x ppm−1) for different vapors at different
temperatures, Figure S2: Decorated graphene sensors responses for 5 ppm concentration of injected benzene
vapor at (a) room temperature and (b) 80◦C, Figure S3: SnO2/graphene and WO3/graphene sensor responses for
different concentrations of injected benzene vapors at (a) room temperature, (b) 275 ◦C, and (c) 300 ◦C, Figure S4:
SnO2/graphene and WO3/graphene sensor responses for different concentrations of injected toluene vapors at (a)
room temperature, (b) 275 ◦C, and (c) 300 ◦C, Figure S5: SnO2/graphene and WO3/graphene sensor responses for
different concentrations of injected xylene vapors at (a) 200 ◦C, (b) 275 ◦C, and (c) 300 ◦C, Figure S6: SnO2/graphene
and WO3/graphene sensor responses for different concentrations of injected ethanol vapors at (a) room temperature,
(b) 200 ◦C, (c) 250 ◦C, (d) 275 ◦C, and (e) 300 ◦C, Table S2: WO3/graphene sensitivity (10−2x ppm−1) for different
vapors at different temperatures, Table S3: SnO2/graphene sensitivity (10−2x ppm−1) for different vapors at
different temperatures. Figure S7: SnO2/graphene sensor responses for different concentrations of injected vapors
of benzene (a) without and (b) with linear baseline correction. Figure S8: Long-term stability of the response
towards benzene vapors.
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